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Generalized formulations for the calculation of energies of multivacancy formation and migration in

pure and impure lattices and a multi-interstitial formation in otherwise pure lattices have been obtained
with use of a pseudopotential scheme. The energies caused by relaxations of the surrounding neighbors
are incorporated in these processes. Formulas relating self-diffusion and impurity diffusion via a vacan-

cy mechanism have been discussed. Calculations of the vacancy-formation energy, the migration energy,
and hence the activation energy for self-difFusion and impurity diffusion and their changes have been
done with use of standard model potentials. My calculations show that the effect of relaxations of the
surrounding neighbors of the migrating atom at its activated position is significant while it has negligible
effect in vacancy-formation process. The calculations also show that a Heine-Abarenkov model explains
successfully all the defect parameters but the Aschroft model does not. A more sophisticated mul-

tiparameter model or the Heine-Abarenkov two-parameter model with approximate explanation of all

the atomic properties is perhaps a better choice. It is also noted that careful numerical computation is
essential for achieving satisfactory agreement with experiment.

I. INTRODUCTION

In the pseudopotential theory of Harrison, ' a second-
order perturbation technique was used. There the
structure-dependent electrostatic and band-structure en-
ergies were calculated. The former depends on the ion-
ion interaction while, the latter is derived from the in-
teraction of ion-electron and electron-electron by a prop-
er choice of the pseudopotential, dielectric function, and
exchange and correlation. These energies are also depen-
dent on the structure factor of a particular defected lat-
tice and sometimes on the modified lattice wave numbers.
The modification in the lattice wave number from its per-
fect lattice value is necessary for the maintenance of the
constancy in the lattice volume and in the number of lat-
tice ions.

Using this method, DuCharme and Weaver success-
fully calculated the vacancy-formation and migration en-
ergies in different cubic metals. This method was also
used for the calculation of vacancy-impurity binding en-
ergy by Yamamoto and co-workers ' and migration en-
ergy for monovacancy and divacancy considering relaxa-
tions of the surrounding neighbors at the saddle-point
configuration by Takai, Doyama, and Hisamatsu. Re-
cently this method has been successfully applied to the
impurity diffusion of tin in lead by a vacancy rnecha-
nisrn. This method has a1so been successfully used to
calculate the energetics of split and nonsplit interstitial
formation energies in some fcc metals.

Calculation of energetics of point defects like vacancy,
interstitial, or substitutional impurity uses generally sirn-
ple model potentials like Aschroft's empty-core model,
Heine and Abarenkov's local and nonlocal models, '

Harrison's point-ion model, ' Ziman model, ' etc. with a
proper choice of the dielectric function, and exchange

and correlation; a review has been given by Cohen and
Heine. Recently a more sophisticated resonant model
potential has been developed in a semirelativistic manner
by Dagens" and a molecular-dynamics code has been
used to calculate the energetics of interstitials, vacancies,
and substitutional impurities. ' Here, however, in this
paper this sophisticated potential has not been used, for
the sake of simplicity, but a complete calculation of self-
diffusion and impurity diffusion via a vacancy mechanism
has been given with use of simple model potentials, viz. ,
those of Aschroft and of Heine and Abarenkov. These
models, however, are not above criticism as (i) they are
very sensitive to changes in their parameters and (ii) they
consider only s-p electrons but not s-d hybridization,
which plays an important role in the calculation of ener-
gies in noble metals. So a real test of using these models
will be in the construction of interatomic potentials and
the application to explain different atomic properties.
One such application to the lattice statics method' was
done by Singhal. ' Sen and Sarkar' obtained fitted
values of the parameters of Heine and Abarenkov's mod-
el from an approximate overall explanation of atomic
properties.

Here generalized formulations for this purpose have
been given for different types of defected lattices from
which different defect energies can be calculated, viz. , (i)
vacancy-formation energy (EFH) and its change in pres-
ence of impurity at an adjacent site, i.e., vacancy-
impurity binding (AEF), (ii) vacancy-migration energy
(Est'H) and its change for vacancy-impurity atom ex-
change ( b.EM ), (iii) activation energy ( Qo ) and its
differential change (EQ), and (iv) interstitial formation
energy (EFH) in an otherwise pure lattice. Finally, in the
section on results and discussions, calculations of defect
energies necessary for self-diffusion and impurity
diffusion via a vacancy mechanism have been dealt with.
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II. PURE LATTICE

In a pure lattice the total structure-dependent energy is
given by'

E = g' ls(q)l U(q) —lim zHe (r)/m. )'

where

U(q)= lim (2n'ZHe IQHq )exp( q2/—4g)

the band-structure energy. The structure factor S(q) for
a perfect lattice can be defined as

1 for q=qo
Sq ='

0 for q&qo
' (2)

Now any defect formation or migration energy can be
defined as the difference of the total structural energy for
the whole lattice after and before the defect is created, i.e.

defect Eafter before (3)

+ [~H(q }) eH(q )XH(q» (la)

the subscript H is for host, ZH the valency of the host,
QH the atomic volume, e the electronic charge, g the
convergence factor, AH(q ) the pseudopotential, eH(q) the
dielectric function, gH(q) the perturbation characteris-
tics, and qo the lattice wave number. The first term of
Eq. (la) is the electrostatic energy and the second term is

where N is the total number of lattice ions. From Eq. (3}
expressions for different defect energies can be derived.

III. LATTICE WITH IMPURITIES AND VACANCIES

Let us now consider a lattice containing v vacancies
and I impurities with a total of N ions (v,I «N). The
total structure-dependent energy (E ") in this case will be

I
IS„(q)l'U(q)+ g [exp[iq r;]S„(q)+exp[—iq r;]S„'(q))bU(q)

z
+ g g exp(iq [r, —r. ])b, U(q} — 1+—

i=1 j=l ZH
lim 2ZHe (rile. )'

g~ CC

(4)

where

N+U U

S„(q)= g exp( iq r;) ——+exp( iq r;)—
i=1 i=1

N, (4a)

E""=N(E ' E)—fI .q, aU(q, )

aq,

b U(q)= lim [2frZH(Zf —ZH)e IQHq ]exp( q /4')—
+ [cof ( q ) COH ( q ) ] o C(qH—)eH ( q )yH(q ), (4b)

and

b2U(q)= lim [2m(Zf —ZH} e IQHq ]exp( —
q 14g)

+ [cvf(q ) foH(q )) eH(q )+H(q) ~ (4c)

The subscript I is for impurity, Zz the impurity valency,
fvf(q) the corresponding pseudopotential, and r; and r,
the position vectors for the ith and jth lattice sites, re-
spectively. The replacement of S„(q) by S(q) gives us the
expression for structure-dependent energy of a lattice
with I number of impurities (E ).

The number of lattice sites in this case of lattice with
impurities and vacancies is increased to N+v and so the
lattice wave numbers will be scaled up to pqo with
p= 1+v/3N to maintain the constancy in the volume.
Hence the v-vacancy-formation energy in the presence of
I impurities may be given as

+ f g g a,"(q)U(q)q dq
27T o i=1 J —

1

J g g a; (q)EU(q)q dq .
7T i=1 J=1

The expression for monovacancy-formation energy'
(Ej H) can be obtained by putting v =1 and I=O in Eq.
(5). Similarly when v =I= 1, one gets the monovacancy-
formation energy in presence of an impurity at an adja-
cent site (Ef'f" } and the vacancy-impurity binding energy

(bEf) from the difference (b.Ef =Ef'f" Ef'H). ' In —the
same manner one gets the expressions for divacancy-
formation energy (EfH) and divacancy-binding energy
«b"=EfH 2EfH}-

But to obtain exact expressions for the vacancy-
formation energy and vacancy-impurity binding energy,
knowledge of the contribution to the energy caused by
the relaxation of neighbors around a vacancy in the pro-
cess of vacancy formation is essential. Though this con-
tribution may be small, as pointed out by Yamamoto
et al. ,

' still for an exact and complete representation the
formulation for the relaxation part of u-vacancy-
formation in the presence of I impurities has been done
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here. Let the number of relaxed neighbors around a va-
cancy be n and the position vector for the jth neighbor
around the ith vacancy be r; whose relaxed position is

r,'. .. The structure factor and the relaxation energy in this
process are given by

N+u

m+p
E f"=g' g 2(cosqz. r, —1)U(qo)

qo i= 1

P
+ g 2(cosqo. r, —1)6U(qo)

S„„(q)= g exp( i—q r; ) —+exp( —iq r,. )

+ g g [exp( —iq r,'")—exp( iq—r, .)j"
i=1 j=l N,

where

+(&H /2~ )f [3 ~(q ) U(q )+ 3z(q)b, U(q)
0

+ A3(q)b, U(q)]q dq, (9)

and

u m u p

i =1 j=l i=1 j=l
A, (q)=2 g g + g g [a,"(q)—5; (q)]

+ f [a, (q ) U(q )+2a2(q )b, U(q ) ]q~dq,
2

where

(7)

Efjtr g' g g 2[cos(qo. r'j ) —cos(qo. r j }]U(qo)
qo i=1 j=l i=1 j=l i =1 j=l i =1 j=l

X [aj(q) —25,"(q)+8,"(q)],

u p I m I p

+ g g+2g g+g g

(9a)

i=1 j=l i=1 j=l i =1 j=l

i=1 j=l k=1
u n u n

2 [Yijkl(q) 2Y kl(q)"+ Y "kl(q}]
i=1 j=lk=l 1=1

(7a) and

i=lj=l i=1 j=l

(9b)

m p p p
+ g g + g g [a,, (q) —25,"(q)+8,"(q)],

and

I u n

i =1 j=1 k =1
[~jk(q } Ajk(q}] (7b)

P P
&3(q)= g g [a,, (q}—25,,(q)+8,,(q)]

i=1 j=l

I p

a,"(q), 13jk(q) 13&k(q) Y jkl(q) 'Y jkl(q}, and 'Y;jkl(q) are

defined in Sec. V. Hence the total monovacancy-
formation energy is EF'H=Ef'H+Ef'RH and the vacancy-
irnpurity binding energy is EE~=EEf+EEfz where

EEL =Ef'zI —E' „which can be obtained from Eqs.
(5) and (7).

IV. MIGRATION OF HOST AND IMPURITY
IN AN IMPURE LATTICE

This section deals with another dilute binary alloy sys-
tem in which there are v vacancies, m host migrating
atoms, and p solute migrating atoms out of a total num-
ber of I impurities (clearly m +p ( v and I «N}. Let the
saddle-point configuration of any ith migrating atom be
r, . The structure factor and the migration energy for m

l

hosts and p impurities are given by
m

S (q}=$,(q)+ —g [exp( —iq r, ) —exp( iq r, )]- .
i=1

P
+—g [exp( i q r, }—exp—( —iq. r; ) ] (8)

N, .

and

—2 g g [a,j(q) —5;j(q)) .
&=1 j=l

(9c)

where

(10)

5 "(q) and 8"(q) are defined in Sec. V. The expressions
/J /J

for the monovacancy-migration energy (E 'H), the
monovacancy-migration energy in the presence of impur-
ity at the near-neighbor position of the vacancy (E'I ), '
and hence their change (bE =E"I E'&), ' can—be
obtained by putting, respectively, v =m =1 and I=p =0
and v =m =I=p = 1. Similarly, one can obtain the other
expressions.

In this process of migration when a migrating atom is
at the activated position the surrounding neighbors
around it will relax to accommodate the migrating atom
at the position. So the total migration energy will also
contain a term corresponding to relaxation energy, which
is calculated as

m+p k

E pl= g' g g 2[cos(qo r',")—cos(qo. r J)]U(qo)
qo i =1 j=l

QH+ f [b, (q)U(q)+b~(q)EU(q)]q dq,
2m
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u m k u p k m m k m p k p m k p p k

b, (q)=2 g g g +g g g [Pjk(q) —P,',k(q)]+2 +X X X+X X X+X X X
i=1 j=l k=1 i=1 j=l k=1 i=1 j=l k=1

X XX+XX XX+XX XX

i=l j=l k=1i=1 j=l k=1 i=1 j=l k=1

i=1 j=l k=1 1=1 i =1 j=1 k=1 1=1t=l j=l k=11=1i=1 j=l k=1 1=1

m k m k m

X [13 k(q ) p,jk(q ) p,. k(q )+/)1i'k(q)]+ g Xi Xi g + g
X [r;,kl (q ) 2r—;',k/(q)+ r,'j k/(q ) ] (10a)

and

I m k I p k

i=1 j=l k=1i =1j=1k=1
b2(q)=2 g g g + g g g [p'jk(q) pjk(—q)]

and

t tqp ()U(qp)
EfH =g' g 2[cos(qp'r ) 1 ] U(qp )

qo /=1 3 Bqo

i=1 j=l k=1i=1 j=l k=1
+2 XXX+XXX + f g g g,j(q)U(q)q dq .

i=1 j=l
(12)

X
I f3,jk(q) Ajk(q) 4;jk(q)+0';jk(q)] .

k is the number of relaxed neighbors and /)//;jk(q) and

p,'jk(q) are defined in Sec. V. So the total migration ener-

gy for m host migrating atoms and p impurities is the
sum total of E I'/" and E g'z, i.e., Ektjt'=E /j" +E /j/'z, and
hence exact values of the monovacancy-migration energy
(EM'H=E H+E' j(H) (Ref. 5) and its diff'erential change
(bE~ =DE +b,E j/ ) (Refs. 6 and 16) can be calculated
easily.

As in the previous cases, the relaxation of the surround-
ing neighbors of an interstitial contributes much to the
interstitial formation and the calculation of this part is
important for close-packed structures like fcc metals.
Let s be the number of relaxed neighbors around an inter-
stitial; then the contribution of relaxation energy in t-
interstitial formation is

t s

Eft/ = g' g g 2[cos(qp. r,', )
—cos(qp r; )]U(qp)

qo i =1 j= 1

V. LATTICE WITH INTERSTITIALS

In this section another lattice containing t interstitials
with the position vector for the ith interstitial being r, is

t

considered. The number of lattice sites here is reduced to
X—t and to maintain the constancy in the volume the
lattice wave numbers are modified to A,qo with
X= 1 —t /3E. So the structure factor and the t-interstitial
formation energy are

N —t

S/(q)= g exp( —iq r;)+ g exp( iq r, )
—N (11)

i=1 i=1

where

+ f B(q)U(q)q dq,
2m'

t t s

(13)

and

B(q)=2 g g g [vl,'jk(q) —t1;jk(q)]
i=1 j=l k=1

t s t s

rf 2 rf y [rljkl('q ) 2r jkl(q)+r jkl(q ')]
i =1 j= 1 k=1 1=1

(13a)

r,",kl(q) =

a; (q)=sin(qlr; —r. l)/qlr, —rjl, 5; (q)=sin(qlr; —r, I)/qlr; r, I, —
J J

8; ((t ) =sin(q
I r, —r, I ) /q Ir, —r, I, g; (q ) =sin(q Ir, r, I )/q —r, —r, I,

13;,k(q) =»n(q lr; —r,k I )/q lr; r,k I, 0';,k(q) =—»n(q lr; —r,'k I)/q lr; —
rjk I,

(1/;,k(q) =»n(q
I r. r,k I ) /q I r. r,k

—I, /1/,',k(q ) =—»n(q I r. r,'k I )/q I r. r,'k —I, —

q;,k(q) =»n(qlr, —r,k I )/q lr, —r,k I, rj,',k(q) =»n(q lr, r'k
I )/q lr, r,'k—I, —

sin(q
I r; —r„/ I ) sin(q Ir,j —r'„/

I ) sin(q lr',, —r'„,
I )r,jkl(q)=, r' kl(q)

q I r;, rk/ I

' "
q
—
Ir;j rk/ I q lr,', —

rk/I

(14a)

(14b)

(14c)

(14d)

(14e)

(14f)

So the exact interstitial formation energy is the sum total of Eqs. 12 and 13 (EFH =EfH +E&zH ) and the formulation for
single interstitial formation energy can be obtained by having t = l.

VI. DIFFUSION VIA VACANCY MECHANISM

According to LeClaire, ' for vacancy controlled diffusion the differential change in the activation energy for impurity
diffusion and self-diffusion is given by
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b Q =b,Eq+ b E~ —C, (15)

where hE~ is the difference between the energy to form a vacancy next to an impurity atom and the energy to form a
vacancy in the pure solvent, 4EM the difference between energy for a vacancy-impurity atom exchange and the energy
for a vacancy —host-atom exchange, and C the temperature-dependent correlation factor for impurity diffusion. It is

possible to calculate all three terms within the framework of pseudopotential theory. By considering only monovacancy
self-diffusion and impurity diffusion, these above expressions can be deduced using Eqs. (5), (7}, (9), and (10}as

REF =hE~+ hE~~,

EEM=EEm+AEmR ~

with

b E&= (Q—H/n )f b, U(q )[sin(q ~r„—rz ~ )/q ~r„—rz ~ ]q dq,

(16a}

(16b)

(17a)

CX
n

bE/a =(QH/H) f bU(q) g [sin(q~rz —r,'[)/q~rr —r,'~ —sin(q~rz —r;~)/q~rz —r;~]q dq,
i=1

(17b)

QH
bE = g'2[cos(qo r, )—1]b,U(qo)+ f 1+

qo

sin(qlr„—rz~) sin(q~rz —r, l) sin(qlr, —r, l)
b, U(q}q dq,

q [r„—r, / qlr& —r, I qlr„—r, I

(17c}

and

k

bE z=(QH/n )f bU(q) g [sin(q(r, —r,'()/q(r, —r,'( —sin(q[r, —r;[)/q(r, —r, []q dq .
i=1

(17d)

Finally the temperature-dependent correlation factor' ' is given by

Dzfo C (bEM bE& )exp[ (b—E~+b—EM& )/R T) +7F/2(bE~ —bE~3)exP[ (bEsr +b EM—3)/RT)

[exp( bEM &
/R T ) +—(7F/2)exp( bEM3/R T—) ]

(16c)

where fo =0.78146, F=5. 15/7, D2 and Do are the pre-exponential factors for impurity diffusion and self-diffusion,

hEM& the change in migration energy for vacancy-host-atom exchange, the host atom being at the near-neighbor posi-
tion of the impurity, and DE~3 the change in migration for vacancy-host-atom exchange, the host atom being at the
near-neighbor position of the vacancy but not at the near-neighbor position of the impurity. The expressions for these
energy terms have been derived from Eqs. (9}and (10) as

hEM; =AEm; +hE~~, ,

where

bE, =(Q&/6) f [sin(q~r, —rz~)/q~r, —
rz~

—sin(q~r —rz~)/q~r —rz~]b U(q)q dq

and

k

bE z, =(QH/6) f g [sin(q~rz —r,'. ~)/q~rz —r,'. ~

—sin(q~rz —r,. ~)/q~r~ —r, ~]bU(q)q dq,
i=1

(18)

(18a)

(18b)

with i =1 and 3. In the above expressions, r„ is the posi-
tion vector for the vacancy, r the position vector for the
migrating atom, r, the activated position for the migrat-
ing atom, r~ the impurity position, and r,'- the relaxed po-
sition of the ith neighbor whose initial position is r;. The
impurity is placed at the near-neighbor position of the va-
cancy. For a nonovacancy mechanism T can be taken as
0.85TH, T~ being the melting temperature of the
host. ' '

VII. RESULTS AND DiSCUSSIONS

Calculations of vacancy-formation energy (EF'H ), mi-

gration energy (E~~ },activation energy for self-diffusion

(Qo) and their differential changes (i.e., bE+, bE~, and
b, g), and finally the temperature-dependent correlation
factor (C) have been done in this paper for fcc metals
such as copper, silver, and gold and different dilute alloy
systems of them. In these calculations, the integration
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~I(~ ) = lf)r&1(q)/~~~~(q ))~1(e» (20)

where col(q) is the form factor for the impurity in its pure
state and Qi and el(q) are the corresponding atomic
volume and the dielectric function, respectively.

The input parameters of these models and the calculat-
ed values of EF'z and Qo are shown in Table I. The relax-
ation energy of the surrounding neighbors during vacan-
cy formation has been neglected for its smallness
(E)'+=0). The calculation of relaxation energy during

over quasi-continuous wave numbers has been done by a
quadrature technique and the discrete sum over lattice
wave numbers has been done using the expression

qo (1B] /1V, )q, + (m2/N2 )q2+ (m3 /N, )q3, (l9)

where X,NzX3 =X, the number of ions and (m, /X;) are
positive or negative integers including zero. Three
di6'erent combinations of potentials and exchange-
correlation energies have been used here viz. (i)

Aschroft's potential with Hubbard's function ' (denoted
henceforth as AH), (ii) Aschroft's potential with taylor's
function ' (denoted as AT), and (iii) the local form of
Heine and Abarenkov's potential with Taylor's function
(denoted as HAT). The impurity potential col(q) in the
solvent lattice has been defined in the form

vacancy migration utilizes, for simplicity, only four
nearest-neighbor atoms around the migrating atom at its
activated configuration with r,'- =r, +5, 5 being the
amount of relaxation. The value of 5 has been fixed after
minimizing the expression for the relaxation energy
(E 'z ) using any one combination (say AT) and this same
value of 5 has been used for the calculation with all other
combinations, since they have been tested not to change
significantly with potentials and exchange forms. ' It has
been found that Aschroft's model could reproduce the
correct order of magnitude of E~~, while the HAT com-
bination agrees moderately. Also it is clear from Table I
that the AT combination is inadequate for Qo calcula-
tion, while AH and HAT combinations agree consider-
ably, with the last one a better choice, though for alumi-
num no combinations reproduces correctly. More sensi-
tive potentials are expected to produce better agreement.
Also, since the calculations of these quantities involve the
calculation of differences between some large numbers,
careful attention has been paid in carrying out accurate
numerical computations.

Further calculations of the differential activation ener-
gy (b,Q) in dilute alloys of copper, silver, and gold have
been done, using the above three combinations of poten-
tials and exchange-correlation forms. These calculations
show that the differential change in the relaxation energy

TABLE I. Input parameters and monovacancy formation and activation energy for self-diffusion.

Input parameters
Metal combination 5's in units of

with parameters lattice constant
5„=5y 5, Calc.

EF'e
Expt. Calc.

Qo

Output parameters in eV

Expt.

AH
AT

HAT

r, =0.0427 nm'

r, =0.0427 nm'

r =0.1274 nmd

A =11.303 eV

0.0341 0.0682

—0.101
—0.079

1 130
0.980'

1.488 1.280'

2.155
0.241

2.389

2.09
2.15'

Ag

AH
AT

HAT

r, =0.0550 nm'

r, =0.0550 nm'

r~ =0.1437 nm
A =10.019 eV

0.03 0.06

—0.030
—0.02S

1.227

1.025
1.09'

1.16'

2.015
0.480

2.063

1.82b

1.92'

AH
AT

HAT

r, =0.0429 nm'

r, =0.0429 nm'

r~ =0.1437 nm

A =10.021 eV

0.03 0.06

—0.354
—0.336

0 900
0.980'

1.241 0.97'

1.607
—0.061

2.072

175
1.81'

AH
AT

HAT

r, =0.0593 nm'

r, =0.0593 nm'

r =0.1058 nm
A =37.550 eV

0.029 O.OS8

—0.841
—2.050

0.665b

0.760'

3.098 0.620'

2.135
—2.050

2.868

1.31
1.25'

Pb
AH
AT

HAT

r, =0.0593 nm'

r, =0.0593 nm'
r =0.1064 nm"

A =43.300 eV

0.0225 0.0450

—2.329
—0.177

0.580g

0.50g

0.527 0.52'

13.646
0.257

2.072

1.10'

1.13'

1.07'

'Reference 9.
References 24 and 25.

'Reference 26.
Reference 23 ~

'Reference 27.

'Reference 1.
gReference 13.
"Reference 15.
'Reference 6.
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during vacancy formation (b,Efz ) is very small in both
homovalent and heterovalent systems (EEflt =0) and so
this is neglected in these calculations. Calculations of
EEf, hE and hE „have also been done and are shown
in Table II together with C and b,Q. The temperature-
dependent correlation factor (C) has been determined
from Eq. (16c) in which AE~, and DE~3 are defined in
Eqs. (18) and the experimental values of D2 and Do have
been used. These calculations show that the absolute
value of C is small in homovalent systems in comparison
to those in heterovalent systems. The absolute value of
b,Efl(b,E +BE „)lies between 0 15.and 0.23, which is
in fair agreement with the empirically predicted value of
0.17 of the above quantity by Neumann. ' ' The values
of 4E~& and LE~3 are also in agreement with the empiri-
cally predicted value of Neumann (b,Esrt =0.196,E~ and
EE~3= —0. 16AEM ).

Though these calculations show fair agreement with
experiments, this method is still not above criticism.
First, it must be kept in mind that although our formula-

tions are generalized, the calculation of the activation en-

ergy considers only monovacancy self-diffusion and im-

purity diffusion. So the deviation from the experimental
values of these calculated values of EQ might be due to
the presence of other diffusion mechanisms. Second, cal-
culation indicates that the relaxation energy at the
saddle-point configuration plays a significant role in EQ
calculation. In fact, the contribution of AE „ is about
40% of the total migration energy (EEL) Al.so to a first
approximation, only the relaxation of the first four
nearest neighbors around the activated position has been
taken into account, which cannot be accurate. In the
saddle point, the atom and the vacancy will have a relax-
ation volume of about 0.2 atomic volume, which will not
be concentrated on to the next neighbors. Third, the cal-
culation of C according to Eq. (16c) uses the semi-
empirical form of LeClaire' and Neumann and co-
workers. ' ' Fourth, it is clearly understood that Heine
and Abarenkov's model reproduces the experimental
values of defect parameters more correctly than

TABLE II. Calculated and experimental defect energy parameters.

System Combination
AEF AEM

All energies in eV
C hQ Q2 (expt. ) EQ' (expt. )

Cu-Ag

CU-AU

Cu-Zn

Cu-Sn

Ag-Cu

Ag-Au

Ag-Zn

Ag-Sn

Au-Cu

Au-Ag

Au-Zn

Au-Sn

AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AH
AT

HAT
AT
AT

HAT

—0.0056
0.0301

—0.0524
0
0

—0.0522
0.0789

—0.0042
—0.0339

0.2627
—0.0188
—0.2878

0.0029
—0.0040

0.0314
0.0029

—0.0040
0.0001
0.1023
0.0131
0.0303
0.3147
0.0354

—0.0815
0
0
0.0318
0.0022
0.0094

—0.0001
0.1200
0.0324
0.0301
0.3541
0.0648

—0.0849

0.0815
0.0139

—0.2219
0
0

—0.2215
—1.6020

0.0252
—0.1759
—4.7628

0.3746
—1.0805
—0.0595
—0.0099

0.1424
—0.0595
—0.0099

0.0003—1.4430
0.0929
0.1578

—4.0109
0.6856
0.0495
0
0
0.1438
0.1049
0.0600

—0.0003
—1.2898

0.2601
0.1555

—3.8131
1.0077
0.0593

0.2286
0.3850

—0.1951
0
0

—0.1094
—1.3145

0.4035
—0.1169
—3.7670

0.6788
—0.7890
—0.0241
—0.0029

0.0079
—0.0178
—0.0020

0.0001—0.1169
—1.0967

0.4286
—3.1019

1.0609
0.5261
0
0
0.0186
0.1464

—0.1652
0.0003

—0.9597
0.5657
0.4873

—3.0507
1.3133
0.4088

—0.1527
—0.3411
—0.0792

0
0

—0.1643
—0.2086

0.3827
—0.0929
—0.7332

0.3230
—0.5793
—0.0325
—0.0110

0.1660
—0.0388
—0.0118

0.0003—0.0929
—0.2501
—0.3341
—0.5943
—0.3400
—0.5581

0
0
0.157

—0.0393
—0.0958
—0.0001
—0.2102
—0.2732
—0.3018
—0.4083
—0.2408
—0.4344

2.0165

1.9818

1.9775
2.06

1.9514

1.9991

1.973
2.09

1.8084

1.7043

1.7628

1.7433
1.9991

1.4831

—0.0736
—0.1335

—0.1082
—0.1682

—0.1125
—0.1725
—0.09
—0.1386
—0.1986

0.1792
0.0791

0.153
0.053

—0.0116
—0.1116

—0.1158
—0.2157

0.0128

—0.0067

—0.2669
—0.3269

'References 28 and 29.
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Aschroft's one-parameter model. But both of these mod-
els are simple potentials. There are also questions about
the validity of second-order perturbation technique in
Harrison's approach. So considering all these limita-
tions, a more sophisticated multiparameter model like
Dagens" or Heine and Abarenkov's model with approxi-
mate overall explanation of all atomic properties is
perhaps a better choice and the agreement of b g with the
experimental values will be more satisfactory.

VIII. CONCLUSIONS

Although there are some previous attempts for vacan-

cy formation- and migration-energy calculations in fcc

metals using pseudopotential formalism, the effect of im-
purities has been introduced in the present formulation in
a generalized way and has been applied to several cases of
impurity diffusion. It seems that a proper choice of a
pseudopotential is very important for such calculations
and careful attention must be paid in achieving accuracy
in numerical computation in order to arrive at a mean-
ingful result. However, the calculation also points out
that the effect of relaxation during migration must be tak-
en into account for any theoretical consideration of self-
diffusion and impurity diffusion phenomena.
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