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Cubic magnetic anisotropy of nonstoichiometric magnetite
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The cubic magnetic anisotropy constants of Fe3(l $)04 single crystals (with 0.000(6(0.006), ob-
tained by curve fitting of the respective magnetization curves, are reported between room temperature
and the isotropic point ( —130 K), where the easy axis changes from [111]to [100]. Two distinct temper-
ature dependences are observed for nonstoichiometries above and below 6&=0.0039, in samples with
second- and first-order Verwey transitions, respectively. The characteristic temperatures for the first-

derivative curves are consistent with mean-field parameters for nearest-neighbor-interaction models.

I. INTRODUCTION

Numerous prior experimental investigations have ad-
dressed the magnetocrystalline anisotropy of magnetite
(Fe3(i s)04), the type material for Neel ferrimagnetism,
motivated by the technological importance of the ferrite
solid solutions, as well as by its possible connection to the
charge-ordering phenomena associated with the Verwey
phase transition.

It is well established that small departures from nomi-
nal metal-oxygen stoichiometry can have profound effects
on the physical properties of transition-metal oxides.
This influence is dramatically illustrated by the sudden
loss of the latent heat of the Ver wey transition at
5C =0.0039 in a discontinuous change in character from
first- to second-order behavior.

Recent studies of the influence of nonstoichiometry on
the magnetic properties of magnetite have found no evi-
dence of a discontinuous change in behavior at 5C, which
is difficult to reconcile with the existence of a unique or-
dering contribution to the thermodynamic potential.
Consequently, the present work reexamines the thermal
dependence of magnetic anisotropy in first- and second-
order transition regimes —above T~, to avoid complica-
tions from possible subtle structural differences in the
low-temperature phases —with particular attention to
thermodynamic consistency.

II. EXPERIMENTAL DETAILS

Three Fe3(, Qj04 single crystals, grown by rf induc-
tion melting from 99.999%-pure Fe203 reagent, were an-
nealed under controlled oxygen fugacity conditions, by
techniques described elsewhere ' to produce 5 values of
0.000 and 0.003, respectively, corresponding to
stoichiometric and cation-deficient samples with first-
order Verwey transitions, and 5=0.006, to induce cation
deficiency beyond the critical value 0.0039, for which
second-order Verwey transitions are observed. The crys-
tals were ground in a diamond abrasive air mill to spheres
of 3 —5 mm diameter, with sphericity of 10,oriented by
Laue back-refiection x-ray techniques on the cubic [100]
axis, within 1, and rigidly mounted with epoxy on quartz
tubing.

A. Data reduction

The magnetocrystalline anisotropic energy per unit
voluine ( W„) of cubic crystals, expanded to second or-
der, in terms of the direction cosines (I, m, n) of the mag-
netization vector (Ms) with respect to each cubic axis, is

Wz =Ko+Ki(1 m +m n +n 1 )+K2(lmn)

where Eo is independent of direction, whereas K, and Kz
contain the directional-preference information.

For magnetite above the isotropic point, [111] is the
easy magnetization direction (i.e., K, & 0 and
0 &K2 & 1.2K, ). Let y be the angle of the magnetic mo-
ment with respect to an applied field along [001];then the
energy-minimization condition dR /dy=0, applied to
Eq. (1), in terms of the fractional magnetization
(a =M/M&) yields, factored for data reduction,

H, ttMs = —K, (3a —a)+ (3a —4a +a ), (2)

to obtain K& and K2, from the measured magnetization
and effective field (H, tt), obtained by subtraction of the
demagnetizing (NdM) from the applied field, by a singu-

lar value decomposition solution of the corresponding
least-squares problem, excluding the low- and high-field

Magnetization was measured in a superconducting
quantum interference device (SQUID) magnetometer
(Quantum Design MPMS2), as a function of applied fields
between 200 Oe and 10 kOe, at temperatures between 125
and 300 K, after cooling in a 10-kOe field, applied paral-
lel to the [100] mounting axis. Scan lengths of 3 cm were
used, and the calibration was verified with a Pd standard;
the effect of field inhomogeneity was evaluated with a Ni
standard. Absolute accuracy was better than 1/o, and
the precision for six independent scans at each field was
0.1 %%uo.

Demagnetization factors (Nd ), evaluated frotn the ini-

tial slopes of the magnetization curves for each tempera-
ture, were consistent to within 0.01% for 35 independent
fits on each sample and in the range 4.2&IV„&4.3, com-
mensurate with the ideal sphere value of 4.189, within the
stated sphericity for samples of this size.
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FIG. 1. Representative fit (solid line) of magnetization vs
effective-field data (circles) for a first-order sample at 300 K and
saturation limit (dashed line).

g t&' &Kt&, cf. Fig. 2), leading to a lower isotropic point
(125 K) than that characteristic for 5 & 5c (130 K).
Above =—225 K, the reverse inequality is verified, i.e.,
K& )K&. Below 180 K the steep dependence of E, on
temperature induces differences K&' —K'„which are one
to two orders of magnitude larger than the experimental
uncertainty.

The net effect, associated with the change from the
first- to second-order Tv regime, for 5 & 5C, amounts to a
discontinuous displacement of the respective K, -vs-T
curve by 5 K. Kakol, Fribble, and Honig have reported,
instead, " a uniform reduction of the magnitude of E&
with 5 (from —1.2X10 to —1.0X10 erg/cm at room
temperature), convergent on a unique isotropic point at
130 K.

In all cases the anisotropy constant K2 is negative and

obeys a thermal dependence similar to E&', however, the
uncertainties of the fitted values are at least an order of
magnitude greater, rendering further consideration
speculative.

regions, with valid data restricted to the 0.65(a (0.85
range. A representative sample fit is shown in Fig. 1.

III. RESULTS AND DISCUSSION

The fitted values of the E& anisotropy constant for
each crystal (cf. Fig. 2) are in general agreement with pre-
viously reported torque measurements. ' Two distinct
regimes are apparent for samples with 5 above and below
C=0 0039
For 5(5&, in samples with first-order Verwey transi-

tions, the values of E& at each measured temperature
(130& T & 300 K) are mostly indistinguishable (cf. Fig. 2)
within experimental uncertainty (+2%%uo ).

The thermal dependence of EP for 5)5c (cf. Fig. 2),
in the second-order Verwey-transition regime, diverges
from that of the first-order transition below =-225 K (i.e.,

A. Magnetic anisotropy and Verwey ordering

It has long been recognized' that an intimate connec-
tion exists between the dramatic drop in anisotropy from
250 K to the isotropic point at 130 K and the subsequent
Verwey transition (Tv & 122 K). In an attempt to
parametrize this relation, a procedure similar to that used
to account for the effects of Co doping' has been ap-
plied' to distinguish the ordering-related term from all
other contributions to E&. The necessary mapping relies
on the fact that the monoclinic low-temperature anisotro-

py constants, reduced by their projection on the cubic
crystallographic axis, to obtain an effective cubic K, con-
stant below Tv, lie on a common base line with the mea-
sured' high-temperature (250 & T & 800 K) K, values (cf.
Fig. 3). The contribution of Verwey ordering to anisotro-

0 I I I I

I I

I
I I I I

0
GD

0

I
I I I I

I e 5=0.000
5 = 0.003

0 & = 0.006

-0.5

-1.0

0

0

0

-1.5
150 200 250 300

T (K)

FIG. 2. K& anisotropy constants for samples with 5=0.000
(stars), 0.003 (triangles), and 0.006 (circles).
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FIG. 3. Experimental X, anisotropy in first-order (solid line)
and second-order (short-dashed line) Verwey-transition regimes
and reference base line (long-dashed line) from Ref. 10, with an
indication of the AE I variable.



5336 RICARDO ARAGON

1.5 I
]

I I I I
I

I I I ~ 1 B. Mean-field model

0.5

0.0 I I I I

The formal representation of the general therrno-
dynamic considerations of the previous section finds its
simplest expression in the mean-field approximation. In a
previous communication, ' it was shown that, accounting
for the splitting of electronic states in the first-order
Verwey-transition regime for 5 & 6c, the simple equation
of state proposed by Strassler and Kittel, '
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FIG. 4. Inverse hE& plot for 5=0.000 (stars), 0.003 (trian-
gles), and 0.006 (circles) and its extrapolation to zero at 81 K
(indicated by a straight-line approximation).

py is thus empirically parametrized by a new variable:
AK„obtained from the difference between the experi-
mental and base-line values at each temperature. Howev-
er, further fittings of hK

&
in terms of single-ion functions

yield unrealistically low concentrations of anisotropic cat-
lons.

It has been noted' empirically that the reciprocal of
AK, vanishes at 81 K, analogously to the behavior of the
c«elastic modulus. This simple relation is satisfied by
both first- and second-order Tv samples (cf. Fig. 4), al-

though the linearity is compromised by a sensitive depen-
dence on the extrapolated base line. The physical inter-
pretation of this functional dependence is readily ap-
parent on thermodynamic principles, with due recogni-
tion that the anisotropic energy [cf. Eq. (1)] represents a
contribution to the Helmholtz potential. Indeed, in
Slonzewski's approximation, ' the cubic anisotropy con-
stant is represented by

r —31r +3 ~ e 1+—ln3 1

2 gp

—1 =0

where

1
e 1+—ln

2 go

1 Tv—1=— ln
2 T go

in terms of noninteracting (s) and interacting (A, ) contri-
butions to the internal energy of a fraction of excited
states of degeneracy g& and ground states of degeneracy

go, characterized by a single long-range-order parameter
('P), provides a complete thermodynamic description of
the dependence of Verwey ordering on nonstoichiometry
(5) by its influence on the magnitude of the interactions
(A, ).

The equation of state [cf. Eq. (5)] can be mapped to the
canonical cusp catastrophe with the diffeomorphism ob-
tained by reduction of all variables (s, i,, +, T) to new
coordinates (e, tr, t), with a change of origin to 5c,
where the discontinuous change from a first- to second-
order transitions occurs. The resulting critical mani-
fold'

K
1
=4(F[110] F[100]), —

=—t ln
2 go

hE, ~(T—8) (4)

characteristic of the second-order (Tz") regime with
8=81 K.

where F[hkl] are magnetocrystalline anisotropy com-
ponents of the Helmholtz potential on the appropriate
crystallographic directions. The subtraction of a con-
tinuous base line implies the adoption of a hypothetical
reference thermodynamic state without Verwey ordering
and hK&, merely the corresponding excess property,
which is necessarily singular at the transition. The ad-
vantage of examining the difference in an equilibrium
physical property between two thermodynamic states is
that the thermal dependence intrinsic to that property,
which is model dependent, cancels out, leaving only the
thermal dependence of the excess potential, described by
a function of the appropriate long-range-order parame-
ter. To understand the behavior of AK, in the neighbor-
hood of the transition, it suftices to characterize that of
the order parameter. In this context the linearity of
AK, ' with T implies a Curie-Weiss-type law'

plotted in Fig. 5, contains all the topological information
necessary to relate the thermal dependencies of any phys-
ical property in first- and second-order regimes by the
respective degeneracy ratios (gi /go), namely, 2 and l.

The reduction of variables permits the representation
of all Verwey critical behavior on a common control
space (i.e., t vs I). The Curie-Weiss dependence [Eq. (4)]
will be applicable to all second-order transitions, namely,
the contiguous set of Tv, for which g, /go =1, and the
isolated second-order transition at the nose of the first-
order cusp, for which g& /gp =2. The formal equivalence
of Eq. (5) with the Weiss equation of state in these cases
was proved in Ref. 17. The intersection of the first-order
(Ti,) and second-order (Tv) transition temperatures plot-
ted with respect to nonstoichiometry (5), which is a
linear mapping of 1, occurs at 81 K, below which the in-

teractions (i.e., A, or l) are too weak to induce ordering.
Hence the common characteristic temperature 0=81 K
for all Curie-Weiss dependencies plotted in Fig. 4
represents the invariant at the pivot point of the first- and
second-order cusps.

A much stronger topological constraint can be ob-
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transition (i.e., 108.4 K), but the slope (i.e., —,'ln2) of the

graph of (K', K—P )
' vs T are fully determined. Unlike

b,K„ the quantity (K', —K", ) is obtained entirely from
measured properties and requires no other reference.
The quantitative agreement between the data and the to-
pological constraint is evident in Fig. 6.

IV. CONCLUSIONS

FIG. 5. Schematic representation of the cusp critical mani-
fold and its projections; r is the reduced order parameter, l the
reduced interaction variable, t the reduced temperature, and go
and g &

the degeneracies of the ground and excited states (repro-
duced from Ref. 17).
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FIG. 6. Inverse of the difference of experimental K& values
for 5=0.000 and 5=0.006 (circles) and predicted dependence
with 108.4-K intercept and slope of

2 ln2 (solid line).

tained by examining the contribution to the Helmholtz
potential due to the internal-energy parameter (s or e) as-
sociated with the splitting of degeneracies in the first-
order regime. All that is required is a change of the
reference state, from one without Verwey ordering, as
used in the definition of AE&, to one of equal degeneracy.
The empirical quantity which provides the appropriate
function of the order parameters is then (K', —KI').
Equation (6) predicts that the first-order cusp is pivoted
by —,'ln2, about an origin, defined at 5&, by the discontinu-
ous change from T&=101 K to T&=108.4 K. Hence,
not only the intercept at the lowest observable first-order

The thermal dependence of the cubic magnetocrystal-
line anisotropic energy of magnetite crystals, with first-
order (5(5c) and second-order (5&5c) Verwey transi-
tions, reduces consistently with the topological con-
straints obtained from bifurcation analysis of a simple
mean-field equation of state [cf. Eq. (5)]. The divergence
of K

&
from E&' below 250 K results from the splitting of

excited electronic states with twice the degeneracy of the
ground states in the first-order regime. It can be shown '

that the observed characteristic temperatures of 81 K for
the lowest Tv and 108 K, at the 5& discontinuity between
TV=101 K and T&=108.4 K, correspond to the Ising-
model limits for the summation of pertinent exchange pa-
rameters over nearest neighbors in each regime.

A similar dependence, observed for the c44 elastic
modulus, ' is a necessary consequence of typicality,
namely, of the universal character of the equation of state
[Eq. (5)]. Empirical formulations of an order parameter
may be obtained in terms of any equilibrium physical
property. However, it is not the magnitude of the order
parameter, but that of its first and higher derivatives with
respect to the control variables which define criticality.
The value of bifurcation analysis is that it provides an al-
gorithm to identify the appropriate controls and map all
empirical order parameters, in terms of unique essential
variables, to the corresponding critical manifold.

Hence the reciprocal of the difference of c44, measured
for first- and second-order T~ samples, should vanish
identically at 108 K with a slope of —,'ln2. The remark-
able linearity of this type of graph (cf. Fig. 6) is
noteworthy, because strong equivalence preserves the
direction away from the nose of the cusp (i.e., the control
coordinates for 5c,1=t =0), but not necessarily the cur-
vature, which depends on higher derivatives with
respect to the control variables I and t.

It is inherent to the limitations of the mean-field ap-
proximation that its success in characterizing the
Verwey-ordering contribution to free energy and, hence,
to the thermal dependence of all equilibrium properties
does not extend to the nature of the ordering mechanism.
The most direct experimental evidence for this micro-
scopic description is probably found in the diffuse scatter-
ing observed by electron and neutron diffraction be-
tween 200 K and Tv. Persuasively, the inverse of its in-
tensity extrapolates to zero at —108 K, although, in the
absence of data for the second-order regime, the neces-
sary reference to scale the ordinate of the graph is una-
vailable. The energy spectrum of this diffuse scattering
has been interpreted in terms of a pseudospin-phonon
coupled system; however, optical-phonon —magnon in-
teractions in ferrimagnetic insulators yield similar expres-
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sions for the differential scattering cross section without
further assumptions, if low-lying excited electronic states
are admixed into the ground state by an oscillating crys-
tal field. The ensuing modulation of the exchange in-
tegral would then constitute the driving parameter for
electronic ordering.
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