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Effect of disorder and lattice type on domain-wall motion in two dimensions
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We study the general problem of interface motion through a disordered medium taking as an
example the random-field Ising model in two dimensions. Spins are placed on the sites of a square,
triangular, or honeycomb array. Each interacts with a random local field from a bounded distribution.
Growth of a domain through the array is driven by a uniform external magnetic field. When the
random field strength is large, the domain of Hipped spins forms a fractal percolationlike pattern. As
the randomness decreases, there is a transition to compact two-dimensional growth with a faceted
interface. In the square and triangular lattices there is a power-law divergence of a characteristic
correlation length or fingerwidth at the transition. The exponents relating this divergence to the
probabilities that local spin configurations are stable are found to be universal. In contrast, there
is a discontinuous transition from fractal to faceted growth on the honeycomb lattice that occurs in
the limit of zero randomness. We show that the problem of domain growth is related to a continuous
family of bootstrap percolation models.

I. INTRODUCTION

pluid invasion in porous media and domain growth
in disordered magnetic systems~ s are fundamental pro-
cesses whose study has also provided a great deal of
insight into more general growth problems. Both pro-
cesses involve the motion of an interface between two
phases through a disordered system. Other examples of
this common phenomenon include phase segregation in
gels4 and spreading of fluids on dirty surfaces. s s Recent
work has shown that a number of novel critical transi-
tions occur as the degree of disorder in the medium, the
force driving the interface, and other physical properties
are varied. s Of particular interest are changes in the
morphology of the advancing interface from a self-similar
fractal to a self-afflne or faceted form as the effective de-
gree of disorder decreases.

Theoretical and experimental studies of growth mor-
phology in fluid invasion have focused on simple two-
dimensional model systems such as thin glass bead
packsi2 is or networks of random-width ducts. ' Early
work on network models showed that invasion by nonwet-
ting and wetting fluids was very different. i Invasion by
a nonwetting fluid produced fractal patterns character-
istic of the invasion percolation model, while invasion
by a more wetting Quid could produce smooth faceted
interfaces. We have recently modeled invasion of square
network models as a function of both the degree of dis-
order and the contact angle 8 of the invading Quid.
We found a transition from invasion percolation at high
disorder or contact angle (invading fluid less wetting) to
faceted growth at low disorder or contact angle. This
transition is associated with a diverging coherence length
and reflects a growing correlation in the advance of neigh-
boring segments of the interface. Decreasing the contact
angle increases the interaction between neighboring seg-

ments and increasing the degree of disorder suppresses
these interactions. The exponent relating the divergence
of the coherence length to changes in contact angle or
disorder is not universal. io

A very similar transition has been found in domain
growth in the random-field Ising model on a square
lattice. In particular, growth is percolationlike when
the amplitude of the random fields is large and becomes
faceted as the amplitude decreases. There is a diverg-
ing correlation length at the critical amplitude. These
similarities are evidence of the strong analogies between
domain growth and fluid invasion. s's s The domains of up
and down spins correspond to the two fluid phases, and
an applied magnetic 6eld, which favors up spins, plays
the role of the pressure driving invasion.

In the present paper, we further explore the morphol-
ogy of growth in two-dimensional models by systemati-
cally investigating different lattices and distributions of
disorder. The random-field Ising model is adopted due to
its analogy and relative simplicity with respect to mod-
els of fluid invasion. We find a transition from fractal
to faceted growth on the triangular lattice, which is very
similar to that on the square lattice. Indeed, we show
that there is universal scaling of the coherence length on
the two lattices. However, the universal behavior is in
terms of variations in the probability of stability of lo-
cal spin configurations rather than in the amplitude of
the disorder. Invasion of the honeycomb array is entirely
different. Any Gnite value of the randomness leads to a
fractal invasion pattern. The 6ngerwidth diverges dis-
continuously at zero randomness.

We also show that domain growth can be re-
lated to generalized bootstrap or diffusion percolation
models, 5 in which the local environment has a certain
probability of changing the state of a site. Our results
provide new information about diffusion percolation on
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the honeycomb array and are consistent with results on
the square and triangular lattices.

The Hamiltonian and growth model used in our study
are described in the following section. Section III
presents results on changes in growth morphology with
disorder, and Sec. IV describes the relation between do-
main growth and correlated percolation models. The fi-
nal section gives a summary and conclusions.

II. DESCRIPTION OF GROWTH MODEL

The Hamiltonian and rules for domain-wall motion are
described in detail in Ref. 9. That paper also motivates
and justifies the rules in terms of the analogy to Huid
invasion. We briefly review the model here.

Ising spins s, = +1 are placed on each site i of a two-
dirnensional (2D) array. Their Hamiltonian, in units of
the exchange coupling, is

R= —) s;s, —) (h, +H)s, .

The first term is a nearest-neighbor spin-spin exchange
interaction. The second term describes the interaction
of each spin with the sum of the local random field h,
and a uniform external magnetic field H. Values of
h; are generated randomly following some probability
distribution function P(h), which we take to be con-
tinuous, symmetric, and bounded between +6. The
degree of randomness is characterized by the magni-
tude of b, . Three forms for P were studied: uniform,
P(h) = (26) i; linear, P(h) = (6 —~h~)b, z; and cosi-
nusoidal, P(h) = (n/46) cos(7rh/26).

We present results for square, triangular, and honey-
comb arrays. Each array contains L spins with L rang-
ing from 30 to 4000. Measuring length in units of the
nearest-neighbor distance, the resulting array dimensions
are L x L for the square lattice, L x (~3/2)L for the tri-
angular lattice, and (v 3/2)L x 2L for the honeycomb
array. Periodic boundary conditions are imposed in the
horizontal direction. Between 20 and 100 difFerent real-
izations of the random fields assigned to each site were
studied for each type of lattice, form of P(h), and value
of L and 6 to obtain reliable average quantities.

Spins at the bottom edge of the simulation array are
originally "flipped" (s = +1), while all other spins are
"unflipped" (s = —1). The initial interface or domain
wall is therefore a horizontal line. To mimic the process
of fluid invasion, growth occurs at zero temperature and
only stains at the interface are allotoed to flip The zero-.
temperature condition and single-spin-Hip dynamics
have important implications for the phase diagrams dis-
cussed below. In particular, there is no ordered phase at
finite temperature in the 2D random-field Ising model.
However, the thermal activation barriers for fluid inva-
sion and other macroscopic growth processes are so large
that the zero-temperature approximation is accurate on
experimental time scales.

An interface spin is Hipped when this lowers the total
energy of the system. If there is more than one unstable
spin on the interface, the most unstable spin is flipped

first. Each spin flip alters the exchan. ge interaction on
neighboring interface spins or adds new spins to the in-
terface. Thus a single spin Hip may produce a chain re-
action. Once a spin is flipped it does not return to the
unflipped state because the temperature is zero.

The overall advance of the interface is controlled by the
value of the applied field H, which is varied quasistati-
cally. It is initially taken to be the smallest value, Ho,
that causes a single spin on the interface to flip. This
single change in the spin array may cause neighboring
spins to Hip, which may induce further spin Hips. The
external field value is kept equal to Ho until a stable in-
terface is attained. Then H is increased so that a single
spin flip occurs on the new interface, and the procedure
is repeated until the interface attains the top of the ar-
ray. As illustrated in Fig. 1, the value of H required for
the pattern of Hipped spins to span the system rapidly
approaches a constant critical field Hc as L ~ oo.

It is convenient at this point to identify quantities that
describe the importance of the local environment in pro-
ducing spin Hips. These will be useful in the discussion
of the critical transitions below. Whether a spin s, at
the interface flips depends on the value of the external
field H, the value of the local random field h, , and the
state of the z nearest-neighbor spins (z = 3, 4, and 6 for
honeycomb, square, and triangular arrays). In contrast
to the fluid invasion problem, io stability depends only on
the number n of nerghboring spins that are flipped and
not on the relative positions of these spins. We show
below that growth near the transition from faceted to
fractal growth occurs entirely through flipping of spins
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FIG. 1. Dependence of the average value of H needed to
span the system (a) and (b) and the mean fingerwidth (c)
and (d) on b, in the triangular and honeycomb arrays. Sys-
tem sizes are indicated, and random fields were uniformly dis-
tributed between +K. The dashed line in (a) indicates Hs,
the top edge of the distribution function I'3.
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FIG. 2. Fraction f„of spins with n flipped neighbors
which will flip at Hc as a function of b, . The curves give f„
for the indicated value of n in the (a) square, (b) triangular,
and (c) honeycomb array for uniformly distributed random
fields. Filled circles give the normal percolation concentra-
tion for each lattice.

In Fig. 2 we show the probabilities f„, calculated as
a function of 6 i, for uniform distributions of random
fields in the square, triangular, and honeycomb lattices.
We relate changes in these probabilities to changes in
growth morphology in the following section.

III. RESULTS

A. Changes in growth morpho1ogy with disorder

The pattern of Hipped spins depends strongly on the
magnitude of the random fields. s In the limit of strong
disorder, b. » 1, the probability that a spin will flip
becomes independent of its surroundings (i.e. , n). The
problem reduces to site percolation, and the patterns of
flipped spins are self-similar structures characteristic of
this model. is is This limiting behavior is evident in Fig.
2. As 1/6 —+ 0, all f„curves merge to the appropri-
ate critical concentration for normal site percolation p, .
Values of p, are 0.5, 0.5927, and 0.6962 in the triangular,
square, and honeycomb lattices, respectively.

As 6 decreases, the local environment becomes in-
creasingly important in initiating spin Hips. Spins with
larger n are more and more likely to flip before other
spins. This leads to cooperative invasion of neighbor-
ing regions, and the pattern of Hipped spins becomes
smoother. A measure of this change is given by the av-
erage fingerwidth (u) calculated as the mean width of
segments of adjacent flipped spins. 7

Figure 1(c) shows (u) versus 6 for spins on a triangular
lattice with a uniform distribution of random fields. Sirn-
ilar results are obtained for the two other distributions.

with only two of the possible values of n.
The probability that a spin with n flipped neighbors

becomes unstable at external field H is given by the dis-
tribution function F„(H) = P(z —2n —H). The fraction
of unstable n-neighbor configurations at the critical field
is then

Hc
F„(H)dH

The increase in the fingerwidth as 6 decreases reflects a
coarsening of the patterns. Results for three system sizes
are presented, L =100, 300, and 1000. In all cases, (cu) =
L for 6 ( A~ ——1. The same result was obtained for the
square lattice in Refs. 9 and 10 and indicates that growth
leads to a faceted pattern below this critical value of the
randomness. Note in Fig. 1(a) that the critical field also
shows a kink at At.-. The divergence of the fingerwidth
in the L ~ oo limit as 6 approaches Ac from above is
discussed in Sec. IiI B.

Figures 1(b) and 1(d) show the dependence of H, and

(w) on 6 for spins on a honeycomb array with a uniform
distribution of random fields. Note the striking differ-
ence between these results and those for the triangular
and square lattices. While (cu) initially increases as 6
decreases, it saturates for 6 & Ao 2.6. There is a
cusp in Ht.- at the same point. For large enough system
sizes, the limiting value of (u) is near 50. Only for 6
exactly equal to zero does (u) jump discontinuously to
L, indicating a faceted pattern in this isolated limit.

The dimensionality of patterns generated for difFerent

arrays and values of 6 was investigated through the box
counting method. System sizes from L = 128 to 2048
were used to identify and eliminate finite-size effects. For
the honeycomb array we obtained a fractal dimension of
Df = 1.89 + 0.01 at 6 = 0.2, 4, and 20. This indicates
that the large-scale structure is characteristic of typical
percolation patterns (Df = 91/48 = 1.896) for all 6 & 0.
The cusps at 60 in Figs. 1(b) and 1(d) merely reflect a
freezing of the growth probabilities for 6 & 60 (Fig.
2). This "frozen" regime is discussed further below. The
same value of Df was obtained for 6 & Ac on the square
and triangular lattices at length scales greater than the
corresponding value of (a). For 6 & Ag the patterns
were two dimensional. In fact, att spins were flipped.

The transition to faceted growth and the value of Ac
may be understood by considering the effect of local en-

vironment on growth in the triangular lattice. The start-
ing interface for our simulations was chosen to be along a
line connecting nearest-neighbor spins. Unflipped spins
on the interface have n = 2 flipped spins and z —2 = 4
unflipped spins as neighbors. The initial value of the
external field in an infinite system is Ho ——2 —6, the
lowest value at which a spin with n = 2 will flip. For fi-

nite systems, Ho is slightly larger than this value. s Once
the first spin above the original flat interface flips, two
of its neighbors have equal numbers (z/2 = 3) of up and
down spins as neighbors. For 6 & At- ——1 these spins
will also flip, since the maximum Beld required to flip a
spin with n = 3 is H3 ——4 ( Ho. This changes the
environment of two further spins to n = 3, and the pro-
cess continues until all spins on the initial interface have

flipped. Each row of spins then flips in turn until the in-

terface reaches the top of the system. As a consequence,
H~ = Ho ——2 —6 for 4 & A~ and all spins in the sys-
tem are flipped. A similar analysis in terms of spins with
n = 1 and 2 applies to the square lattice. Note that
only the bounds of P(h) are important, not the shape of
the distribution. The value of A~ = 1 is exact for any
P(h).

Growth from initial interfaces with difFerent orienta-
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tions depends on the boundary conditions. For exam-
ple, we may start from an interface connecting second-
neighbor spins on the triangular lattice, which is per-
pendicular to the interface discussed above. If periodic
boundary conditions are imposed, growth can occur en-
tirely through n = 3 processes and a chain reaction is
produced for Hc ——Hs = 6 [dashed line in Fig. 1(a)].
If the system is terminated at the boundary, spins at the
edges have n = 2 and will not flip at H&. This limits
the chain reaction, and two facets connecting nearest-
neighbor spins (n = 2) form. No further spin instabili-
ties can occur until Hc = 2 —h. At this field the facets
grow to span the system. Similar behavior occurs for any
other interface orientation on the triangular lattice and
also on the square lattice.

No analog of the chain reaction leading to faceted
growth can occur on the honeycomb lattice because the
coordination number z is too small. Two orientations of
the initial interface are shown in Fig. 3. There is no ori-
entation where the interface spins always form unbroken
chains of nearest neighbors. Thus, flipping a spin cannot
lead to a chain reaction where all successive spins have a
higher value of n. For orientation Ii, a spin Hip produces
two new neighbors that also have n = 1. For orientation
Iz, one of the neighbors has n = 2, but Hipping it adds
a single spin with n = 1. Cooperative chain reactions,
and thus faceted growth, are impossible. It is easy to see
that faceted growth is only possible for z & 2d, where d
is the spatial dimension. Only when this condition is met
may each site have a neighbor in the preceding layer to
initiate growth, an unbroken chain of nearest neighbors
in each direction in the same layer, and a neighbor in the
next layer to propagate the instability.

A surprising feature of the low disorder regime of
the honeycomb array (6 ( 6p) is that the pattern of
Hipped spins is completely determined by the hierarchy
of random-field values assigned to the lattice sites. If a
pattern is generated for 6 ( Ap, exactly the same pat
tern will be produced if all local-field values are scaled
by a constant factor (h;} ~ (crh;), with 0 ( a & Ap/6.
Therefore the plateaus in Fig. 1(d) actually represent a
frozen state for all 0 (6 & b,p, and fluctuations are due
to difFerent realizations of the hierarchy of random fields.

Figure 2(c) reveals the origin of this frozen state. For
6 ( b p, all n = 2 processes lead to a spin flip (fz ——1).

FIG. 3. Dashed lines indicate two possible orientations of
the initial interface in the honeycomb lattice.

The invaded pattern is determined entirely by the set of
spins that can flip with one flipped neighbor. Since only
n = 1 configurations are important, the magnitude of the
random fields relative to the exchange interaction is ir-
relevant. The fraction of spins with n = 1 that flip at H|.-
is a constant, fi = 0.609 6 0.001. This value of fi gives
our most accurate determination of 6p. As 6 decreases
to Zkp, f2 reaches 1. This implies that Hc(Ap) = Ap —1,
which is the top of the distribution I"q. The value of 60
is then determined by Eq. (2) and the value of fi

Ep-1

—Ap
P(1 —H)dH = —+1

2

Dp —2

P(h)dh . (3)

For the uniform distribution, fi = 1 —1/Ap, yielding
6p = 2.588(7). For other distributions, P(h) and b,p

are difFerent. Equation (3) gives b, p = 2.262(3) and
2.325(4) for linear and cosinusoidal distributions, respec-
tively. The relation of this regime to bootstrap percola-
tion is discussed in Sec. IV.

If a second-neighbor exchange coupling is included on
the honeycomb array (z —+ 9), the behavior becomes
more like that on the square and triangular lattices. A
transition from self-similar to faceted growth is found
with decreasing randomness and is heralded by a power-
law divergence of the fingerwidth. The peculiar frozen
phase is completely eliminated. This indicates that this
is not a "robust" regime and may be hard to produce
experimentally.

B. The critical transition
in square ance triangular lattices

The critical transition from self-similar to faceted
growth is identified by the divergence of the fingerwidth
as 6 approaches Ac from above. Previous studiess of
this divergence have focused on the exponent v relating
(ur) to b, :

Different values for v have been reported in the Isings
and fluid invasions iP models. In this section we show
that the divergence of (pi) is most naturally described
in terms of the probabilities f„defined in Eq. (2) and
plotted in Fig. 2.

Faceted growth occurs when all spins with u = z/2
flipped neighbors flip at a lower external field than any
spins with 8 = u —1 flipped neighbors. This implies that
the probability distribution functions F„(H) and Fg(H)
do not overlap for 6 ( 6c, and that Hc is in the gap
between the two distributions (Fig. 1). Increasing the
degree of randomness causes a relative displacement of
these distributions until they touch (4 = Ac) and over-
lap (6 ) 6c). As 6 increases from b,c, the probability
f„decreases from unity and fI increases from zero (Fig.
2). The total change in the two probabilities is bounded
by the integral over the region where the corresponding
distribution functions F overlap. If the tails of P(h) go
to zero as (~A~ —~h~), then
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(1 —f„)+ fg oc (4 —Ac) +'.

For the uniform distribution m = 0, and for the cosinu-
soidal and linear distributions m = 1.

Figure 4 shows that there is a fixed relation between
1 —f„and fg on the square lattice. Values were obtained
analytically from H&, which converges rapidly with in-
creasing system size. Results for linear, uniform, and
cosinusoidal distribution functions collapse onto a uni-
versal line. Only for b, ))Ac, , where other values of f„
begin to difFer from 0 or 1, do the three curves separate.
A similar universal line is found for the triangular lattice.
The lines are well fit by power laws

interface that has n = z/2 will not flip. Any unflipped
spin interrupts the chain reaction and leads to a finite
fingerwidth. An estimate for (w) is given by the mean
length of the chain reaction induced by a single spin flip
on a flat interface. This length scales as (1 —f„) The
actual value of (w) should diverge at least as rapidly as
this length, implying o. & 1.

In contrast to n, the exponent v defined in Eq. (4)
cannot be universal because the tails of the distribution
function determine how rapidly 1 —f„and f~ vary with
6 —Ac. Indeed, we find that

fi oc (6 —Ac;) +'.

(1 —f„) oc fq~ (6)

((u) oc (1 —f„)

near f„=1, where the value of cr must be independent
of P(h). We have verified that plots of (ur) against 1 —f„
at each L are indeed independent of the form of P. This
allows us to focus our attention on a single case at the
end of this section, the uniform distribution.

A simple "mean-field" estimate for a may be obtained
by considering the growth process near At.-. The finger-
width is infinite for 6 ( 6c, because f„= 1: A single
spin flip causes an infinite chain reaction. For 6 ) Ac
there is a probability 1 —f„ that each new spin on the

with P = 1.82+0.05 for the square lattice and 1.75 +0.05
for the triangular lattice.

The implication of Fig. 4 is that all distribution func-
tions P(h) produce the same family of percolation prob-
lems as b -+ bc from above. The fingerwidth and all
other characteristics of the pattern are specified entirely
by either 1 —f„or fg In pa. rticular, we expect

This is a direct consequence of Eq. (5) and the fact that
p ) 1. As b, ~ Ac, (1 —f„)/fg ~ 0. Thus the value
of Hc moves progressively closer to the top (6) of the
distribution function F . The value of fg [Eq. (2)] can
then be approximated by the integral of Fr to 6, which
gives Eq. (8). Since 1 —f„ is smaller than fr and scales
with a nontrivial exponent, we focus on it as the param-
eter controlling the fingerwidth and other properties of
invaded patterns.

Figure 5 shows the dependence of logip[1 —f„] on

logio [6—1] (dashed lines) and logic [1—6 i] (solid lines).
These results refer to the square lattice with uniform and
cosinusoidal distributions of random fields, but similar re-
sults are obtained for the triangular lattice and for linear
distributions of h. The figure indicates that a power-law
relation,

(1 —f ) oc (6 —1)" = (1 —6 ')",
holds near 4c = 1. While each pair of solid and dashed
curves must have the same slope in this limit, the solid
lines are straight over a wider range. This shows that
(1 —6 ) is a better scaling variable than (6 —1), just
as (T T,)/T is a be—tter scaling variable than (T T,)/T, —
for equilibrium transitions. In the present context, this
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FIG. 4. Universal relation between the upper (f„) and
lower (fg) probabilities near the critical transition. Results
are for the square lattice with the indicated distributions of
disorder.

FIG. 5. Scaling of 1 —f„with A —1 (dashed lines, bottom
axis) and 1 —4 (solid lines, top axis) near the critical point
6t- = 1 for the square lattice with uniform and cosinusoidal
distributions of disorder. Each pair of solid and dashed curves
shows the same asymptotic scaling, but the solid lines are
straight over a wider range.
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result may follow from the fact that all probability dis-
tributions introduced in Sec. II are proportional to 1/6.

Equations (6), (8), and (9) imply that y, = (m+ 1)P.
Numerical values of p obtained directly by extrapolat-
ing the slope of Fig. 5 and related plots to 1 —f„=0
are consistent with this relation. In particular, we find

p, = 1.77 + 0.04 and 1.69 + 0.05 for uniform distri-
butions on the square and triangular lattices, respec-
tively. Results for linear and cosinusoidal distributions
are less accurate because the curvature is greater. We
find p, = 3.4+ 0.2 and 3.3 6 0.2 for square and triangular
lattices, respectively. All our results are consistent with
a common value of P = p/(m+ 1) = 1.75 + 0.05.

Determination of a and v is more difficult because the
fingerwidth is sensitive to finite-size effects. Since the
relationship between (u) and 1 —f„ is found to be inde-
pendent of the shape of the distribution function P, we
focus on results for the uniform distribution. We have
verified that results for other distributions give consis-
tent values for the exponents.

To determine v we use finite-size scaling. Based on the
results for p, we take (k —b.~)/6 as the scaling variable
and make the ansatzs

(10)

Results were obtained for L between 30 and 1000 on the
triangular lattice and 100 and 4000 on the square lattice.
For uniform distributions of random fields, v = 1.9 + 0.1
provides a collapse of data for all system sizes on the
square and triangular lattices.

This value of v differs substantially from that reported
in Ref. 9. There, (b, —b,~)//b, ~ was taken as the scaling
variable, and the largest system size was L = 1000. Using
this scaling variable and including results for L = 2000
and 4000 produces a steady increase in the value of v to-
wards that quoted above. The large variation with sys-
tem size in the effective value of v for this scaling variable
is also evident in the logarithmic derivative of (~) with
respect to (6 —1). This direct determination of the ef-
fective exponent shows a steady increase from 1 to 1.8
as 6 decreases towards 1. As expected, the value of v
obtained with the scaling variable (6, —Ac)/6 changes
more slowly with L. There is a small decrease in the cor-
responding logarithmic derivative from about 2.2 to 1.9
as 6 ~ 1. Note that the limiting values of the loga-
rithmic derivatives with respect to both scaling variables
are consistent with our finite-size scaling determination
of v.

The quoted values of v and p for the uniform distri-
bution imply n = v/p = v/[(m+ 1)P] = 1.09+ 0.09.
A lower bound on o. is obtained by plotting (u)(1 —f„)
versus (1 —f„). This curve is monotonically decreas-
ing, which implies a ) 1. Best fits to the logarithmic
derivative in the region before finite-size effects enter give
a = 1.1 + 0.1, where the error bar reflects uncertainty in
the fitting range. A finite-size scaling ansatz like that
discussed above gives the same range of values. We thus
conclude that the value of o. is close to, but slightly larger
than the mean-Geld value of unity.

IV. CONNECTION TO BOOTSTRAP
AND DIFFUSION PERCOLATION

The growth model described here is closely related to
a set of modified percolation models in which the occu-
pation of a site depends on its environment. In boot-
strap percolation (BP), sites are initially occupied ran-
domly with probability p. Then all sites that have fewer
than rn neighbors are successively removed (culled). The
remaining occupied sites form the so-called infinite time
limit cluster. For a given rn, the critical probability p, is
defined as the value of p below which there is no infinite
cluster in the infinite time limit. In diffusion percola-
tion (DP), sites are added to the cluster if they have k or
more neighbors. The (z —m+1) DP problem is closely re-
lated to m-BP, since adding sites with at least z —rn —1
occupied neighbors involves removing unoccupied sites
that have fewer than rn unoccupied neighbors. However,
the two processes are only equivalent on self-matching
lattices.

Our domain growth model is most closely related to
DP. For 6 ( b,~, any spin with u = z/2 flipped (occu-
pied) neighbors will also flip (f„=1). As soon as any
spins with n ( u can flip (f& ) 0), the entire system flips
(fills). This is consistent with the fact that p, = 0 for DP
with k = 2 on the square lattice and k = 3 on the tri-
angular lattice. is The corresponding BP problems have

p, = 1. This feature is easy to understand geometrically.
For m ) 2 BP on a square lattice, any void space (region
of unflipped spins) is culled into a rectangular region that
contains it. s For p ( 1, voids of arbitrarily large linear
dimensions occur in the initial set of occupied sites. Thus
culling empties the entire lattice for p ( 1. The same is
trueis in the triangular lattice for m ) 3. Large voids
are exponentially unlikely to occur in finite simulation
arrays. Thus results for BP converge very slowly to the
infinite sample limit [e.g. , as 1/ ln L (Ref. 15)]. In our
growth model, convergence is much more rapid because
our starting interface spans the entire system in one di-
rection. For example, the value of fq needed to fill the
lattice scales as L on the square lattice. This allows
accurate studies of the model with relatively small system
sizes.

We know of no previous studies of BP or DP on the
honeycomb lattice. For 6 ( b,o, our growth model corre-
spondsto k = 2 DP, since fz = 1 (Fig. 2). The associated
BP problem is m = 2. On most lattices m = 2 BP has
the same p, as normal percolation because only dangling
ends of the infinite cluster are removed. However, our
results indicate that k = 2 DP is different from normal
percolation on the honeycomb lattice. We find that the
threshold for an infinite cluster is fi = 0.609 + 0.001.
This is substantially less than the upper bound provided
by the threshold for normal percolation, p, = 0.6962,
and above the lower bound of 1/(z —1) = 0.5 provided
by mean-field theory. It provides a new upper bound
for p, in k = 2 DP because growth is more difficult in our
model. In the DP model, isolated sites and clusters are
formed in the initial occupation of the lattice sites. These
clusters may merge through flipping of intermediate spins
to form an infinite cluster. Our growth model is more re-
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strictive, since growth only occurs at the interface. Thus
it cannot have a lower percolation concentration in the
in6nite sample size limit.

For 6 )Ag or As, our model represents a continuous
generalization of DP in which the influence of the envi-
ronment is not decisive. Spins do not always flip when
they have u Hipped neighbors. Instead, they flip wit;h

probability f„A.s 6 increases further, other values of
f„b egi nto deviate from 1 or 0 (Fig. 2) and the problem
becomes even richer.

One may readily construct more general Hamiltonians
and distribution functions that produce arbitrary func-
tions F„(H). For each, growth at a given H corresponds
to a set of probabilities f„Fig.ure 4 represents the re-
duced parameter space obtained if fs = 1 on the square
lattice. The points map out the critical line in parame-
ter space where infinite clusters first form. For smaller
values of fg = fi and f„=fz (upper left of plot) growth
is finite. For larger values, growth spans the system and
is two dimensional.

The parameter space becomes three dimensional for) 4 on the square lattice because fs is no longer
fixed at one. There is a critical surface in this three-
dimensional space where infinite clusters appear. Dif-
ferent distribution functions P(h) give difFerent relations
between fi. fz, and fs and thus pick out different points
on this surface. Higher-dimensional critical surfaces and
parameter spaces occur for the triangular lattice at large

In general, the maximum dimension of the effective
parameter space is z —1 in our model because both f, and

fo are irrelevant: Flipping spins with z Hipped neighbors
only fills completely surrounded sites, and sites with no
Hipped neighbors are not on the interface. If spins away
from the interface are allowed to Hip the dimensionality
of the space increases to z and the model becomes closer
to BP.

V. CONCLUSIONS

The results presented in Sec. III show that the transi-
tion from fractal to faceted growth in domain-wall rno-
tion may be either first order, as on the honeycomb lat-
tice, or second order, as on the square and triangular
lattices. The exponents describing second-order transi-
tions appear to be universal. One universal exponent,
P = 1.75 + 0.05, describes the relation between the prob-
ability that a spin with E = z/2 —1 flipped neighbors will
flip at H~ and the probability that a spin with u = z/2
Hipped neighbors will not flip (Fig. 4). A second, n,
describes the divergence of the correlation length or fin-
gerwidth as 1 —f„g esoto zero. Simulations give a value
of a = 1.09+ 0.09, which is close to the mean-field value
of unity. The connection between domain growth and
correlated percolation models discussed in Sec. IV may
facilitate analytic calculations of the universal exponents

describing domain growth. It also indicates that a new
class of partially correlated percolation models (f„not
equal to 0 or 1) are physically relevant.

The relationship between 1 f—„and the strength of dis-
order is not universal. This explains why previous studies
of fluid invasion" is and domain growths obtained differ-
ent exponents v for the divergence of (u) with changes in
disorder or contact angle. From Eqs. (4)—(9) it is clear
that the asymptotic value of v only depends on the an-
alytic form of the probability distribution functions for
stability of local configurations of the interface. However,
the numerical results presented here show that large sys-
tem sizes are needed to see the asymptotic behavior.

The origin of faceted growth is the anisotropy in the
array of spin sites. As a result, it is only observed in
experiments on artificial anisotropic porous media, such
as network models. i Real rocks and model bead packs do
not have an underlying lattice structure and a different
type of transition must occur with decreasing disorder or
contact angle. Previous simulations on more complicated
models of Huid invasion indicated that this is a transition
from self-similar fractal growth to compact growth with a
self-affine interface. 7's Subsequent experiments have con-
firmed that there is a sharp transition in growth mor-
phology with decreasing contact angleii and experiments
on wetting invasion of bead packs and paper towels
clearly show that growth is self-affine. Moreover, the
measured and calculated values of the associated rough-
ness exponent are consistent.

These results are evidence for richer phase diagrams
than those shown in Fig. 1, which contain a self-affine
growth regime in addition to or instead of the faceted
regime. It is not yet clear what features of the growth
model are needed to produce this regime. Removing lat-
tice anisotropy by using random spin or pore positions
may be sufficient to introduce self-affine growth. How-

ever, this is not required because two models that have
an underlying lattice produce self-affine interfaces: the
fluid invasion model of Refs. 7 and 8, and domain growth
in Sd random-field Ising models. zs Future examination
of models with different growth rules and of analogous
lattice and continuum percolation problems may help to
reveal the origin of self-affine growth.
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