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Interaction of S-polarized beams with infinitely conducting grooves:
Enhanced fields and dips in the reflectivity
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Field enhancement and reflectivity of S-polarized Hermite-Gaussian beams from a rectangular
groove ruled on a planar, perfectly conducting surface are analyzed by use of a modal theory. We
show a novel effect in which S resonances are manifested by the appearance of sharp dips in the scat-
tered intensity. We propose a relationship for the location of these minima in the scattered intensity
with a precision better than 10

During the last few years in solid-state physics, great
interest has grown regarding the relationship between Ra-
man scattering and surface polaritons. ' By now, it is
widely accepted that excitation of surface polaritons
(which enhances the local-field intensity near the metal
surface) is the main origin of surface-enhanced Raman
scattering (SERS). This fact has motivated the study of
the electric field near surface irregularities; a review is
given in Ref. 4. Although S-polarized surface polaritons
are not known to exist in nonmagnetic materials, it is in-
teresting to investigate whether field enhancement is
present with this polarization. Recently, in solid-state
physics, infinitely conducting gratings have received atten-
tion because it was found theoretically that a silver grat-
ing gives practically the same results as for a perfectly
conducting grating. 5 Wirgin and Maradudin treated
an infinitely conducting lamellar grating, obtaining
significant electric-field enhancements. However, they did
not find any trace of S resonances in the far-field intensity,
as occur with P-polarized radiation. This last negative re-
sult had already been presented by Andrewartha, Fox,
and Wilson some years before.

In this paper we present exact numerical calculations
for the interaction of S-polarized beam waves of finite
cross section with one groove ruled on a flat perfectly con-
ducting screen. As incident beams of finite cross section
we consider Hermite-Gaussian beams of arbitrary or-
der, ' where the lowest order is an ordinary Gaussian
beam. ' " As was pointed out by Marcuse, ' these beams
are very important since laser modes have the shape of
Hermite-Gaussian functions. To our knowledge, beams of
finite cross section have not yet been considered in the
study of the electric-field enhancement (S or P polariza-
tion). Our numerical experiments show that the proxim-
ity to 5-resonant wavelengths is indicated by dips in the
reflected intensity, suggesting a simple and practical
method for the 1ocation of these S resonances. It is impor-
tant to remark that these observed minima in the far-field
intensity are not related to any absorption of energy; in

fact, a redistribution of energy takes place. We also pro-
pose a relationship for the location of these dips in the
scattered intensity with a precision better than 10

The geometry of our system is shown in Fig. 1. We
consider a rectangular groove ruled on a flat perfectly con-
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cidence. The z axis is perpendicular to the figure.

ducting screen, with width I and thickness h. The screen
is placed in vacuum and the position of a point in space is
given by its Cartesian coordinates x, y, and z. The rec-
tangular groove is illuminated by an electromagnetic
beam wave of finite cross section which is independent of
the z coordinate. The complex representation of field
quantities is used and the complex time factor exp( —iwt)
is omitted in what follows. In this paper we consider only
S-polarized waves, i.e., E, is the only component of the
electric field and must be null at the interfaces. The total
field E must satisfy the Helmholtz equation. For the
sake of simplicity we distinguish three regions, denoted as
region 1 (y) h/2), region 2 ( —h/2 &y & h/2), and re-
gion 3 (y & —h/2), as illustrated in Fig. 1. In region 1,
the field E i (x,y) has the form

1
t+k

Ei(x y) = g(tz)e ty dg
(2tr) I/2 & —k
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the first integral of Eq. (1) is identified with the incident
field E, this solution satisfies the radiation condition (or
the outgoing wave radiation). In region 2, we can repre-
sent E2 by the following modal expansion:

g M»„b„+N»b» =S»,
n 1

where M„,„,N, and S are given by

M„,„2isin(p„h/2)(P(a)P„(a), P (a)),
p leos(p h)

1V
2cos(p„h/2) '

S =2i(P(a)A(a)e '&" ',j (a)).

(S)

(6)

(t„(a) is the Fourier transform of p„(x). We have the no-

tation

(f(a),g(a)) = f(a)g(a)* da. (9)

By solving Eq. (S), the coefficients b„are determined,
these b„substituted into Eq. (4) allow the determination
of the coefficients a„, and the solution for the problem is
formally obtained. Using Eqs. (2) and (4) we can write
down the field within the groove in terms of a„or b„:

E2(x,y) = g [tan(p„h/2) cos(p„y)+sin(p„y)]P„(x)b„
n=l

= g [cos(p,y)+cot(p„h/2)sin(p„y)lp, (x)a„.
(10)

E2(x,y) = g [a„cos(p„y) +b„sin(p„y)]P„(x), (2)
n I

where p„=k n—n /l, with p„or p„/i positive. The
functions p„(x) are given by

sin(nzx/l), 0 ~ x ~ l,P„x
0, elsewhere. (3)

This expansion is in accord with the fact that Ei must be
null inside a perfectly conducting metal. Finally, in region
3, we have the condition E3(x,y) =0. Our problem is to
determine the amplitude 8(a) of the scattered field [Eq.
(1)] and the modal coefficients a„and b„of Eq. (2), when

the amplitude A(a) of the incident beam wave is known.
The requirement that the tangential component of the

electric field must be continuous at y = —li/2 results in

a„=b„tan(p„h/2) . (4)

The other boundary conditions, continuity of E and BE/By
at y =li/2 and across the slit at y =h/2, respectively, led
us to the following system of equations in b„:

We are naturally interested in determining conditions
of existence of cavity resonances and methods to detect
these resonances. To our knowledge no study has been
carried out in these directions for no-periodical structures
with S-polarized waves. The most important contribu-
tions have been given for gratings. A closer look at Eq.
(IO) gives immediately the following conditions for the
electric-field enhancement within the grooves:

tan(p„h/2) =+' ~ or cot(p„h/2) = ~ ~, (11)
where p„has been defined below Eq. (2). We find that
for the wavelengths X, solutions of these equations are

1P —i/2
n m~nm=2, +
I h

(12)
m =1,2, 3,4, . . . , n =1,2, 3,4, . . . .

This is a relationship between the wavelength X„and the
groove dimensions (the width l and the thickness h). We
notice the important fact that Eq. (12) is independent of
the incident beam wave. It is easy to verify from Eq. (12)
that )L.„»( 1i,„where A,, =2l is the cutoff' wavelength for
the associated waveguide obtained when li is infinite, so
that, in resonant condition the scattered field penetrates
deep into the groove reaching the bottom. "'4 In order to
understand the nature of the S resonances, let us consider
a two-dimensional rectangular resonant cavity, whose di-
mensions are l and h. The Helmholtz equation plus the
boundary condition E, =0 form an eigenvalue problem.
We find that the normal wavelengths of this closed cavity
are identical with the resonant wavelengths given by Eq.
(12). We think that this kind of analogy will be very use-
ful in considering more complicated configurations, for in-
stance, rough surfaces.

Studies of resonant conditions for gratings (S-polarized
light) have been done by several authors. A critical re-
view of these papers was done by Wirgin and Maradudin
in Ref. 6. In that paper, it was treated as an infinitely
conducting lamellar grating and, in their Eq. (IO), an ex-
pression for the location of cavity resonances was pro-
posed. It is not hard to see that our Eq. (12), with n =1,
reduces to that proposed by Wirgin and Maradudin. This
result shows that one rectangular groove has more S reso-
nances than a lamellar grating. Our numerical experi-
ments (and those of Ref. 6) show that the actual resonant
wavelengths k are very close to those calculated with Eq.
(12).

As an incident beam, we consider the two-dimensional
version of the field distribution of a Hermite-Gaussian
beam. The amplitude 3 (a) of the incident beam [see Eq.
(1)] is given by ' '

A(a) =L/2(i) H [—(acos80 —Psin80)L/8'l ](cos8O+a/Psin80)e'~ ' +~"~21exp[ —(acos80 —Psin80) L /Sl, (13)

where L/2 is the local 1/e intensity beam radius, related
to the 1/e field beam radius a/2 by L =a/2'~ . We locate
the beam waist on the screen at x =b and y =h/2, where b
will be taken as l/2 from now on, i.e., the Hermite-
Gaussian beam will be centered on the slit aty =li/2. H
denotes the Hermite polynomial of order m and 80 is the

I

angle of incidence of the limited beam (Fig. 1). As was
pointed out by Marcuse, ' these beams are very important
since laser modes have the shape of Hermite-Gaussian
functions. As far as we know, this is the first time ~here
incident Hermite-Gaussian beams are considered in thc
calculation of enhanced electric field near surfaces. %e
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find, for Gaussian beams (m =0), significant field
enhancements comparable to those of virgin and Mara-
dudin (for a conducting lamellar grating) given in Figs. 3
and 4 of Ref. 6. Besides the fundamental beam (m=0),
we have treated incident Hermite-Gaussian beams of or-
der m&0, but no significant field enhancements were
found. In these last calculations (m&0), the minima of
the incident beam were not considered avoiding very large
fictitious enhancements of the order of 10 .

We now turn to the following interesting question:
How is the resonant enhancement of the electric field
within the groove related to the observed reflectivity? In
other words, how will the S resonances be detected? First
Andrewartha, Fox, and Wilson and later Wirgin and
Maradudin gave a negative answer to this question in the
case of periodical objects (gratings). They did not find
any trace of S resonances in the far-field intensity. How-
ever, from our calculations we show that the S resonances
can be detected from the observed reflectivity for non-
periodical objects (one or two grooves).

The differential reAection coefficient (dR) is defined as
the fraction of the energy in the incident beam which is
scattered into the angular interval (8,8+18). Figure 2
displays the typical behavior of the scattered intensities
when one is close to a resonant wavelength. The loga-
rithm of dR/d8 as a function of the scattering angle 8, for
a Gaussian beam normally incident on a groove 0.35 pm
wide by 1 pm deep, at various wavelengths is shown. In
this figure, the proximity to the resonant wavelength
X2~ =0.3447 pm is indicated by two symmetrical dips in

the reAected intensity. The reader will notice that when k

0-
—2-
—4

0-
—2-
-4-

goes from below, through, and then above the resonant
wavelength A, 2i, the dip pairs move from 9= + 90 to
lower 0 values, collapsing finally close to 0=+ 0 . In this
last example, L/1=6.06, if L/l» I the collapse takes
place very close to 0= 4-0 . This novel and sensitive
eAect occurs in a very narrow range of wavelengths
(hA. =A/IOO) that include the resonance value, suggesting
simple and practical ways for determining S resonances.
One way to use this "resonance dip-pair collapse eAect"
(RDPCE) to detect S resonances is described below.

Let dR/d8 be measured by varying k at a fixed scatter-
ing angle 8; dips will be observed due to the resonant
enhancement of the electric field within the groove. From
the numerical point of view, these dips and those of the
RDPCE (Fig. 2) can be observed easily; however, the
most favorable experimental conditions in which to detect
these dips are obtained when the incident spot size I is of
the order of the groove width I with r & l. An example of
the appearance of these dips is displayed in Fig. 3, when a
Gaussian beam (L/1=6.06) is normally incident on the
groove mentioned above and A, varies in the interval
0.29-0.79 pm. The fixed scattering angle 8 is 30'. It fol-
lows from Eq. (12) that nine resonances may be predicted
at A, ~~ =0.6607 pm, X~2=0.5734 pm, A, ~3=0.4827 pm,
A, )4 =0.4068 pm, X, l5 =0.3472 pm, k)6 =0.3009 pm,
) ~~ =0.3447 pm, X22=0.3303 pm, and X23=0.3098 pm.
From Fig. 3, however, only six dips are detected. How
can the other three missing resonances be detected? The
answer to this question is given by Fig. 4, where the fun-
damental incident beam has been replaced by a Hermite-
Gaussian beam of odd order (m = I). The three missing
dips are clearly shown. In Table I we list the resonant
wavelengths k„„,calculated from Eq. (12), along with the
dips A, ; (i =1, . . . , 9) observed in Figs. 3 and 4. Let us
note that with other fixed scattering angles 0 the same X, s
were found. Thus, we find that our simple relationship
equation (12) is able to locate the dips observed in the
scattered intensity with a precision better than 10
This novel eA'ect (RDPCE) and Eq. (12) could be applied

Q) 2
0

CC

4Q)0

.3481

CD

CC
~ -2
U

CD -30
2
0- A =0.3500

—2-
4

-6
I I

-90 0 90
Scattering Angle( Degrees)

FIG. 2. Typical behavior of the scattered intensities when one
is close to a resonant wavelength, showing the collapse of dip
pairs close to 8= ~ 0 . The logarithm of dR/d8 for a normally
incident Gaussian beam is displayed at various wavelengths.
L =3/2'i~ pm, h =1.0 pm, and I =0.35 pm.
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FIG. 3. Logarithm of the diAerential reAection coeScient per
unit angle d8 (dR/de) as a function of wavelength for a fixed

scattering angle (8=30 ). A normally incident Gaussian beam
is considered. Six resonant wavelengths denoted by k; (i =1, 2,

3, 4, 6, and 9) are labeled in the figure. L =3/2'i pm, h =1.0
pm, and I =0.35 pm.
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TABLE I. Comparison between the resonant wavelengths

(calculated) and the resonant wavelengths )I,; (observed).

CD
O

3
Ct
U

U)0

-5-

-6
0.29 0.39 0.49 0.59

Wavelength (pm)
0.69 0.79

(pm)
(calculated)

kii =0.6607
A, i2 =0.5734

0.4827
A, i4 =0.4068
~is =0.3472
X,2I =0.3447

0.3303
0.3098
0.3009

k; (pm)
(observed)

Xl =0.6608
A, 2 =0.5737
A, 3 =0.4830
A,4 =0.4068
A, 5 =0.3469
X,6 =0.3447
A, y =0.3304
Xs =0.3100
Xg 0.2999

FIG. 4. The same as Fig. 3 but for a normally incident
Hermite-Gaussian beam of order m=1. Three resonant wave-

lengths denoted by A.; (i 5, 7, and 8) are labeled in the figure.

to a number of interesting practical problems; for in-

stance, they can be used as a sensitive wavelength selector.
The groove depth can be determined by scattered light
measurements; this is an inverse scattering problem. '

These results can also be used for characterizing the prop-
erties of rough surfaces.

In conclusion, we have presented exact numerical calcu-
lations for the interaction of S-polarized Hermite-
Gaussian beams with one groove ruled on a flat perfectly
conducting screen. We have demonstrated a novel effect
(RDPCE) in which S resonances are manifested by the
appearance of sharp dips in the scattered intensity. In ad-

dition, we have proposed a simple way to experimentally
detect S resonances and a relationship [Eq. (12)] that
gives their location with a precision better than 10
These results suggest a practical way for determining
cavity-type resonances, i.e., they provide favorable experi-
mental conditions in order to obtain, for instance, a large
SERS signal or a large response of nonlinear materials.
We expect that the effect predicted will stimulate the ex-
perimental work in these directions.
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