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Direct stochastic theory of muon spin relaxation
in a model for trans-polyacetylene
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A stochastic theory of muon spin relaxation in a model for muonium attached to trans-
polyacetylene chains is given. The random walk of an unpaired electron provides a fluctuating
hyperfine interaction with the muon. Since the correlation time of the stochastic process diverges,
the standard NMR theory cannot be applied. The stochastic Liouville equation is solved, including
spin flips of the electron. The resulting spin relaxation is nonexponential, and in reasonable agree-
ment with the experimental data. The characteristic field dependence of one-dimensional diffusion
is also contained in this theory.

I. INTRODUCTION

This paper develops a direct stochastic theory of muon
spin relaxation in a model for trans-polyacetylene. The
underlying idea is that spin relaxation in this substance
may be caused by one-dimensional diffusion of defects
along the polyacetylene chains. The possible soliton
nature of electronic defects in trans-polyacetylene has
aroused much interest (for reviews see Refs. 1—3), and
various experiments including muon spin relaxation were
performed to study the dynamics of the supposed soli-
tons. The emphasis of this paper, however, is not on
the elucidation of the soliton properties of defects in real
trans-polyacetylene. We are primarily concerned with
a proper stochastic theory of spin relaxation by one-
dimensional diffusion. Most of the spin relaxation ex-
periments in the polyacetylenes have been analyzed by
versions of the standard theory of magnetic resonance.
The standard NMR theory4s provides expressions for
the longitudinal and transverse spin relaxation times. It
presupposes the existence of a correlation time r, of the
Huctuations that produce the relaxation, and assumes
that this time is short compared to all other time scales.
The correlation time for return to a given site by one-
dimensional diffusion on an infinite chain diverges, s ren-
dering thus one of the basic assumptions of the theory
invalid.

We argue that in this situation a direct stochastic the-
ory of spin relaxation is required, in the sense of the
stochastic theories of Anderson, 7 and Kubo and Tomita. s

In their pioneering work, these authors considered only
very simple stochastic processes, in particular the Gauss-
Markov process. As described below, one likely process
causing muon spin relaxation in trans-polyacetylene is
the Huctuating hyperfine interaction of the muon with a
mobile defect, and the time dependence of the stochastic
process is determined by one-dimensional diffusion.

The problem of relaxation of classical spin rotation by
a defect which diffuses on a one-dimensional chain was
already treated by Czech. A stochastic theory of spin
relaxation of muonium by switching between two val-

ues of the hyperfine interaction was made by Celio. ie

In this paper we are concerned with the infiuence of one-
dimensional defect motion on the spin dynamics of muo-
nium.

We study a very idealized model for muon spin relax-
ation in trans-polyacetylene. On the experimental side,
one can say that the substance is not well characterized
with regard to its microstructure. Also, the nature and
the dynamics of the defects remain controversial. Com-
pared to the soliton picture that has been elaborated in
theoretical work (see, e.g. , Refs. 1, 11, and 12), our model
is quite simplified. At least here we can offer some argu-
ments for justification of our assumptions. We believe it
is worth developing such a theory for an idealized model,
and comparing it with experiments on a concrete mate-
rial.

II. EXPERIMENTAL AND THEORETICAL
BACKGROUND

A. Muon-spin relaxation experiment

Experiments on muon spin relaxation (pSR) in the
polyacetylenes were performed in the early 1980s by
Ishida, Nagamine, and co-workers. is is Thin films of
trans and cis-(CH-) were prepared by the so-called Shi-
rakawa methodis and exposed to muon beams at the
Booster Meson Facility of the Meson Science Labora-
tory, University of Tokyo and at TRIUMF, Vancouver,
Canada. The muons are stopped in the films, picking up
an electron and forming muonium. The individual muo-
nium atoms attach themselves to the carbon atoms of
the polyacetylene chains by breaking a double bond and
leaving an unpaired electron at a neighbor carbon atom.
This electron forms a neutral spin-& defect. A magnetic
field B is present parallel to the initial muon spin po-
larization. The asymmetry of the decay positrons in the
forward and backward directions is measured as a func-
tion of time. For a general review on the @SR method

46 S246 1992 The American Physical Society



46 DIRECT STOCHASTIC THEORY OF MUON SPIN RELAXATION. . . 5247

20.

0
4 l 4

~444$ qg 4
4 0444 O

, 3 KG~,
~4-~q; go

, 200G,
b s 4 4 0

, 60 G'

20G ) (
4

~4 ~en
tOG 4

4
4 d L,

( 4 ms~~ I

OG 4
of

n

io.oh o f"
TIME (p,s)

D y Ioe~o~ + p 4 ]p--0-~- $ 0

0

3 KG.
T O~+~~a oT

O

200 G

O '4 4
cr

, 50 G . o4

20G ~

IOG
zo

I

OG

QO ioo

TIME (ps)

FIG. 1. Time spectra of decay positron asymmetry for p+ in (a) cis-(CH, ) and (b) trans-(CH ) at room temperature.
This figure was adapted from Ref. 13.

see the book by Schenck, ~r for information on muonium
see the review by Cox. ~s

The experimental results~s for cis- and trans-(CH) are
reproduced in Fig. 1. Muon spin relaxation is observed
in trans-(CH), no relaxation is seen for the cis species.
The magnetic-field dependence of the asymmetry for the
cps species is consistent with the picture of a muonium
atom attached to the (CH) chain and a nearby immobile
defect. Namely, the muonium atom forms a spin-paired
double bond with the carbon, while the adjacent electron
has a reduced hyperfine interaction with the muon. This
situation is also well understood from radical chemistry. ~s

It is natural to ascribe the relaxation observed in trans-
(CH) to the liberation and motion of the defects along
the chains. The authors initially analyzed their exper-
iments by assuming exponential decay and they deter-
mined a longitudinal relaxation rate T& . They referred
to an expression for T~ derived by Devreux, Boucher,
and Nechtschein~o for the case of electronic motion,

T&(p)
' = 4'ns[ssd f(p„B)+(a + sd )f(p,B)] . (1)

Here a and d are the isotropic and the dipolar hyperfine
coupling constants between the electron and the muon,
respectively, p, and p„are the electron and the muon
gyromagnetic ratios, respectively, and ns is the density
of unpaired electrons per carbon atom. f(u) is the spec-
tral density function of the stochastic process leading to
relaxation, evaluated at the respective Larmor frequen-
cies. If spectral density functions for the process of one-
dimensional diffusion are used, they behave, for smaller
frequencies, as cu ~ . The authors did indeed find a
B ~~~ behavior of their experimental T&, for B g 0.
This observation constitutes a strong point in support of
one-dimensional diffusion of the defect.

B. Other relaxation experiments; structural
information

First a brief summary will be given of experiments that
indicate the existence of mobile defects in trans-(CH), .
Further information can be found in reviews. ~ s The ex-
periments on dynamic nuclear polarization~~ (DNP) pro-
vide evidence that mobile defects exist in trans-(CH),
while they are immobile in the cis species. Further
experiments2z2s on DNP, nuclear magnetic resonance
(NMR), and electron spin resonance (ESR) supported the
existence of mobile defects in trans-(CH), but they also
showed the influence of trapping impurities. The picture
of two different kinds of defects (mobile and trapped) in
trans-(CH) was introduced. ' s The analysis of these
experiments, and other ESR experiments, 24 ~s however,
led to differences in the magnitude of the diffusion rates of
the defects. One may conclude that the influence of trap-
ping impurities in these experiments has not been unam-
biguously clarified. In another paper~s the motional ef-
fects on the DNP spectra were studied in a simple model
and the conclusion was that it is not necessary to adduce
more than one kind of defect in trans-(CH) .

Other experiments, namely ENDOR27 and multiple-
quantum spin coherences were interpreted as evidence
for pinned defects both in cis- and trans-(CH) .

The conformation of the trans-(CH) chains is also
unclear. The polyacetylene films produced by the Shi-
rakawa method show a fibril morphology. ~ It is not pre-
cisely known how the chains are arranged within these
fibers. A more crystalline material is produced by the
Durham route. There are experimental indications that
the average conjugation lengths of the trans-(CH) chains
are quite small, namely n = 11—14 in the Shirakawa ma-
terial and n = 30 —40 in the Durham material. The
conjugation length may be identified with the length of
an ideal sequence of bond alternation.
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In summary, the presently available polyacetylene is
not well characterized and quite different from the ide-
alized models. Although a majority of experiments indi-
cate the existence of highly mobile defects, their existence
has not been established beyond doubt. Also the influ-
ence of impurities and of the finite chain lengths has not
yet been clarified.

H Mu

C. Theory of soliton motion

One usually associates the picture of a coherent mo-
tion with the notion of the soliton. Coherently moving
solitons appear as solutions of the appropriate contin-
uum models, e.g. , in the model of Takayama, Lin-Liu,
and Maki. ii However, coherent motion does not occur for
the supposed solitons in ideal trans-(CH) chains. First,
the discreteness of the chains requires a small activation
energy for shifting the soliton one lattice unit. This en-

ergy has been estimated in the model of Su, Schrieffer,
and Heeger (SSH) to be about 2 meV, i hence it would
inhibit motion at low temperatures. Second, at finite
temperatures the solitons interact with thermally excited
phonons, and a stochastic motion of the soliton results.
Already in the molecular-dynamics simulations of a dis-
crete soliton model by Koehler et al. si a kind of Brownian
motion of the domain walls was observed. The interac-
tion of solitons in trans-(CH) with phonons and its in-

fluence on mobility and difFusivity have been treated by
various authors, see Ref. 32 for references. The difFusion

coeKcient, which results from the interaction with acous-
tic phonons, diverges for low temperatures as T i if trap-
ping effects are disregarded. Jeyadev and ConwelP2 were
able to reproduce the approximate Tz behavior observed
in the NMR and ESR experiments by including trapping
by impurities in an average way. For our purposes it
is important to realize that the absorption and emission
processes of thermal phonons effect an incoherent motion
of the solitons in ideal chains of trans-polyacetylene. This
may be summarized by the qualitative statement that the
solitons perform Brownian motion at 6nite temperatures.

III. THE STOCHASTIC MODEL

In this section we introduce the model that we formally
analyze in the subsequent section. We assume that the
defect is localized at the sites of a linear chain. In reality
the electronic defect in trans-polyacetylene is delocalized.
A delocalization of 14 lattice constants was found in the
SSH model [the lattice constant a is that of the undimer-
ized (CH) chain and the value given is twice the width
parameter or extent (]. The self-consistent-field calcula-
tion of Boudreaux et al.ss for finite trans-(CH) gave a
value of six lattice constants for the delocalization of the
neutral spin-

&
defect. The delocalization of the defect in

the neighborhood of the attached muonium is not known
at present. We introduce a hopping picture where the
localized defect makes a random walk on a half-sided lin-

ear chain with the transition rate p between neighboring
sites, see Fig. 2. Thus we replace the Brownian motion
of the extended defect by an effective hopping process
of a localized defect. When is this replacement justi-

FIG. 2. Schematic representation of the trans-poly-
acetylene chain with an attached muonium and an unpaired
electron, and of the random w-alk model. (a) The defect is on
the neighbor site of the muonium; (b) the defect has moved
one unit.

fied'? One requirement is that the friction coefficient v,
which describes the rate of decay of velocity correlations,
is large compared to the transition rate p/2 between the
sites. The friction coefFicient v = (mB) i, where m is
the efFective mass and B the mobility of the soliton. The
mobility is related to the diffusion coefficient D by the
Einstein relation and for the random walk on the linear
chain D = pd2/2 where d is the effective hopping dis-
tance. The requirement can then be expressed as

(2)

The criterion that the mean free path of thermal motion
be small compared to the hopping distance leads to the
same expression. For solitons in trans-(CH) the efFective
mass is approximately six times the mass of an electron.
Assuming a hopping distance d = 3 A. and room tem-
perature the criterion (2) requires p (( 10i4 s i. The
experimentally deduced difFusion rates are smaller than
this value, hence we believe an effective hopping picture
is justified.

We further assume that the hyperfine interaction is
"on" when the defect is on the neighbor site (site 0) of
the muonium, and that it is switched off when it is on
the other sites. This is again a simpli6cation, since the
hyperfine interaction decays with the inverse third power
of the distance. It is in vein with the effective hopping
picture of a localized defect. In a more detailed descrip-
tion one should include both the extension of the defect
and the range of the hyper6ne interaction.

Finally, we introduce in our model the possibility of
spin flips, with rate A, when the defect is on other sites
than site 0. This restriction is mainly for technical rea-
sons in the treatment of the averaged time evolution. Our
simplified model is then characterized by the parameters

p, the rate of transitions to adjacent sites, &uo, the hyper-
fine interaction at site 0, and A, the spin-flip rate of the
defect at the other sites.
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IV. STOCHASTIC TREATMENT OF
AVERAGED TIME EVOLUTION

A. Method

We calculate the polarization of the muon at time t as
the trace over the density matrix,

P(t) = tr(p(t)o, j
with the initial condition

p(o) = 4I.1+P(0)~*] (4)

corresponding to an electron that is either parallel or
antiparallel to the muon spin, with probabilities z. The
objective of this section is to evaluate the averaged time
evolution operator U(t) of the density matrix,

p(t) = U(t) p(0)

Here U(t) is a so-called superoperator which acts on oper-
ators of the underlying Hilbert space. ss We introduce the
scalar product of the operators a and b in this operator
space by the trace metric

(a, b) = tr(a+b) (6)

where a+ is the adjoint operator to a. If a complete set
of state vectors Ik& is given, then we choose the shift
operators

Sl,i = Ik&(l]

as a basis of the operator space. In this way we can
represent operators a as vectors,

a= (Ski, a) = (kIaIl&

and the specific magnetic field

s = 2cd+/(dp

The Hamiltonian is easily diagonalized using the spin
eigenfunctions

Ix & = Im"m'& (14)

Ixs& =
I
-+» Ix4& =

I

—-&

The eigenvalues E„of the Hamiltonian as well as the
eigenvectors IE„& expressed in the basis Ix & are given
in Table I.

The time evolution of the density matrix is determined

by

Up(t) = exp(iLt) (16)

with the Liouville operator L = —K[H, . . .]. In deal-
ing with the dynamics of the muonium we take the shift
operators of the Hamiltonian H as a basis of the 16-
dimensional operator space

Sii = IE~&&@I ~

They are the eigenoperators of the Liouville operator
with the energy differences ~i, i = (El, —E~) /5 as eigen-
values. The time evolution operator is then diagonal in
this representation,

as a basis. Here m~~ and m' are the muon and electron
magnetic quantum numbers:

Ix» = I++&, Ix.& = I+ -»

and superoperators U as matrices,
(Si,t, UpS;, ) = b,i,b~i exp(i(u, ;t) (18)

P(t) =a+ U(t) p(0) (10)

B. Time evolution

In this subsection we shall describe the time evolution
of the electron spin and the muon spin in the case that
the hyperfine interaction is either switched on or switched
off, as described in Sec. III. If the hyperfine interaction is
"on" then we assume that the Hamiltonian has the form

0~~ ——u) a + —(u 7- =&a+Hz
4 P Z

g
8 Z

U = (S, , Usl, i) = (ijIU]kl&

Hence we are able to calculate the polarization P(t) by
matrix multiplication:

When the hyperfine interaction is switched ofF, both
spins are decoupled and are moving in the magnetic field
according to the Liouville operator Lz associated with
the Zeeman Hamiltonian Bz. To include the possibility
of spin flips of the electron we construct an averaged time
evolution operator Ui (t) using the pulse model of Clauser
and Blume. s

In this model the system experiences pulses at time
points tz that are distributed according to a Poisson
process with event rate A. The pulses efFect transitions
between difFerent states of the system. We assume the
Hamiltonian to have the form

TABLE I. Eigenfunctions and eigenvalues of the Hamilto-
nian Eq. (11). The coefFicents are c = gl + 2:/Ql+ z~/~2
and s = gl —c2.

~y = (u), + u)„) /2 (12)

where H~ corresponds to an isotropic muonium state and
Hz contains the influence of the magnetic field along the
z axis. The quantities cr and 7. are the Pauli spin matrices
for the muon and electron, respectively, and cu„,u, the
associated Larmor frequencies. It is useful to define the
frequencies

I
g,. &

I x»
sl x»+ c

I xs &

I x4 &

c
I x» -s

I x. &

4 4 +
—cu4

2

4 4 +
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a(t) =az+) Vg(t &m'mp
]
J'

]
m'mb& = 2b~pb p (24)

= b~g ~b ~ ~&m'm&
] J;, [

m'ms) . (22)

Second, in the electronic subspace the pulse operator

J' = exp( —(i/2)[rqt, . . .)} (23)

has to be averaged over the arbitrary directions P, as de-
scribed by Dattagupta. sr The matrix elements are given

where the random interaction potentials Vz are uncor-
related from one instant to the next. If one makes a
decomposition into the number of pulse events and sums
the corresponding series in the Laplace domain, the av-
eraged time evolution operator is obtained as

Ug(u) = [u —iLz —A(J,„—E)] '

The tilde designates the Laplace transform. The pulse
operator

J- = (exp(-(i/&) 8' " )k),
is an average over the statistics of the random opera-
tors V~. We imagine that the pulses effect rotations of
the electronic spin about arbitrary directions P. Then
the pulse operator is easily written down in the basis of
the spin eigenfunctions [y ): At first the muon spin is
conserved under the action of the pulse operator

&x xu]J. I x&x»

Now the matrix Uq(u) can be inverted explicitly and
transformed back to the time domain; see Table II.

The resulting time evolution operator is of course based
on a very idealized picture of the interaction of the elec-
tronic spin with the polyacetylene chain. Nevertheless,
it contains spin-lattice relaxation: If a pure spin state
is given at time zero, the expectation value of the elec-
tronic spin decays exponentially with the decay constant
A, which we identify with the inverse spin-lattice relax-
ation time of the electron: A = 1/T&'. To summarize, we
use the relaxation operator W = A(J, —E) to describe
the inHuence of the chain on the electronic spin, and the
operator Uq(t) = exp[(iLz + W)t) for the time evolution
of the spina, when the hyperfine interaction is "off."

C. Average over random walk

The stochastic process of switching between the time
evolution Uo(t), when the unpaired electron is on the
neighbor site of the muonium, and the time evolution
Uq(t), when the electron is on other sites, determines the
averaged time evolution operator U(t). The averaging
that we shall perform in this subsection is similar to the
procedure of Czech, s who solved the analogous problem
for classical spin rotation.

We consider the random walk of the electron with hop-
ping rate p on the half-sided linear chain. In the following
frequencies and inverse times will always be measured in
units of p. First we have to describe the statistics of the

TABLE II. Time evolution operator Uq in the spin basis

(U,'& 0 i
(Sx xp, Uq (t) Sx„xs) l (b)0 U, )

We tabulated the matrices U~~'l, U~ and used the abbreviations p—:p(t) = 1/2 [1+exp( —At)]
q = q(t) = 1 —p(t), o.:—u(t) = exp( —At).

p( )
1

11
12
13
14
21
22
23
24

12

e'"n
13 14 21

el4fe~~

22 23

224J+ t

e't ca) p, 4
q

U(b)
1

31
32
33
34
41
42
43
44

—i2w+ t

i2m t

e—t4J~ t
q

e&~e t~
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visits at the origin (r = 0):
(i) F(t) is the probability density of the first return

to the origin at time t when the electron starts at it at
t = 0. The corresponding survival probability

t

N(t) = 1 — F(t')dh'
0

U(u) = /Up(u) + NUy(u)QUO(u)
- —1

x E —FUi(u)QUO(u)

D. Evaluation

(34)

P(u) = u+1 —Qu(u+2) . (26)

(ii) For the continuous-time random walk the statistics
of the time the electron spends at the origin is given by

@(&) = '7«»( —'m&) (27)

is the probability that the electron does not reach the
origin until time t. The Laplace transform of I' is given
bys

P(u) = (u, , U(u)p(0)), (35)

where U(u) is given by (34). We utilize the damping the-
orem for Laplace transformation in handling the proba-
bilities P, tP, and F; we utilize the fact that the muon
spin is conserved under the action of U),

Now we combine the results of the preceding subsec-
tions to evaluate the depolarization of the muon,

P(t) = exp( —pot) (28)

is the probability that no such transition occurs until
time t. We assume that all transition rates on the chain
are equal. Because the electron can only jump to the
single neighbor site r = 1, the transition rate at the origin
is, with our normalization,

$0=21 (29)

To calculate the averaged time evolution operator it is
useful to classify the random walk according to the num-
ber n of visits at the origin and also according to whether
the last nth visit (a) still continues at time t or not (b):

where Q(t) is the probability density that the electron
makes a transition at time t from the origin to the neigh-
bor site. Evidently,

~t U, (~) =~i Z,
and Eq. (25) to eliminate N

p)(u) = —(1 —P (u))

to obtain the following trace

P(u) = — u+ pp (1 —P(u))

x Tr ot Uo(u+go)

—»+U~(&)UO( + vo)

(36)

(37)

p(o) I
U(t) = ) .I (~)+ (~)j

n=1
(30)

(38)

For instance, the electron that hops away once and comes
back to the origin until time t, contributes

t

7z (&) = d4$(& —4)UO(& —4)
0

t2

x dt&F(t2 —t&)U&(ts —t&)@(t&)UO(t)) .
0

(31)

The nth contributions to the processes (a) and (b) are
(2n —1) convolution integrals, which are given in the
Laplace domain by simple multiplications:

We calculate the trace in the basis S@,.a, , where Uo is
diagonal. Hence the time evolution operator Uq, which
was determined in the spin basis, must be represented in
this basis; this can be done by a basis transformation.
Furthermore the matrix algebra has to be carried out.
Because of the longitudinal geometry it is sufficent to
consider the 6-dim subspace, which is spanned by the
following shift operators:

~EyE1 & ~EgEg ~ ~EgE4 ~ YESES ~ ~E4Eg ~ ~E4E4

(39)

."( ) = 4» ( ) +& ( )Ã ( )

8„ l(u) = NM) (u)/Up(u) EUi(u)QU()(u)

(32)

(33)

The algebra was performed with the help of symbolic
formula manipulation by REDUGE. The final expression
for the decay of the polarization (in the Laplace domain)
1S

(A —1 —2u) X(
u YThe sum (30) of these contributions yields the final result

for the averaged time evolution operator in the Laplace
domain: where

(40)
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4~' +3A —2)A+ —2 p "' '
A 4Ao+2)+4i~p&(2u '

2 4~2 1) A + (Ap(A ]) (Ap —&)

((A 2) Ap —2A + 3) +Y =2u((Ap+
2 /4~2 +3) A —8~24 ~

+ A + A++ A 3)

3) Ap —3A + 4

})A + (A —1) (A +2 +Ap+A )
4 2 ]2 + I) A 16u —4~24) (~2 + ]) Ap + (4&24 +

46

(41)

(42)

reviations for the return prob-We used the following abbrevia Iona
ability:

A = P(u),
Ap ——E(u+ A),

A = F(u+ A+ i2~+),+
A = P(u+ A —i2u+) .

its b numerical Lap aace inversion,We obtain explicit resu ts y
see the next section.

ASY'MPTOTIC THEORYV. DISCUSSION AND ASY'

te the pplarizatipn dec yF; 3. For zero fiIp ra
nt wIth the resultplateau value o 2'

~ f f ee muonium in ze»the residual polariz o
and with increa»ng1 teau value decays anFor small A, the p a

1 t becomes slower.p, th 'nitial decay o
' t' on the transit'o

he p ateau
ipn

ei

parameters ~p
I t,s s~n that the eprameeters vary wit p "

' the transition rateincreasingtion Is s
es sImpler t an

trongly reduced y
h that for smallerand its beha»»

b}e to perform an asympit is ppssi
n includedlt }I 1 d b iand its resu as
and A and

p ~

0
6 b }I t ti

. The two sma par
icall asthe auxiliary funct'tions 4 e

. &40 for the polar-
in Sec IIB e periments indica eiza 10io. i i

1 o f }Ie un aire eec r
tll t t

io o
11 t }I

: the hyperfine interac ion
'

smaller than p: e
the Larmor eq

ns inerwise p o p
1wou

tl }I 11 d Ion . Consequen y, wmuch smaller than p.
totic expressions for the spin re

' . e wi
first discuss the zero- e c

Gp ~ /2(u+ A) (46)

2

()

G~ ~2u,

1 i.e. , in the case of small spin- ip
m th xperimental inverse

n
m a ed to ee '

verserate o
f h 1m totic behavior otime scale, the asymp o '

(47)

A. Zero-field case 1.0

n the Lapl

1 ( 2ldp Gp
2.2(G, + G)+ G„G]

' ' r functions are used:where the following auxI}Iary

G = G(u) =—2u+1 —P(u)

(44)

sim }ification of the result (40) is ob-
h 1 i io i h= 0. The po ariztained for the case B = 0. h p ariz

ace domain by1 O

0.6
~ M

0.4

0.2

0 0-

0 3

0-4 '

10

Gp = G), (u) =—2u+ 1 —E(u+ A)

ed units; i.e., all fre-

the spin-Hip rate orp olarization on

time

e
' E . (44), for differente olarization, q.

nth h 6te A. The valueo t e yvalues of the pulse rate
~o/2vr is 4.5 x 10



46 DIRECT STOCHASTIC THEORY OF MUON SPIN RELAXATION. . . 5253

10' I I I I I I I I of the revisiting effects of the unpaired electron at the
origin by one-dimensional random walk.

B.Finite magnetic fields

10 2

10 10 10 10 10 10 10 10 10 10 10

time

FIG. 4. Zero-field depolarization, Eq. (44), for difFerent

values of the hopping rate p. The hyperfine constant up/2m =
10 s ' and thepulse rate A = 10 s are kept fixed. Dashed
line: asymptotic decay with P(I'ot), Eq. (52).

or, in the time domain,

The polarization P depends on the magnetic field via
the electronic Larmor frequency ~„if one considers that
2m+ = u, . The behavior of the polarization with the elec-
tronic Larmor frequency, at a fixed time point, is shown
in Fig. 5 for different values of the coupling strength tdp

and fixed pulse rates A, and in Fig. 6 for difFerent values
of A and fixed ao. When a very strong magnetic field
acts on the system, with u, » cue, the muon spin is ef-
fectively decoupled from the electron spin and remains
polarized. For very small fields u, (( uo and a, (( A

the results of the preceding subsection apply. Hence we
consider intermediate fields with A (( ~, The .transition
rate p is again regarded as the large parameter, and in
scaled units id, (( 1 and A (( 1. We have the following
two cases:

(i) The case A/u » 1, i.e. , the mean time between
electron spin flips is short compared to the experimental
time scale. In this case the asymptotic evaluation of (40)
yields

P(t) z + —exp( —2cuiit). (48)
(54)

This result reproduces the exponential decay to the
plateau value of Fig. 3 for vanishing pulse rates.

For large ratio A/u » 1 or large spin-flip rate with
respect to the inverse of the experimental time scale, the
asymptotic polarization is given by

with the parameter

with the parameter I'0,

(do A

((u + A)z

In the time domain

P(t) P(I' t),

(49)

(5O)

+2~2
V'1+ (~o/~. )'

(55)
Ql + ((dp/4J )2 —1

Since (54) is of the same form as (49), P(t) in the time
domain is given by the relaxation function P (52), with
the argument T = 1 t. For moderate values of the mag-

1.0

where we have introduced the relaxation function

P(T) = exp(T)erfc(v T)

and erfc signifies the complementary error function.
It is of interest to display the dependence of the polar-

ization on time for small and large arguments,

P(t)
rs

o 0.6
X

II 0.&

0.2

10 10 10 10

10
T

10 10 10
1

gvrI'pt

Thus, for nonvanishing spin-flip rates this theory yields a
power-law decay of the polarization for large times, not
exponential decay, as assumed in the original analysis of
the experiments. This power-law decay is a consequence

Larmor frequency Ide

FIG. 5. Depolarization, Eq. (40), as a function of the elec-
tronic Larmor frequency for diferent values of the hyperfine
frequency uo, at fixed time t = 5 x 10 and fixed pulse rate
A = 10 . (- - - - -) relaxation function P(I' t) with I' from
Eq. (55). (—. —.—.) line with I' from Eq. (56).
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1.0 TABLE III. Fit parameter p for different magnetic fields
and temperatures.
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FIG. 6. Magnetic field dependence of the depolarization,
Eq. (40), for different pulse rates A; t = 5 x 10, ufo = 10
fixed.

netic Beld the parameter I' is given by

~O4&

(u)oz+ /2(u, A)z
' (56)

which approaches

4
I'~I'g = 4)o

24)g
(57)

The behavior of P(t) for short and long times follows
from the behavior of the relaxation function P(t). Its
behavior has already been given in the preceding subsec-
tion, cf. Eq. (53), only new parameters I' or I'~ have
to be inserted into the formulas. The main conclusion
remains valid, namely, the long-time decay of the polar-
ization is proportional to t

for transition rates very large compared to the hyperfine
frequency. Note that I'~ is proportional to B

(ii) A/u && 1. In this case the state ~rn„= +, m, =
+) is effectively not mixed into other states, and the
asymptotic expansion for moderate fields leads to

parameters p, ceo, and A, cf. (50). In the finite-field case
we assume that A &( ~, ; this is the case for the published
ESR value of A for fields above 10 G. The transition rate
p is in fact so large that the simplified expression I'~
instead of I' can be used, cf. (57). We have examined
this point consistently by using both the complete and
the approximate expression. The parameters I'o for the
zero-field case, and I'g for B g 0 depend on the combi-
nation u&2/p. This means that we cannot determine uo
and p independently when I'~ is to be used for the finite-
field case. We assumed that uo/2' = 4.5 x 10s s i; this
value is approximately yp

of the vacuum value. Similar
reductions have been observed for separated muons and
electrons in organic substances. is There remains p as the
free parameter for B g 0 and the free parameters p and
A for B = 0. We made first fits of the individual relax-
ation data at different fields B = 10, 20, and 50 G. The
resulting p values are given in Table III. Then we made
fits of the data at B = 0 using the mean values of p at
the corresponding temperatures, and determined A. The
resulting A values are given in Table IV.

Figure 7(a) shows the data together with the fit curves
at T = 293 K and Fig. 7(b) the data together with the fit
at T = 29 K. The fit of the data by our theory is fair at
B = 0 and good at finite fields. One possible reason for
the reduced quality of the Bt at B = 0 is the neglect of the
dipolar coupling of the muon to the surrounding protons
in our theory. This interaction becomes decoupled by the
application of fields of the order of 10 G and larger.

One major problem is that the transition rate p found
at 29 K is practically the same as the one at room tem-
perature. This problem is not specific to the theory de-

veloped here. However, it is related to the applicability
of the model that we use, or, in other words, to the pre-
cise origin of the muon spin relaxation in trans-(CH) .

We shall return to this question in the conclusion.

VI. COMPARISON WITH EXPERIMENT

A. Fit of experimental data

We now examine how our theory describes the ex-
perimental results on muon spin relaxation in trans-
polyacetylene. For this purpose we made Bts of the exper-
imental data of Ref. 15 by our theory. The time interval
of the experiments is 10—15 p,s and the time resolution of
the order of 0.1 ps. We assume that the asymptotic the-
ory of the last section is applicable. It will be conBrmed
self-consistently that the transition rate p of the unpaired
electron is indeed large. In the zero-field case we have as

B. Field dependence of slope

TABLE IV. Fit parameter A for difFerent temperatures at
zero magnetic field.

A(10 s ')
29 K

A strong point of the original analysis of the
experiments was the observation that the apparent
spin-lattice relaxation rate Ti is proportional to B
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FIG. 7. Asymmetry of the decay positrons as a function of time (a) at T = 293 K and (b) at T = 29 K for several magnetic

fields. Points, experimental data from Ref. 15; lines, fit by the relaxation function P.

this was taken as evidence for relaxation through one-
dimensional motion. Similar conclusions were drawn
in other mainly NMR experiments on one-dimensional
systems. ss The stochastic theory of relaxation resulted
in a more complicated than exponential relaxation func-
tion. Does it contain the same features as obtained in
the simple analysis'? To examine this question we calcu-
lated from the theoretical expression Eq. (40) values at
fixed time points (up to 15 ps with time intervals of 1
ps). These points were treated in the same manner as
the experimental data in Ref. 13, i.e. , they were fitted by
a single exponential relaxation function. The resulting
apparent decay rate is plotted in Fig. 8 as a function of
the magnetic field; a B i~2 behavior is recognized over
several decades of the field. There are deviations at very
small and very large B values. Hence the more elaborate
theory contains this feature, in a range of B values.

The B ~2 behavior of the slope of an exponential de-
cay can be directly deduced by considering the slope of
y = ln P(t), when the approximate relaxation function
(52) is used for P(t),

is indeed small for larger B.
In the second experimental paperi4 a detailed analy-

sis of the time-dependent polarization was made. The
authors first calculated the contributions of the dipo-
lar interactions between the muon and the protons and
subtracted it from the data. Then they determined a
time-dependent relaxation rate Ti (t) in windows of fi-

nite widths of 1 ps (first data point) and 2 ps (other

10—1

2-

10

(59) 10-'
10

I

10
I

]
1

10
I

10
For small argument I't the negative slope of y is given by

dy ( I' ) i~2

dt i,crt y
(60)

If I' is identified with I'~ of (57), the proportionality of
the slope with B ~ follows. The quantity I ~ becomes
small with increasing B, hence the argument I't of (59)

magnetic field B (G)

FIG. 8. The apparent decay rate T~ vs external mag-
netic field. The data points (open spheres) are obtained by
an exponential fit of the polarization function (40) at fixed
time points, with p = 1.3 x 10 s, A = 7 x 10 s, and
~o/2m = 4.5 x 10 s '. The fitted curve through these data
points is T~ = 0.19B ps
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FIG. 9. Effective relaxation rate as a function of time, for
several magnetic fields. This figure has experimental points
adapted from Ref. 14, where the contribution of the dipolar
interaction with the protons is already subtracted. The lines
represent Eq. (59).

VII. CONCLUSION

In this paper we have developed a stochastic theory of
spin relaxation for a simple model of muonium in trans
polyacetylene, where the hyperfine interaction is modu-
lated by the random walk of the unpaired electron. The
model already represents a quantum-mechanical situa-
tion, although the state space is restricted to the singlet
and triplet states. A stochastic theory of spin relaxation
is necessary in those cases where the correlation time
~, of the Huctuations acting on the spin is large or infi-
nite. In the system considered here v, is infinite because
the stochastic process is governed by the one-dimensional
random walk of the defect. The basic assumption of
the standard NMR theory, namely the existence of a
short correlation time, is then violated. In contrast to

points). Their results are reproduced in Fig. 9. We have
added to this figure our theoretical slope Eq. (59), for
the diferent magnetic fields, where average parameters
A and p have been used. The theoretical curves repro-
duce the qualitative behavior of the experimental points.
Although there is considerable scatter in the data, we are
quite satisfied by this agreement.

the single-exponential decay predicted by the standard
NMR theory, we found more complicated behavior, for
instance nonexponential relaxation, and a power-law de-

cay of the spin polarization at long times, in suitable
parameter ranges.

The results of our theory could be applied to the muon
spin relaxation experiments on trans-polyacetylene, and
the parameters were in reasonable agreement with other
experimental determinations. Since our theory contains
the B i~2 behavior of the slope of the logarithmic po-
larization, it corroborates the previous conclusions con-
cerning the one-dimensional nature of the defect motion.
In addition, we obtain an apparent time dependence of
this slope in qualitative agreement with experiment. We
emphasize that we need not invoke additional dynamical
processes, such as interchain diffusion, to obtain such a
time dependence.

It should be kept in mind that we considered a highly
idealized model of defect motion in trans-polyacetylene.
We disregarded the finiteness of the real trans-(CH)
chains. Also, our model may be too crude to describe
the actual dynamics of the defect which arise from muo-
nium in trans-(CH) . E.g. , soliton properties of the de-
fects were neglected, and we could not contribute to the
elucidation of their nature.

There are various possibilities to improve the descrip-
tion given here. For instance, the finiteness of the chains
could be taken into account by using in Eq. (26) the
suitable probability densities F(t) for the first return to
the origin. Also the finite extension of the defects could
be included. Such theoretical eKorts seem only then war-
ranted when better characterized material becomes avail-

able. In any case, we believe that the direct stochastic
theory developed here is the appropriate description of
spin relaxation caused by one-dimensional defect motion.

Finally, we point out that also the inclusion of the
quantum-mechanical aspects is necessary to obtain a
proper description of the spin relaxation of muonium in

the model for trans-polyacetylene. Our derivations indi-
cate that a correct description is achieved by consider-

ing the quantum-mechanical evolution as modulated by
the stochastic process, whereas a treatment which ne-

glects the off-diagonal elements of the density matrix is

not appropriate.

ACKNOWX EDGMENTS

We profited from discussions with R. Czech, K. Fesser,
K. Kitahara, K. Nagamine, Y. Ono, and P. Vogl.

'A.J. Heeger, S. Kivelson, J.R. Schrieffer, and W.P. Su, Rev.
Mod. Phys. 60, 781 (1988).
D. Baeriswyl, Helv. Phys. Acta 56, 639 (1983).
Lu Yu, Solitons and Polarons in Conducting Polymers
(World Scientific, Singapore, 1988).
A. Abragam, The Principles of Nuclear Magnetism (Claren-

don, Oxford, 1961).
C.P. Slichter, Principles of Magnetic Resonance (Springer,

Berlin, 1990).
'If the correlation time is finite through secondary effects
such as finite segment, lengths of the linear chains, it can be
quite large.
P.W. Anderson, J. Phys. Soc. Jpn. 9, 316 (1954).
R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).
R. Czech, Z. Phys. B T5, 513 (1989).
See B.D. Patterson, Rev. Mod. Phys. 60, 69 (1988).



46 DIRECT STOCHASTIC THEORY OF MUON SPIN RELAXATION. . . 5257

H. Takayama, Y.R. Lin-Liu, and K. Maki, Phys. Rev. B 21,
2388 (1980).
W.-P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. B
22, 2099 (1981);28, 1388(E) (1983).
K. Nagamine, K. Ishida, T. Matsuzaki, K. Nishiyama, Y.
Kuno, T. Yamazaki, and H. Shirakawa, Phys. Rev. Lett.
53, 1763 (1984).
K. Ishida, K. Nagamine, T. Matsuzaki, Y. Kuno, T. Ya-
mazaki, E. Torikai, H. Shirakawa, and J.H. Brewer, Phys.
Rev. Lett. 55, 2009 (1985).
K. Ishida, thesis for Degree of Doctor of Science, University
of Tokyo, 1984 (unpublished).
T. Ito, H. Shirakawa, and S. Ikeda, J. Pol. Sci. Pol. Chem.
Ed. 12, 11 (1974).' A. Schenck, Muon Spin Rotation Spectroscopy. Principles
and Applications in Solid State Physics (Hilger, Bristol,
1985).
S.F.J.Cox, in Muons and Pions in Materials Research,
edited by J. Chappert and R.I. Grynszpan (Elsevier, Ams-
terdam, 1984), p. 137.

QH. Fischer, Hyperfine Interact. 17-19, 751 (1984).
F. Devreux, J.P. Boucher, and M. Nechtschein, J. Phys.
(Paris) 35, 271 (1974).

'M. Nechtschein, F. Devreux, R.L. Greene, T.C. Clarke, and
B.G. Street, Phys. Rev. Lett. 44, 356 (1980).
K. Holczer, J.P. Boucher, F. Devreux, and M. Nechtschein,
Phys. Rev. B 23, 1051 (1981).
M. Nechtschein, F. Devreux, F. Genoud, M. Guglielmi, and
K. Holczer, Phys. Rev. B 27, 61 (1983).
K. Mizoguchi, K. Kume, and H. Shirakawa, Solid State

Commun. 50, 213 (1984).
B.R. Weinberger, E. Ehrenfreund, A. Pron, A.J. Heeger,
and A.G. MacDiarmid, J. Chem. Phys. 72, 4749 (1980).
B.H. Robinson and A.R. CofBno, Phys. Rev. Lett. 64, 1773

(1990).
H. Thomann and G. L. Baker, J.Am. Chem. Soc. 109, 1569
(1983).
H. Thomann, H. Jin, and G.L. Baker, Phys. Rev. Lett. 59,
509 (1987).
See G. Leising, H. Kahlert, and O. Leitner, in Electronic
Properties of Polymers and Related Compounds, Springer
Series in Solid-State Sciences, Vol. 63, edited by H. Kuz-
many, M. Mehring, and S. Roth (Springer, Heidelberg,
1985).
B.Ankele, G. Leising, and H. Kahlert, Solid State Commun.
62, 245 (1987).
T.R. Koehler, A.R. Bishop, J.A. Krumhansl, and J.R.
Schrieffer, Solid State Commun. 17, 1515 (1975).
S. Jeyadev and E.M. Conwell, Phys. Rev. B 36, 3284 (1987).
D.S. Boudreaux, R.R. Chance, J.L. Bredas, and R. Silbey,
Phys. Rev. B 28, 6927 (1983).
A general investigation of the effects of impurities on soli-
tons in the frame of the SSH model has been made by S.R.
Phillpot, D. Baeriswyl, A.R. Bishop, and P.S. Lomdahl,
Phys. Rev. B 35, 7533 (1987).
The introduction of superoperators can be found, e.g. , in
L.T. Muus, in Electron Spin Relaxation in Liquids, edited
by L.T. Muus and P.W. Atkins (Plenum, New York, 1972),
p. 1.
M.J. Clauser and M. Blume, Phys. Rev. B 3, 583 (1971).

sr S. Dattagupta, Hyperfine Interact. 11, 77 (1981).
See, e.g. , M.A. Butler, L.R. Walker, and Z.G. Soos, J.
Chem. Phys. 64, 3592 (1976); F. Devreux, Phys. Rev. B
13, 4651 (1976).
R. Risch, Diploma thesis, Universitat zu Koln, 1990 (un-
published) .
R. Risch, R. Czech, and K.W. Kehr (unpublished).


