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Fluctuations and thermodynamic response functions in a Lennard-Jones solid
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Thermodynamic response functions of a nearest-neighbor Lennard- Jones solid —heat capacity,
thermal-expansion coefBcient, compressibility, and elastic constants —are calculated directly from fluc-

tuations using molecular-dynamics simulations. The algorithm used is the earlier Parrinello-Rahman
molecular dynamics modified to take into account symmetry and rotation invariance of the system under

investigation. The convergence is very fast and results are in good agreement with existing Monte Carlo
and molecular-dynamics results.

Molecular-dynamics (MD) simulations have been used
extensively in the past decade for investigating problems
in statistical mechanics and thermodynamics, particular-
ly in the area of phase transitions, structures of defects,
and transport properties. However, most molecular-
dynamics simulations are performed in the microcanoni-
cal and canonical ensembles where the total energy or the
temperature is held invariant, respectively, as is the total
volume, or the shape, of the MD cell. Certain fluctua-
tions of thermodynamic quantities from their equilibrium
values in these molecular-dynamics methods are
suppressed; since fluctuations and responses of a system
depend on the ensemble that the molecular-dynamics tra-
jectories generate, most of the thermodynamic response
functions, particularly those relevant to structural varia-
tions, are not available.

Recently proposed molecular-dynamics techniques at-
tempt to remedy these difficulties. Andersen was the
first to use volume as a dynamic variable to allow fluctua-
tion of the MD cell. Using this technique, he was able to
extend molecular dynamics from microcononical and
canonical ensembles to constant pressure and tempera-
ture (NPT) and constant pressure and constant enthalpy
(NPH) ensembles. This idea of using macroscopic quan-
tities as dynamic variables led Parrinello and Rahman
(PR) to propose a new molecular-dynamics method that
allows not only volume but also shape, or symmetry, vari-
ations of the MD cell. With Parrinello-Rahman molecu-
lar dynamics (PRMD), it is possible to study complicated
problems like structural phase transitions and mechanical
properties of materials where structural change is the pri-
mary concern. Most importantly, the response functions
related to this change, such as elastic constants and the
thermal-expansion coefficient, can be obtained.

Despite the promise of Parrinello-Rahman molecular
dynamics, in practice it has been found to have several
severe problems which make it difficult and unambiguous
to interpret simulation results and, worst of all, lead to
unphysical results. The primary problem is symmetry
variance, or MD cell distortion, which happens when a
stable or equilibrium structure is used in a simulation and
occurs even at zero temperature when thermal fluctua-
tions are completely absent. In these cases, the MD cell

distorts in a continuous manner and finally ends up in a
structure of totally different symmetry. For example, fcc
to bcc distortion has been observed and interpreted as a
consequence of using pair potentials. This is disturbing
when investigating structure changes induced by
structural phase transitions or mechanical deformation,
because one cannot tell whether or not the structure vari-
ations are artificial or arise from true physical causes.
(For example, the Bain transformation in iron involves
the tetragonal distortion of the fcc cell. } Additionally, it
has been found that PRMD often leads to MD cell rota-
tion, which has been observed in molecular systems as
well as in simple Lennard-Jones solids (which will be de-
scribed in detail below). Rotation of the MD cell indi-
cates that the structure being simulated is not in mechan-
ical equilibrium. The direct consequence of such rota-
tion is that it is almost impossible to find an equilibrium
reference state for the calculation of strains and elastic
constants. Besides, rotated coordinates make it difficult
to interpret simulation results. The last and most practi-
cal issue is the very slow convergence of PRMD in calcu-
lating thermodynamic quantities such as the thermo-
dynamic response functions, which are directly related to
fluctuations or to derivatives of structure variations. It
has been reported that elastic constants of a simple
Lennard-Jones (LJ) solid have been obtained, but with
very slow convergence. However, those results have not
been confirmed as yet. ' In contrast, the present authors
found that it is impossible to calculate the elastic con-
stants in nearest-neighbor LJ solids using PRMD, due to
the above-mentioned distortions and rotations. Further-
more, there are no reports of heat capacity, thermal ex-
pansion, and compressibility calculated directly from
fluctuations in Parrinello-Rahman MD simulations, even
though extensive work has been done related to structur-
al changes.

In practice, constant energy and shape (EhN) or con-
stant temperature and constant shape (ThN) ensetnble
PRMD are used to calculate Cp or Cy respectively, as
well as adiabatic or isothermal elastic constants, while
constant (NPT) or (NPH) ensemble PRMD are used to
obtain equilibrium structures. ' Since the volume and
shape of a MD cell in constant (EhN) and ( ThN ) ensem-
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ble MD are fixed, distortions and rotations of the MD
cell are no longer a concern. The calculation of elastic
constants and heat capacities using these fixed-volume (or
shape) PRMD has been found to converge very quickly.
However, it is inconvenient and time consuming to
switch between different ensemble molecular dynamics in
order to obtain the desired structures, fluctuations, and
response functions. Especially, when the evolution of
fluctuations and responses is needed for cases like phase
transitions and structural variations, such shuNing
among two or three different ensemble MD becomes
quite a burden. Furthermore, since most experiments are
performed under constant temperature and pressure, it is
desirable for one to use constant (NPT) PRMD in which
volume is allowed to fluctuate, to compare the results
with experimental ones under the same conditions.

In this paper we present our simulation results for the
calculation of thermodynamic response functions directly
from the fluctuations of the energy, volume, and shape of
a MD cell. We are primarily interested in the heat capa-
city, compressibility, thermal-expansion coefficient, and
elastic constants. The molecular-dynamics algorithm is a
version of the Parrinello-Rahman type with a modified
kinetic-energy term associated with the phenomenologi-
cal dynamic variable of shape, or symmetry. Our results
are in good agreement with those from existing Monte
Carlo simulations"' and those from constant shape, or
symmetry, molecular-dynamics simulations. All of these
results have been obtained with fast convergence of only
about 10 MD time steps.

In Parrinello-Rahman molecular dynamics the shape
(or symmetry) of the simulation MD cell is used as a phe-
nomenological dynamic variable. The cell is a paral-
lelepiped with its edges represented by the three vectors
a, 1, and c. The positions and velocities of particles in
the MD cell are scaled by a matrix h, that is, r; =h s, and

r; =hs;, where h = Ia, b, c]. The Lagrangian proposed by
Parrinello and Rahman includes phenomenological
kinetic- and potential-energy terms

X N

L =—g m;s,'Gs; —g g (ti(r;j)
i=1 i=1 j)i

+ Tr(h 'h )
—P,„,Q,

2

where G =h 'h is the metric tensor (h' is the transpose of
h), Q=det~a bXc is the volume of the MD cell, and
P,„, is the externally applied pressure. 8'is the fictitious
mass associated with the phenomenological dynamic
variable h. A pairwise interaction ii(rj )iis assumed. The
equations of motion for the time evolution of the 3N par-
ticles and h matrix take the form

~ pipio. =Q
m,

Q Xijri, r;,

m s;=f —gX; s; m;(f—6 '6+2ff)s;
jwi

(6)

The Noss scaling method' is used to fix the temperature,
and f is the Nose scaling variable. The equation of
motion for h remains the same as in (3).

Using the equations of motion (3) and (6), we simulated
a nearest-neighbor Lennard-Jones solid. We used 500
atoms arranged in a cubic cell with the fcc structure.
Temperature and pressure are set equal to 0.3 and 0.0 (in
reduced LJ units), respectively. The fifth-order Gear's
predictor-corrector algorithm is used to solve the equa-
tions of motion. The length of time step in our MD runs
is 0.005 (in reduced LJ units). It is found that the cubic
MD cell rotates continuously, accompanied by a tetrago-
nal distortion. For a typical run, at 500 MD steps the
MD cell h =(a,b, c) looks like

1.56 —7.27 —2.46
5.32 2.93 —5.04
5.55 —0.89 5.73

with ~a~ =7.84, ~b~ =7.89, and ~c~=8.02, and the angles
between each of the vectors are 8,b =90.64, Ob, =91.80,
and 8„=88.95. With such rotation and distortion it is
virtually impossible to find an equilibrium reference ho to
calculate strain and elastic constants.

Since the PR molecular dynamics used above is not de-
rived from first principles, in order to modify PRMD one
must first check the invariance or conservation of dynam-
ic and structural variables. First, the kinetic-energy term
associated with the h matrix is not invariant with the
choice of the h matrix, or MD cell (which has been ob-
served also by other researchers; Nose and Klein, Cleve-
land, ' and Wentzcovitch' ). However, in a system with
translational symmetry two different choices of h are re-
lated by a transformation matrix B such that h2:h&B
and hz=h, B. Any dynamic or structural variable in
such a system must be invariant with respect to the trans-
formation. A simple choice of a new kinetic-energy term

with linear momentum p; =m; h s,- and
=r j '[ziti(r j ) IBr j ]. In PRMD the strain tensor is
defined as'

e= —,'ho '[G —I]ho ',
where ho =—(h ) is the equilibrium MD cell used as the
reference for strain calculation and ( ) stands for time
average.

The equation of motion for s; in constant (NPT) en-
semble PRMD takes the form

i i p Xij ij mi i

JXl
(2)

Ei, = Tr(hQh '),
2

N% = [o. P,„,I ]2, — (3)

where A =BQ/Bh =Qh ' is the area tensor (h ' is the
transverse transpose of h ). o is the microscopic stress
tensor, which is defined as

where Q is chosen to be any linear function of h 'h

would eliminate the dependence of Kh on the choice of
MD cell. Such a choice of Q makes the transformation of
E& with respect to different choices of MD cell invariant,
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that is,

F ~ F
Eh = Tr(hzgzh z)= Tr(h, g, h ', )=Eq

2 2 2 1

where Q, =h, 'h, ' and Qz =h z
'h

z
'. After replacmg

K&, the new Lagrangian leads to a new equation of
motion for the h matrix,

Wh =0 '[cr —P,„,I]h —8'0 [ —2QQh+Tr(hgh ')h

+hgG —QAh 'h] . (8)

The equation of motion for variable s; remains the same
as in Eq. (2).

In addition, the total angular momentum in PRMD is
not formally conserved. In an equilibrium system the
conservation of total angular momentum keeps the shear
stress tensor symmetric, and thus the strain tensor sym-
metric, leaving the system unrotated. Unlike most
constant-volume MD, the Parrinello-Rahman MD has an
orientational degree of freedom for the MD cell (the h

matrix has nine components, six of which specify shape
and volume and the additional three of which describe
orientation). Because of this, nonconserved total angular
momentum can lead to net rotations at the end of a simu-
lation, as we in fact observed. (Although the use of
periodic boundary conditions also leads to total angular-
momentum nonconservation, weighting over a long time
might be expected to average out such an effect. ) Using
the modified equations of motion (8) and (6) we observed
that the MD cell distortion and rotation are kept within
the scale of normal fluctuations during simulations, and,

at the end, the distortion and rotation completely disap-
pear from time averaging.

We are mostly interested in the fluctuations and the re-
lated thermodynamic response functions which have not
been obtained previously from PRMD. To obtain such
quantities we used the fluctuation formulas directly. ' In
our case, response functions are related to the fluctua-
tions in the (NPT) ensemble by

((5H) ) —ksT Cp,

((5n)'& =nk, T, ,

((505H) ) =Qks Tzap,

(10)

(12)

where 0 is the equilibrium volume and T is the preas-
signed temperature. H is the total enthalpy giving by
H=E+P,„,Q, where E is the total energy. Cp KT AT,
and C,jk( are the isobaric heat capacity, volume iso-
thermal compressibility, thermal-expansion coeScient,
and isothermal elastic constants, respectively. The time
average of fluctuations is given by ( 5 A 58 ) = ( AB )—( A ) (B ), where A and 8 are functions of the dynamic
variables. The elastic constants are inversely related to
the strain fluctuations. '

We used the modified equations of motion (8) and (6) in
simulations of the nearest-neighbor LJ solid under the
same conditions stated earlier. The mass associated with
h is chosen as 0.042 for the runs. During the simulation
the averaged MD cell remains cubic and no net rotation

TABLE I. Thermodynamic response functions of a nearest-neighbor Lennard-Jones solid from
modified Parrinello-Rahman (NPT) molecular dynamics. o. and e are the Lennard-Jones potential pa-
rameters, N is the total number of atoms, and kz is the Boltzmann's constant. r=0.005 is the time step
used in the simulation. MD runs is the number of time steps used for obtaining averages.

MD runs (~)

5 000
10000
15 000
20000
25 000
30000
35 000
40000
45 000
50000
55 000
60000
65 000
70000
75 000

210000

Monte Carlo'

MD data'

RNN(o )

1.149 33
1.149 01
1 ~ 148 99
1.148 95
1.148 93
1 ~ 148 94
1.148 97
1.148 97
1.148 94
1.148 93
1.148 93
1.148 76
1.148 92
1.148 90
1.148 90

1.148 90

1.148 39

1.148 66

Cp(Nkq )

3.401
3.560
3.168
3.253
3.242
3.327
3.423
3.592
3.518
3.359
3.317
3.338
3.401
3.380
3.571

3.401

3.53

3.49

ap(k, /e)

0.0783
0.2377
0.1669
0.1669
0.1796
0.1796
0.1897
0.2251
0.2378
0.2378
0.2251
0.2125
0.2403
0.2454
0.2479

0.2454

0.2765

vT(o /e)

0.028 53
0.034 57
0.035 74
0.036 13
0.034 00
0.034 77
0.034 77
0.036 71
0.035 94
0.034 39
0.034 19
0.034 58
0.035 94
0.035 36
0.039 05

0.037 50

0.0362'

0.0355'

'References 11 and 12.
Reference 18.

'Obtained from the bulk modulus using a.T = 1/BT. In Ref. 18 the bulk modulus is obtained through re-
lation BT=

—,
' (C„+2Cl2).



5240 MO LI AND WILLIAM L. JOHNSON 46

TABLE II. Isothermal elastic constants in units Nkz T/0 from modified Parrinello-Rahman (APT)
molecular dynamics. The data shown here are taken after 30000 time steps, since before that they have
large fluctuations.

MD Runs (~) 11 22 33 ) —( C12 +C13 +C23 ) 44 55 66 )

30 000
35 000
40 000
45 000
50000
55 000
60000
65 000
70000
75 000
80000
85 000
210000
Monte Carlo'
MD datab

177.92
160.15
152.99
158.42
165.59
167.84
166.11
160.73
162.52
158.04
160.31
162.22

158.16+5.82
157.1+1.0
164.6+5.9

68.43
72.73
68.30
71.32
73.07
71.86
70.34
67.41
67.79
60.14
63.74
65.78

69.12+5.53
69.3+0.9
76.2+5.4

103.28
100.67
98.25
87.72
88.26
85.86
86.42
89.21
92.01
91.43
89.90
87.71

84.30+5.83
82.2+0.2
82.0+1~ 7

'Reference 11.
Reference 18.

is observed at the end. In Table I we show the equilibri-
um nearest-neighbor distance RNN, heat capacity Cz,
thermal-expansion coefficient az, and compressibility KT.
These results are compared with those from Monte Carlo
calculations. "' One can see that the convergence of the
quantities is very fast, especially for the nearest-neighbor
distance RNN which converges after 10 time steps.
After about 10 time steps Cz, a~, and ~T approach their
stable values, and in less than 10 time steps all of the
elastic constants reach equilibrium values. In Table II we
give the isothermal elastic constants C», C&2, and C~,
which are actually obtained by averaging over three
equivalent independent elastic constants, respectively.
After 30000 time steps the typical deviations from their
averaged values are within 1.0&o, 15.0%%uo, and 20.0%%uo, re-
spectively. However, with increasing run time (up to 10
time steps) we are able to reduce the deviations to about
5.0%, while the averaged values are not changed greatly
(in Table II the average elastic constants from a run of
2. 1X10 time steps are listed for illustration). Same cal-
culation has been performed also on the system with tem-
perature at 0.5 (reduced LJ units) and results are listed in

Table III. Similar isothermal elastic constants calculated
with fixed shape and volume from constant (ThN ) molec-
ular dynamics' are presented for comparison. Both re-
sults agree well with Monte Carlo results.

To summarize, we have shown that the earlier
Parrinello-Rahrnan molecular dynamics using MD cell
shape or symmetry as a phenomenological dynamic vari-
able has been hindered in its application by lack of
preservation of symmetry (or MD cell distortion from the
equilibrium state), MD cell rotation, and by the slow con-
vergence or nonconvergence of fluctuations and response
functions. This is observed to be related to the depen-
dence of K& on the choice of MD cell and to nonconser-
vation of the total angular momentum. A modified
PRMD has been obtained by replacing the MD cell ki-
netic energy Eh by Kz = 8'/2 Tr(hgh ') from the original
PR Lagrangian. Using this modified Parrinello-Rahman
molecular dynamics we have calculated the response
functions directly from fluctuations. The convergence is
quite satisfactory, and the results are in good agreement
with existing Monte Carlo and other molecular-dynamics
results. This gives us more confidence to use this

TABLE III. Thermodynamic response functions of a nearest-neighbor Lennard-Jones solid from
modified Parrinello-Rahman (NPT) molecular dynamics. Temperature is fixed at 0.5.

MD runs (~)

45 000
Monte Carlo'

1.178 12
1.174 54

Cp{&k~ )

4.303
4.28

ap{k~ /e)

0.4266
0.4348

]CT(O-3/e)

0.007 07
0.010668

MD runs (~)
45 000

Monte Carlo

—'( C 1 1 + C22 +C33 )

57.34+5. 17
61.7+0.7

3( 12+C13+C23)
21.02+ 1.91

22.8+0.8

3 ( C44 +C„+C66 )

30.39+2.72
33.8+0.2

'References 11 and 12.
Reference 11.
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molecular-dynamics method to study complicated ther-
modynamic and statistical-mechanical systems in the fu-
ture.
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