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We present a theoretical study of the effective exchange interaction arising from the hybridization be-
tween the valence-band states and the localized d orbitals of a transition-metal impurity in a II-VI semi-
conductor. The irreducible tensor method is used to deduce the effective Hamiltonian in the manifold of
the ground multiplet of a 3d” ion in a tetrahedral crystal field. There is no coupling in the cases of Sc?*
and Ti** ions. For Mn?*, Fe?*, and Co®* the coupling reduces to the usual spin-exchange Kondo Ham-
iltonian, in agreement with experiments; the observed increase of the exchange parameter |NyB| from
Mn to Fe to Co in a given host is also explained. In the cases of V2*, Cr?*, Ni?*, and Cu®* additional
coupling terms involving the orbital degrees of freedom are obtained; these predict drastic modifications

of the valence-band splitting in a magnetic field.

I. INTRODUCTION

Semimagnetic or diluted magnetic semiconductors
(DMS) are typically solid solutions of II-VI compounds:
A M _BV! where A"=Cd,Zn,Hg, BY'= Te,Se,S, and
M is a transition metal. Mn-based DMS have been inves-
tigated most extensively. The Fe- and Co-based ones
have been synthesized and studied more recently. The
spectacular magneto-optical properties of the Mn-based
DMS were early interpreted’ in terms of the Kondo-like
exchange Hamiltonian of the form-Js-S, for the coupling
between the band electron spin s and the Mn?" ion spin
S, with the Hund’s rule value S=3. The same Hamil-
tonian is used for describing transport properties and
bound magnetic polarons. A mean-field analysis of com-
bined magnetoreflectivity and magnetization measure-
ments yields accurate values of the exchange parameter
in wide-gap DMS.? Generally speaking, the exchange pa-
rameter for the conduction-band minimum Nya is posi-
tive (ferromagnetic) and of order 0.2 eV, whereas that for
the valence-band maximum N, is negative (antiferro-
magnetic) and of order 1.0 eV. We® have accounted for
these features in the following manner. The relatively
small Nya corresponds to the ordinary exchange integral
of the Coulomb potential between a conduction-band
electron and the Mn d electrons. On the other hand, Nyf
is dominated by the effective exchange arising from the
hybridization between the valence-band states and the lo-
calized d orbitals. The Schrieffer-Wolff transformation*
was used to quantitatively relate NoS to the Anderson’
hybridization parameter V,, and the energy of the d level
below the valence-band maximum. These ideas have
been further developed by Larson et al.® Recently, we
have studied’ the variation of the ion-carrier exchange
parameters with the wave vector k in the Brillouin zone.
Hass® provides a review of theoretical works on magnetic
interactions in Mn-based DMS.

Let us now recall that the Schrieffer-Wolff formula for
the hybridization-induced effective exchange Hamiltoni-
an corresponds to the case of an orbitally nondegenerate
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localized level occupied by a single electron. It remains
valid® for the S-state ion Mn?* thus justifying its use in
Mn-based DMS. But, in the case of other transition met-
al ions such as Fe?* or Co?™ with nonzero orbital angu-
lar momentum, in addition to the spin exchange, orbital
coupling terms!® were a priori expected. Experimental
data!! in Fe- and Co-based DMS are, however, found to
be consistent with the simple Kondo Hamiltonian.
Moreover, in passing from Mn to Fe to Co in a given host
lattice, Nya varies little, but IN, oB | shows a systematic in-
crease.

Theoretically, in the DMS context, Blinowski et al.l?
have studied the hybridization-induced hole-ion coupling
in the cases of Cr’* and Fe?" in tetrahedral symmetry
within a straightforward perturbation approach. They
indeed find that the orbital couplings are quenched in the
SE ground multiplet of Fe’*. More recently, Masek!®
have reported CPA-based spin-polarized band calcula-
tions showing an increase of effective |Ny8| from Mn to
Co in ZnSe.

In the present work we treat the ion-carrier coupling in
the general case of a 3d transition metal impurity in a II-
VI semiconductor. First of all, the conduction-band
minimum is known to belong to the representation a; of
the tetrahedral point group 7,;. As a result, even in the
case of non-S-state ions, only spin-exchange coupling is
allowed. Moreover, there is no hybridization between a,
states and the d orbitals. Thus N, arises from direct ex-
change only, which is not expected to vary significantly
with the number of electrons in the d shell,'* in agree-
ment with experiments. We shall, therefore, focus our at-
tention on the hole-ion coupling. The direct exchange
part, i.e., the contribution of the exchange integral be-
tween the anion p-like valence-band states and the
transition-metal d orbitals, is expected to be relatively
small, because it is mostly off site. So, we study only the
effective coupling arising from hybridization. Our ap-
proach is based on group theory and similar to that of
Hirst!? for metallic alloys. We derive the effective Hamil-
tonian in the second order of ¥V, and express it in terms
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of irreducible tensors in the manifold of the ground mul-
tiplet of the ion in tetrahedral crystal field.

In Sec. II we treat the general case of the stable ionic
configuration 3d”", with n =1,2,...,9. Section III spe-
cializes in the cases Mn?", Fe?", and Co?*, where the
coupling is shown to reduce to the spin-exchange Kondo
form. In Sec. IV the results for the cases of V**, Cr?t,
Ni**, and Cu®?" are written in terms of spin and orbital
angular momenta. Moreover, we examine the influence
of the orbital coupling terms on the valence-band Zeeman
splitting. In Sec. V we account for the observed increase
of |[NoB| from Mn to Fe to Co in a given host. Finally,
some concluding remarks are presented in Sec. V1.

II. EFFECTIVE HAMILTONIAN
IN THE GENERAL CASE

We assume tetrahedral (T,;) symmetry and neglect
spin-orbit splitting in deriving the effective Hamiltonian.
The transition-metal ion (3d") is treated in the intermedi-
ate crystal-field coupling sheme. The Hund’s rule ground
term (L,S) is split in the crystal field giving rise to the
ground multiplet (i,S) where i is an irreducible represen-
tation of T;. The spin-orbit interaction and also the tri-
gonal distortion (C;; ) in the case of wurtzite DMS, of
course, lead to further splittings. But these splittings as
well as the corresponding ones in the valence band are
small compared to the interconfigurational energy
differences appearing in the denominators in the effective
Hamiltonian (see below). Our results are, therefore, ex-
pected to be rather generally valid.

The valence-band states at I' are known to belong to
the irreducible representation ¢,. On the other hand, lo-
calized d orbitals separate into a ¢, triplet and an e dou-
blet, the latter lying lower in energy. By assuming that
the total Hartree-Fock Hamiltonian retains the
tetrahedral site symmetry, the Anderson mixing (hybridi-
zation) term can be written as (k =0)

Hpix=3 Viacloa,,+H.c. (1)
k,v,0
Here 0 =1(1),—1(l) is the z component of spin and

¥=1,0,—1 designates the row of the irreducible repre-
sentation 1, accordmg to the spherical harmonics basis
Y,,. The o?erator ckw creates an electron in the valence
band and a,, in a localized orbital. Note that V,, is as-
sumed independent of y. Strictly speaking, the above
symmetry classification of the band states is valid only at
k=0. At the end we shall calculate the coupling at I.
The result can, however, be used for small k values in the
k-p formalism and it is convenient to keep the k index at
this stage.

H _;, describes virtual one-electron hopping processes
between the valence band and the transition-metal ion.
The ionic configuration 3d" is assumed to be energetical-
ly stable against real emission into or absorption from the
valence band. Usually, in II-VI semiconductors, the 2%
ion of the transition metal corresponds to such a stable
configuration. There are, however cases like Fe in HgSe,
where the 2% ion is a donor;'® our results could then be
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used only for the stable 3% ion

We shall now transform the hybridization into an
effective scattering Hamiltonian between a hole and the
ion by using the perturbation method.!° The hole states
are described in terms of the missing electron ones. We,
therefore, formulate the problem in terms of scattering
between a single electron in the valence band and the im-
purity ion. In the second order of perturbation, the
effective Hamiltonian is

H =— Hmix|I)<Ileix (2)
" % E;—E, ’

mn

the initial state energy E; =Ey(n)+E,, where E, is the
energy of an electron at the valence-band maximum and
Ey(n) is the ground-state energy of the 3d” ion. The in-
termediate states I are of two kinds. Those correspond-
ing to virtual absorption have E;” =E;(n +1). For virtu-
al emission E; =E;(n —1)+2E,. The virtual excitation
energies

EX=Ef-E, 3)

are relatively large; this is the condition of stability. By
neglecting  multiplet  splittings in the excited
configurations, the energy denominators in (2) can be tak-
en out of the summation. We thus obtain

+ T
H I +I 2 awa 'Ck'},'a'ckya
k,7,0
Ko
+
—1I, Eck.wckw I, zayoayo, 4)
kK’
Y,0 }',17

where IX=|V,,|*/EZ. The second term in (4) is a po-
tential scattering one and the third term is a constant.
The exchange coupling is thus contained in

Hn =In 2 a;aay’a’cz’y’a’ck‘}/a ’ (5)
k,y,0
k',y', o'
where
1 1
L=Vl | =—+— (6)
o E + Eex

In order to rewrite Eq. (5) in a symmetry invariant form
we define the following mixed-symmetry irreducible ten-
sor operators:'°

As _ =y t, At
Agy =3 VMA[—1]? ,
BI=Z VAR s,
v,o
VIS 1 oo | S2 Sy
X 22+1(_1) —0' v o a.yla yo
(7
Here we use Wigner’s 3j symbol'® for the spin part with

s=1. Clearly, 2=0,1. The orbital analogue of the 3;
symbol in tetrahedral symmetry:
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, (8)

aSB—

where the V coefficients are given by Griffith.!” These are
Clebsch-Gordan-like coupling coefficients with standard
phase convention. A=a,e,t;,t, are contained in the
direct product ¢, Xt,; each irreducible representation ap-
pears only once, giving unique coupling coefficients. The
phase symbol [ —1]"7 is from Ref. 17. A(A) is the degen-
eracy of A and & is the row index. Similarly,

ck ka3 s ‘/m[__l]rrr' t, At
o -y 8y
.9,
Y,0
_ s = s
XV2Z+1(—1)"9|
o v o
Xciry,(,,ck},g . 9

It can be shown that the mixed tensors 4 and C have the
following symmetry properties. In the orbital space, they
transform as the 8th row of the irreducible representation
A of T,;. In the spin space, they transform as the angular
momentum eigenfunction J=2 and J,=wv. Moreover,
any bilinear operator aI,IU,aW can be written as a linear
combination of 452% and similarly for the band-state
operators. We thus obtain
H,=I, 3 (A}})C¥ . (10
A8
v
K.k
This symmetry invariant form is, however, written in
terms of one-electron orbitals and has to be projected
onto the n-electron ground multiplet. The latter is
spanned by the states |i,u;S,M ), where u denotes the
row of the irreducible representation i and M is the z

component of the total spin S. Let us define the irreduc-
ible tensors B$ Z in this subspace by

(i,u';S,M'|BS Zli,u;S,M )

N iA i
s psow| S =S
XV2E+1(—1) M v M| (11

The symmetry invariant effective Hamiltonian can then
be written as

HiS=3I(n,i,A,S) B E)TCKRSE (12)
A%

In fact, Eq. (12) as such is more general than Eq. (10).
Note that A must be contained in i Xi. Thus, for the
one-dimensional representations i =4, (Mn**) and 4,
(Co?™), the only allowed A is 4.

Now, we resort to Eq. (10) for calculating the coupling
constants. The Wigner-Eckart theorem and its analogue
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for T, tell us that, in the subspace (,S), the matrix ele-
ments of the irreducible tensor A4 are proportional to
those of B:

Ciop'sS, M| Ag Zi,u;S,M)
=a(A,Z)i,u;S,M'|BS 2 |i,;i;8,M) . (13)

The proportionality constant a(A, ), related to “reduced
matrix elements,” depends on i and S and can be calculat-
ed through one nonvanishing matrix element of 45 2%
Finally, our effective coupling Hamiltonian is

H=1I, S a(A,3)(BS 2)ck 2. (14)
A8
2,
Kk
In order to calculate a(A,2) we need to know the one-
electron amplitudes in the n-electron ground state. We
proceed as follows. The stretched state L,=L, S,=S of
the Hund’s rule ground term L,S is a single Slater deter-
minant. It is obtained by filling the 3d shell in the follow-
ing order: m =2,1,0,—1,—2 with spin up (c=+1)
for the first five electrons, and then spin down (o= —1)
for the rest of them. Thus

IL,L,=L;S,M=S)=]][d,).l0) . (15)

Here |0) is the vacuum state and the product is over the
occupied orbitals. The states |L,LZ;S,S) for L, <L are
then deduced by applying the step-down operator

L =L, +L, , (16a)
with
L;=3[2+mQ2—m+1]"4d) | d,,  (16b)

and properly normalizing after each step. Now, in the in-
termediate crystal-field scheme, the orbital states |i ,,u)
are known linear combinations of |L,L,) (see the Appen-
dix). We thus obtain the spin-stretched states |i,u;S,S )
in terms of the creation operators d;m. The latter are
simply related to the operators in tetrahedral symmetry:

aeea+atZOU
d2a:T’ di,=—a,; dOa:
a

dTa:alzlg ’ di(r: ‘/5

The resulting n-electron states |i,u;S,S ) are listed in
the Appendix. a(A,2) is then deduced from Eq. (13) by
calculating a diagonal matrix element of 45 >. Note that
the ¢, index on the operators, a, is implicit in Eq. (7). In
the case of A=T, the diagonal matrix element vanishes
and an off-diagonal one is used.

The relative coupling constants a(A,X) are presented
in Table I. Note that values for the trivial case A= A4,
2 =0 are not shown.

It can be seen that the hybridization does not lead to
any coupling for n =1 (Sc®™) and n =2 (Ti®*"), because
the hybridizing 7, subshell is empty in the ionic ground

EEG_aIZOU
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TABLE I. Coupling constants a(A,2) for 3d" ions.

n L S i a(A,,1) a(E,0) alE,1) a(T,,0) a(T,,1) a(T,,0) a(T,,1)
1 2 1 E 0 0 0 0 0 0 0

2 3 1 A, 0 0 0 0 0 0 0

3 3 3 T, V'8/5 V18/5 v2/5 V2 1v2/5 2V2 3/V10
4 2 2 T, Vs ~V'5/2 ~V’5/2 v'5/2 V572 —~V’5/2 -V’5/2
5 0 3 A, V21/5 0 0 0 0 0 0

6 2 2 E V1572 0 0 0 0 0 0

7 3 3 A, V1073 0 0 0 0 0 0

8 3 1 T, 2 V3 -1 3/2 —% 2V3/2 —2
9 2 i T, 1 -1 1 1 -1 -1 1

state. On the other hand, for n =5 (Mn?%), 6 (Fe?*), and
7 (Co®™) the t, subshell is half filled and the only non-
trivial coupling rank is A= A4, 2=1. This is, in fact, the
spin-only Kondo Hamiltonian, as shown in Sec. III. The
remaining cases, namely, V2*, Cr**, Ni2*, and Cu?*, are
more interesting; there are couplings involving the orbital
degrees of freedom.

III. THE CASES OF Mn?*, Fe?*, AND Co?**
The effective Hamiltonian reduces to
A ' A
Hf =I,a(4,,1) 3 (B" Hickk T 1, (18)
k', k
v

Now,
Ciop'sS,M|(B™Y V)i 8,M )

S, S
— .uf‘ ‘/ 3( ,
VD) -M
Thus, the orbital part of B can be represented by a nor-
malization constant. The spin part is clearly proportion-
al to the familiar first-rank spherical tensor O'"(S) given

by

15~™ v M| 19

oV(s)=s,, ol(S)=FsE/NV2. (20)
Thus,
B 1=c,00)(s) . 1)

We calculate ¢; through the diagonal matrix element for

M=S,
/s . (22)

However, for the three cases in hand (n =5,6,7), we have
-1

172 S 1S

-S 0SS

172
_ | aw s 1S
Thus,
V31 4
Hef=r o 1 (1) Tk k 11.
n "\/ZSEV“(O (s)H'C (24)
k', k

Writing out the tensor operators explicitly,
I,
i g -.f
H; 25 £ 2 S CrytCryl
7

. (25)

T + .
+2SZEO'CkIYGCk,ya+S Ckr},lck,},f
o

This is the Kondo Hamiltonian with the exchange pa-
rameter

Jkrkz_In/S . (26)
In the usual notation, f=Jy,. Thus,
_ 1 2 1
B=— 25 2| Vo4l E+ E (27)

In fact, this is a generalization of the Schrieffer-Wolff
formula. The normalization factor (1/2S) was previous-
ly obtained in the case of Mn2" in spherical symmetry.’
We shall see the importance of this factor in Sec. V.

IV. THE CASES OF V?*, Cr?*, Ni2*, AND Cu?*

Here the effective Hamiltonian given by Eq. (14) con-
tains coupling terms of rank A=A4,,E,T,,T, and
2=0,1. Thus, the orbital degrees of freedom of the ion
are coupled to those of the valence-band electron, with or
without spin exchange. In order to understand the
significance of the new terms, it is once again useful to ex-
press the irreducible tensors in terms of more convention-
al operators in the ground-state manifold of the ion. In
addition to the spherical tensors of rank 1 in Eq. (20), we
shall use those of rank 0 and 2:

oY j)=1, (28a)
O (j)=1[3;7—j+1], (28b)
V3
0¥{(J>=+-‘/—§[ui+ﬁh] , (28¢)
.. V3
os_%;<3>=‘/—§(ﬁ)2 (28d)

Let us now write the mixed double tensor B as a prod-
uct of orbital and spin parts:
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B2Z=P3(L)Q2(S). (29) Thus, A=T, corresponds to the orbital angular
) ] momentum, while the A=FE and A=T, terms are pro-
The spin part can be written as porti+onal to the electric quadrupole moment. For L =2
2 2+
0%(8)=r®03)(s), @3 (G and CuTh, _
_ 1 V2 V2
where Bz(Tl)‘”““‘/—E, Bz(E)z"m, /32(T2)=-37§ ,
— | S =8
r®=v234+1|_ S*. 3D (33
S 0 S
and for L =3 (V>* and Ni*"),
The orbital tensors for i =T, or T, are given by P V2 B.E)= v2 BT 3
My T T T B3 T R PV T
P"‘(L)=T/% , (322) 3 63 33
T (34)
Ps'(L)=B,.(T,)O§" (L), (32b) At I'(k'=k=0), by assuming p-type wave functions,
E 2 the valence-band irreducible tensor C can be similarly
PE(L)=B.(E)O¥ (L), (32¢)  written as a product
00A3_ pA p
Pf(L)“-‘BL(E)T/%[O‘Z”(L)+O‘_2)2(L)] : (32d) C sV =Ps0y(s), (33)
with /=1,s=1, and
POTZ(L)=BL(Tﬁ\%[ogﬂ(m—o(};(u], (32¢) 5= g m=Y2 grr=YZ e
A L At V3’ B\(T, V3
T
Pi(L)=B,(T,)[£0'¥(L)] . (32f)  Finally, the effective Hamiltonian is given by

1

H =T, (y,a( Al,1)s'S+[yoa(T1,0)+3y,a(T,,l)s-S]%BL(T, )-L
+[yoa(E,0)+3yla(E,1)s-S]E—é—_gﬁL(E){(3122—2)[3L22—L (L +D)])+3F—12)L2—L}))

V3
+[70a(T,,0)+37,a( Tz,l)s-S]mBL(Tz)

X[ L, + LI L, L, +L, L)+, +LI,(L,L,+L,L,)+(,I,+1I)L,L +L,L,)]) , (37)

where
vo=[2028 +1)]712, (38a)
¥y, =V2[3(2S +1)(S +1)S]71/%, (38b)

We shall now examine the consequences of the orbital coupling terms in Eq. (37) on the magneto-optical properties of
a DMS. In order to calculate the contribution of the effective Hamiltonian to the valence-band splitting in a magnetic
field in the mean-field approximation, we need to evaluate the expectation values of the band operators /,s and their
products in the band states |jm ). On the other hand, the expectation values of the ionic operators have to be calculat-
ed in the eigenstates of the Zeeman Hamiltonian including the spin-orbit interaction and then thermally averaged. We
shall report such calculations in a subsequent paper. Here we consider a simple analytical limit that reveals the impor-
tance of the orbital coupling terms. It is the limit of high magnetic field, when the ionic Zeeman Hamiltonian is much
larger than the spin-orbit Hamiltonian. Then the ionic eigenstates in the field are given by |i,u;S,M ). In a zinc-blende
DMS the I'g valence band splits into four components (m = 2,1, — 1, — ) with the energies

E, =N0xIn +af TI!O)YO(,“) _731 +a(T,,l)7/1<,u)(M)%(m2—%)

ald;, 1)y (M) [%

+a(E,0)yo{p*—2)im?*—3)+a(E )y {p*— 2 (M) Iim(m*—2) | . (39)

1
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TABLE II. The effective coupling induced valence-band Zeeman splitting in the high-field saturation

limit: subband energies E,, /(Nox) in different cases.

m V2+ Cr2+ Mn2+ Fe2+,Coz+ Ni2+ Cu2+
(subband)
1
~7 — %l —3ls 71 1ols 200
— — 13 32 &1 wls —&
_— 1
+1 =1 0 —1, w51 20
- — — 3 1
+3 51 314 71 018 s1s
Here ( - - - ) means thermal average and Nyx is the num-  only. Magnetization and magneto-optical data in these

ber of transition-metal ions per unit volume. The expec-
tation value of the ionic Zeeman Hamiltonian

(i S, M Hyliyu;S,M ) =pup BQM +iplLylip)) .

(40)
For L =2 (Cr** and Cu?")
(iulLlip)=—p (41a)
and for L =3 (V2" and Ni*")
(iplL,lip)y=—3p . (41Db)

Thus the ground state in all cases corresponds to
p=-+1 and M=—S. Using these values in Eq. (37) we
obtain the valence-band splitting in the saturation limit
(T'—0). The results are presented in Table II. The case
of s-S coupling (Mn?*,Fe?™ ,Co?") is also shown for com-
parison. Notice the drastic modification of subband or-
dering and the reduced overall splitting in the cases of
vt Cr?t, Ni*?t, and Cu®*. It should be kept in mind
that these results represent only the contribution of
hybridization-induced coupling; neither the direct effect
of the field nor the potential exchange contribution has
been taken into account. Above all, the condition
pgB > A (spin-orbit coupling) probably situates B as high
as 100 T in the cases of V2t and Cr**. The spin-orbit
coupling is much stronger in Ni’* and Cu?*. Calcula-
tions of valence-band splitting in the usual experimental
field range will be reported elsewhere.!®* The results
presented here, however, illustrate the drastic influence of
the orbital coupling terms on the valence-band splitting.

In comparing different cases in Table II, one should
note that the coefficient I, will vary with the ion in a
given host compound. However, from V2" through
Co’" the energy denominators concern only the
majority-spin ¢, subshell, and we do not expect a large
variation of I, (see Sec. V). On the other hand, in the
cases of Ni’* and Cu?*, the minority-spin level is also in-
volved, and I, might be quite different. We can say that
in the saturation limit the overall splitting will decrease
systematically from Mn to Cr to V in a given host.

V. COMPARISON WITH EXPERIMENTS

So far, apart from the more familiar Mn-based DMS,
experimental data are available in Fe- and Co-based DMS

systems have been successfully analyzed in terms of the
simple spin-exchange Kondo Hamiltonian for the band-
ion coupling. This is in agreement with our results. Ap-
propriate effective g factors have been used to determine
the exchange parameters Nya and NyB. See Ref. 11 for a
list of carrier-ion exchange parameters in different Mn-,
Fe-, and Co-based DMS. As expected, Nya representing
the on-site direct potential exchange varies little with the
transition metal. But |NyfB| increases strongly from Mn
to Fe to Co in a given host crystal. In order to discuss
this variation, we rewrite Eq. (27) in a more familiar
form. First of all, in the tight-binding model for the
valence band®

Voa (42)

_ 4
I —— d
VN, °
where V,; is the real-space hopping amplitude from the
transition metal d orbital to a neighboring anion p orbit-
al. Next, we resort to the effective one-electron
(Hartree-Fock) level scheme for the energy denominators.
E_(E}) corresponds to virtual emission from (absorp-
tion into) a singly occupied ¢, orbital at €, so that

EL=E,—¢;, El=¢;,+U4—E, 43)
in the usual notations. Thus, finally,
1 1 1
NB=— |— |32V2 44
oB 28 P\ E,—e; e4+Ug—E, 44

This formula was previously used in Mn-based DMS.3
We have shown its validity in Mn-, Fe-, and Co-based
DMS.

For a quantitative comparison with experiments, we
focus on Cd,_, M, Se with M =Mn, Fe, and Co, because
photoemission data are available in these systems. A pre-
liminary report of the present discussion has been includ-
ed in Ref. 19; the sources of experimental data are cited
therein. The experimental N, values are —1.238,
—1.450, and —1.883 eV, respectively, for M =Mn, Fe,
and Co. Photoemission data suggest the following values
for E, —¢e4: 3.4, 3.7, and 3.5 eV, respectively. These cor-
respond to the majority-spin occupied states. In the Fe-
and Co-based systems, photoemission also indicates occu-
pied minority-spin level at 0.5 and 0.8 eV, respectively,
below the valence-band maximum. According to the
U,U’,J model of Kanamori, discussed by Hass,® the



5272

difference between the minority- and majority-spin levels
is then 47 =3.2 eV for Fe and 3J =2.7 eV for Co. On the
other hand, U s=U+4J,U +3J, and U +2J for Mn, Fe,
and Co, respectively. Thus, if we assume the same U and
J values for all, starting from the estimated U4 value® of
7.6 eV for Mn,, we estimate U.z=6.8 and 5.9 eV, respec-
tively, for Fe and Co. With the above E, —¢,; and U
values and the appropriate S values, comparison between
formula (44) and experimental Nf yields the ¥, values:

0.6, 0.55, and 0.5 eV respectively for Mn-, Fe- and Co-
based systems. These are in excellent agreement with
Harrison’s scaling rule,? Vioa <(r /d7)‘/2, if we assume
the bond length d to be constant. (The tabulated values?
of the d-shell radius r; are 0.86, 0.80, and 0.76 A, respec-
tively.) This quantitative agreement between our analysis
and experiment, however, should not be taken too seri-
ously. There are considerable uncertainties in the inter-
pretation of photoemission spectra, and, in particular, in
the estimated values of U, . Moreover, no extended x-
ray-absorption fine-structure spectroscopy information is
as yet available on the bond length in Fe- or Co-based
DMS.

Let us emphasize the following points. Contrary to
previous interpretation®' the hybridization parameter ¥,
decreases from Mn to Fe to Co, due to the decreasing d-
shell radius. The resulting decrease of |N OBI is more or
less compensated by the increase coming from reduced
U ¢ values. The normalization factor (1/2S) in Eq. (44),
ignored previously, is thus crucial for explaining the large
increase of | NyB| from Mn to Fe to Co.

VI. CONCLUDING REMARKS

Starting from the Anderson mixing (hybridization)
Hamiltonian we have derived the effective coupling be-
tween a valence-band electron and a transition-metal ion
in the stable configuration 3d". The effective Hamiltoni-
an is expressed in terms of tensor operators in the mani-
fold of the ground-state multiplet of the ion in tetrahedral
crystal field. In the cases of Sc*' and Ti’" there is no
hybridization-induced coupling, because the hybridizing
t, subshell is empty. Thus, Sc- and Ti-based DMS would
be interesting test systems. In the cases of Mn?*, Fe?*,
and Co?* with half-filled ¢, level the effective coupling
reduces to spin exchange only, in agreement with experi-
ments. The Schrieffer-Wolff formula for the exchange pa-
rameter is found to be multiplied by a normalization fac-
tor 1/2S. It is crucial for explaining the observed in-
crease of |NyB| from Mn to Fe to Co in a given host.
Quantitative comparison between theory and experiment
in Cd;_, M, Se shows that the hybridization parameter

|

3d'(Sc?Y): |E,0;4,L)=a/y;|0),
IE 8;’21"'%):(1%”0)
3d2(Ti2+)-' ] 2;1 1> EBTaeET|O>
3d (V2+ IT17 %7%>: ‘/5 at lTaEETa€9T|O>+ 2\/5
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V,q decreases as M goes from Mn to Fe to Co, in accor-
dance with Harrison’s scaling rule. This result contra-
dicts the interpretation by other authors based on the
unmodified Schrieffer-Wolff formula.

In the cases of V21, Cr**, Ni’*, and Cu?", in addition
to the spin-exchange term, there are orbital couplings
with or without spin exchange. We have investigated the
influence of these additional terms on the Zeeman split-
ting of the valence band in a zinc-blende DMS in the
high-field saturation limit. We find drastic modifications
of subband ordering and reduced overall splitting as com-
pared to the simple spin-exchange model. A theoretical
study of the valence-band splitting in the field range of
typical magneto-optical experiments is in progress and
will be reported elsewhere.!* However, the unusual limit-
ing behavior predicted here should encourage experimen-
tal studies in new DMS systems.
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APPENDIX: IONIC GROUND STATESIN T,

The orbital states |i,1) are known linear combinations
of |L,L,), and listed below.

For L=2(n=1,4,6,9),
|E,0)=[2,0) , (A1)
1 ,
=— — A2
|E,e) \/2(12,2)+i2, 2)) (A2)
T, 1)=12,—1), (A3)
1
|T,,0) ‘/2(\2,2> 12,—2)) (A4)
Ty, —1)=—]2,1) . (A5)
For L =3 (n=2,3,7,8),
|A2>=L_(53,2>-|3,—z>> (A6)
Vs
= —-3)——= 7
|T,,1) \/8[3 3) |31) (A7)
|T,,0)=13,0), (A8)
VS V3,
T, —1)= \/?;B’” \@13, 1) . (A9)

We express the spin-stretched states li S, M =S) of
the ground multiplet in terms of effective one-electron
operators. (The method is explained in Sec. II.)

(A10)
(Al1)
(A12)
V73 +
a; OTatT lTaeBT i0> +—= 2‘/ IT 1TatT20TaeeT |O> ’ (A13)
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2 t
lTl:O;%’%)_ ‘/5 atTZOTa:sTaeBTlo>— \/5 jlfat._,lTaeGT |0>

3d4Cr?*): [Ty, 152,2)=a] yaf 1aliale 10)
lT2,0;2,2>=a,ZTTa;211‘aeeTae6T 0},
3d3(Mn?t): lAl;%,%)=a,2110120101211a:era;(91 o),
3dS(Fe*™): |E,0;2,2)=ay, | 4,;3,3),
|E,e52,2)=al,14;;3,2),

3d(Co**): | Ay;2,2)=alyal,14,;5,5),

2 1 V3
3d3NPPF): [Ty, 151,1) = Iﬁalllafsla:(,ﬁ- Vs atZOlatzllaeTOl_"—z‘/g a,TznaszolaJel | 415537

|T17O;171)=

9 2+, t T
3d°(Cu®™): |T,,1;1,1)= arzolatzllaeelae9l|Al’2'2)

t t
|T2, ,2,;> a, ualelaeslaeel'Ahz’z) .

2+ o+ 1 1+t .
‘/3 atZOlaeELaeBl - ‘/_5 atzﬂ,atzllaeel LAI’%’%) ’

(A14)
(A15)
(A16)
(A17)

(A18)
(A19)
(A20)

(A21)

(A22)

(A23)

(A24)

Notice the crystal-field configuration mixing in the cases of V2" and Ni?*.
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