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Extended and critical wave functions in a Thue-Morse chain
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We study the one-dimensional tight-binding model with site energies arranged in the Thue-Morse se-
quence. To show the characteristics of eigenstates, we study the trace map, wave functions, and the
resistance, and perform a multifractal analysis on the wave functions. Half of all the eigenstates are
represented by lattice-like wave functions, the amplitudes of which resemble the Thue-Morse sequences
of lower order. These lattice-like wave functions are denoted as chaotic or extended, depending on the
lattice size considered. The other half are classified into critical or extended states. We discuss the prop-
erties of the electronic spectrum. Our results show that critical states coexist with extended ones; there-
fore, the spectrum consists of absolutely continuous parts and singular continuous parts.

I. INTRODUCTION

Recently, there has been much interest in quasiperiodic
systems' which are intermediate between periodic and
disordered systems. The Fibonacci lattice, which is a
one-dimensional (1D) version of quasicrystals, is known
to have a Cantor-set spectrum and critical eigenstates.
More recently, much attention has been paid to general-
ized Fibonacci ' and other deterministic aperiodic lat-
tices. It has been shown that the Fibonacci lattice has
the generic features of generalized Fibonacci lattices.
The Thue-Morse (TM) lattice, which is deterministic
aperiodic and not quasiperiodic, is known to have a
singular continuous Fourier transform and a Cantor-like
phonon spectrum. But little have been reported for the
electronic properties of the TM lattice.

By examining the ground state and the highest excited
one, Riklund et al. claimed that the TM lattice is a link
between quasiperiodic and periodic lattices. And Qin
et al. supported the claim by discussing the electronic
spectrum by means of a renormalization procedure.
Note that their conclusions were obtained only by show-

I

ing that the wave functions (the integrated density of
states) are more like those (that) of a periodic lattice than
those (that) of a quasiperiodic one. On the other hand,
La Rocca performed a multifractal analysis on the spec-
trum and suggested that the spectrum contains absolutely
continuous parts (extended states) plus point singularities
(localized states). It is well known that periodic (disor-
dered) systems have extended (localized) states and abso-
lutely continuous (point) spectra. Thus it seems that
there are some discrepancies between the above results
and that a clear understanding of the eigenstate of the
TM lattice has not been given yet. It is the purpose of
this paper to examine the properties of the electronic
state in a 1D tight-binding model with the site energies
given by the TM sequence.

II. THE MODEL AND THE METHODS

The TM lattice can be generated in many ways. One
of the simplest ways to generate it is with successive sub-
stitutions A~AB and B~BA. Repeated substitutions
will give the following sequences.

A B~AB BA ~ ABBA BAAB~ABBABAAB BAABABBA ~ .

The nth order TM lattice of the length N =2" consists of
2" ' A and B atoms. It is interesting to note that the nth
TM lattice is composed of the (n —1)th lattice and its
complement (underlined part) which is obtained by ex-
changing A and B. Here, we consider the tight-binding
on-site model

4k+1 E —V —1k

1 0 l k —
1

For the TM lattice, the trace map' is

transfer matrix, we can write Eq. (1) as

0k —
1

k+1+ teak 1+ Vkl k
—E Qk (2)

'tttk+, + teak, + Vkgk =Eg

where the site energy Vk = V„(Vz ) if the kth atom is A

(8) and the hopping matrix element t is set to unity.
Equation (1) can be rewritten as

X„+,=4X„,(X„—1)+ 1,
where

N

X„=—,'TrM„, M„=M(N)= g Pk,
k=1

with initial condition

1 (E2 V2) 1 X & (E2 V2)2 2E2+ 1

(4)

where V„' =( V~ —V~ )/2= —
V~ and E'=E —( V„

+ Vz )/2. We can obtain the spectrum of Eq. (2) by shift-

ing that of Eq. (1) by ( V„+Vs)/2. Thus we can choose
V~ = —Vz = V without loss of generality. Introducing a

The trace X„ is even in E and V.

When we consider infinite periodic repetition of the
nth TM lattice [periodic approximation (PA)j, the energy
E belongs to the spectrum if ~X„~ ~ 1. For periodic
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boundary condition, 2" eigenstates are determined by the
condition X„=1. Besides the trace map, we calculate the
density of states (DOS) to examine the nature of the spec-
trum. We use the negative-eigenvalue theorem" to ob-
tain the DOS. To investigate the localization properties,
we calculate wave functions and the resistance' R using
the periodic boundary condition and the Landauer for-
mula, ' respectively. The resistance and wave functions
are very useful to distinguish localized states from ex-
tended ones. But to discern critical states, we need more
elaborate methods.

Recently, multifractal analysis' (MFA) has been used
to investigate the self-similarity in the fluctuating regimes
of localized wave functions in disordered systems' and
that of the wave functions in quasiperiodic ones. ' It has
also been performed to examine the characteristics of the
wave functions for large fields in an incommensurate'
and a hierarchical system' under an electric field. We
compute r(q) which obeys

r( q ) = lim [lnZ (q, 1)/lnl ],1~0

where Z(q, l)=g+~~&pf and 1=L/N. The lattice is

covered with consecutive boxes of size L and p,. is the
probability of finding the electron within the ith box. We
use the normalized wave function and find r(q) by plot-
ting lnZ(q, 1) versus lnL for a fixed q. Using the relations

d7 =a, f (a) =qa r(q), —
dq

we can obtain the multifractal spectrum characterized by
a continuous set of scaling indices a and the fractal di-
mensions f (a ).

For an extended wave function, one can obtain a single
point f =a= 1, which means the absence of self-similar
features in the wave function. When a wave function is
localized, if L is larger than the localization length, the
f(a) spectrum consists of two points, one being f (0)=0
and the other f(00)=1. For a critical (self-siinilar or
chaotic) wave function, one gets a continuous f(a) spec-
trum. But a chaotic wave function shows quite different
shapes in each scale and does not yield an f (a) spectrum
independent of L. ' Thus the self-similarity of a wave
function is confirmed by the L-independent f(a) spec-
trum.

III. RESULTS AND DISCUSSION

A. The electronic spectrum

Figure 1 shows the DOS and the inverse localization
length y equal to 1n(R +1)/N for the finite TM lattice.
The spectrum consists of six main bands and has a sym-
metry about E =0. The sixth (first) and the fourth (third)
bands are formed by AA (BB) clusters and the other
bands by isolated 3 or 8 sites. As can be seen in Fig. 2,
the spectra of the PA*s show highly fragmented struc-
tures but less clear self-similarity than that of the spectra
of the Fibonacci lattice.

The spectrum of the nth (n ) 3) PA does not seem to
consist of 2" bands. This is not because another gap is
too narrow to find. For n =3, this can be easily demon-
strated by determining all intervals of E satisfying the in-

04
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FIG. 1. The inverse localization length y and the DOS for
V = 1 and N =4096. The scale of the DOS is arbitrary.

equality ~X&(E) ~
1. This can be explained qualitatively

by the trace map. We can know from Eq. (4) that if
X (E)=1, then X„(E)=1 for all n )m. In other words,
if the energy E is the eigenvalue of the mth TM lattice for
the periodic boundary condition, E is also that of the
higher order TM lattice than the mth one. This property
plays an important role in understanding the weak self-
similarity of the spectra and the lattice-like wave func-
tions which will be mentioned later. For the third TM
lattice, X3=1 gives eight eigenvalues, four of which are
determined by X2 =1 and the others by X& =0. Thus the
eigenvalues obtained from X& =0 are doubly degenerate.
Calculating the integrated density of states for the third
PA to confirm the degeneracy, we can find that the
second (or the fifth) band contains twice as many states as

E

FIG. 2. The band structures of the nth PA for V =0.5 where
n =1, 2, 3, 4, and 5.
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n:

X) =1 X) —-02

Eigenvalue tree

FIG. 3. Schematic representation of the eigenvalue tree for
the length X=2", where n = 1, 2, 3, and 4. Thick lines indicate
doubly degenerate eigenvalues.

boundary condition in the sublattice A (B) are the same
to those in the sublattice b,(I ). Thus we find that the
wave function for the length 2 + is ABBA-type, that is,
the second TM lattice-like. Any lattice-like wave func-
tion can be explained in this way. Extending the argu-
ments, we And that the wave function at the energy E for
N =2 + is the 8th TM lattice-like one if X (E)=1. In
other words, for the nth TM lattice, there are 2" AB-
type, 2" ABBA-type, . . . , four (n —2)th TM lattice-
like eigenfunctions.

In Fig. 5, the resistances, where the free-end (scatter-
ing) boundary condition is imposed, also appear to be

4G

the other bands. From the above consideration, we ob-
tained the eigenvalue tree as shown in Fig. 3. Note that
only half of the tree is shown, since X„ is even in E. Con-
sidering the degeneracy and the constancy of eigenvalues,
we 6nd that the number of the branches of the tree,

b„=b„&+2" =2" '+2, n ~ 3,
where b, =2 and hz=4. Therefore the spectrum of the
nth PA consists of (2" '+2) bands.

B. Lattice-like wave functions

-20-
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One of the electronic properties particular to the nth
TM lattice is that half of all the eigenstates are described
by the wave functions the amplitudes of which resemble
the TM sequences of lower order. The wave function at
the energy E satisfying X (E)=1 is AB-type for the
(m+1)th lattice, ABBA-type for the (m+2)th lattice,
etc. , as shown in Figs. 4 and 5. These lattice-like wave
functions can be understood in the following way. %e
consider the (m +2)th TM lattice (see Fig. 6) and an ei-
genvalue E satisfying X (E)=1. Since X„(E)=1 for all

n &m, g, =g„=g»=$4„. Replacing V„by —V„ in
the sublattice A, we can obtain the sublattices B and I .
Since the trace map is even in V, we have P» =g3z. The
wave function in the sublattice A (B) is the same to that
in the sublattice b, (I ), because the site energies and the
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FIG. 4. Lattice-like wave functions for V = 1 and
E = 1.723 817 824 669 where X»(E)= 1. (a) AB-type, (b)

ABBA-type, (c) ABBA BA AB-type. Note 2' =8192. The am-

plitudes of smaller subpatterns are averaged.

FIG. 5. Lattice-like wave functions and the resistances

(upper curves) for V =2 and E = 1.335 707 112481 781 087
where X8(E)= 1. (a} AB-type, (b) ABBA-ty pe, (c)
ABBA BA AB-type.
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A

4N

(a)

FIG. 6. The (m +2)th TM lattice. The lattice is divided into
four sublattices A, B, I, and 5 of the same length N =2 .

=M(N —1)
4o

(10)

AB-type, ABBA-type, etc. Finally, we obtained the wave
functions for other boundary conditions. Successive ap-
plications of Eq. (3) yield

4N
0

0 256
N

(b)

512

For the fixed-end boundary condition, Po=g&=0. To
yield non-trivial solution, a = [M(N —1)]» must be zero.
The condition a =0 determines all the eigenvalues for the
fixed-end boundary condition. Figures 7(a) and 7(b) show
the lattice-like features of the wave functions for the
fixed-end boundary condition and with initial condition
go= 1,g, =3 respectively. We have shown the lattice-like
features of the wave functions for not only periodic but
also fixed-end and open boundary condition, and those of
the resistances for scattering one.

Next, we examine the characteristics of these lattice-
like wave functions. The wave functions with
E =+1++1+V2 satisfying Xz(E)=1 spread most even-

ly, two of which are the ones that Riklund et al. have
studied. Note that there is no energy E satisfying
Xi(E)=X&(E)= 1 and Eq. (4) holds for n ~ 2. All the ei-
genvalues besides the above four ones are doubly degen-
erate. The wave functions with E=l++I+V are
shown in Fig. 8. Considering that A part of the ampli-
tude is negligibly small [see Fig. 8(b)], we can find the
wave function to be the seventh lattice-like. We regard
these states as extended ones. In Fig. 9, the geometrically
averaged resistance (R ) is shown for another seventh
lattice-like state. It has been reported that the average
resistance of critical states shows many coupled oscilla-
tions without uniform convergence. Thus (R ) display-
ing not fast but uniform convergence, shows that the 8th
lattice-like wave functions with large 8 (or n ))m) can

FIG. 8. Extended wave functions. (a) V =0.1 and

E =2.004987 562 11209. (b) V =4 and

E =5. 123 105 625 617 660 55. The wave functions are the

seventh lattice-like ones.

also be considered to be extended. Since the quantity
P=n —m indicates the degree of spatial extension, it
may be called the degr'ee of extension For. a TM chain
with springs, Axel et al. proved that points in a dense
subset of the phonon spectrum give rise to extended
states and studied the example of the extended ones. The
example corresponds to the extended state of the energy
E satisfying Xi(E) =0 [therefore X&(E)= 1] in our case.

If the A (B) parts of the amplitudes of AB-type wave
functions are much larger than the B ( A ) parts of those,
the wave functions may be considered to be localized'
[see Fig. 5(a)]. But they are not localized since the local-
ized state is very insensitive to changed boundary condi-
tions. ' In this case, the larger the lattice becomes, the
more the wave function becomes extended. If the AB-
type wave functions are localized, they remain localized
with new energies changed by the increase of the system
size. But they evolve into the ABBA-type wave functions
and so on. Similar consideration of the wave function of
Fig. 10(a) shows that the wave function is not localized.
In generalized Fibonacci lattice, the existence of localized
states has been reported. But some of the results are not
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FIG. 7. (a) ABBA-type wave function for the fixed-end
boundary condition, where V=1 and
E =1.723 817824668993 174. (b) ABBA-type wave function
with $0=1 and g, =3, and where V=1 and
E =1.723817824669. The amplitudes of smaller subpatterns
are averaged.
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FIG. 9. An extended wave function. A seventh lattice-like
wave function and the average resistance (upper curve) for
V=1 and E =2.40196774350058 where X&(E)=1. The am-

plitudes of smaller subpatterns are averaged.
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valid, the insensitivity of localized states being con-
sidered.

The lattice-like wave functions with weak degree of ex-
tension (small 8) are neither extended nor localized in
the usual sense. These wave functions, of course, become
more extended-like as the lattice size increases; when n

goes to n +1, the 8th lattice-like wave function becomes

X„

I

(b)

(a}

0-

21 31 41 51

8192

FIG. 11. Trace X„vs n. (a) Five-cycle orbit: V=0.7,
E =1.756670883 151046245 (dotted line). Nine-cycle orbit:
V=1.22, E =0.818361652276616781 (solid line). (b) Five-
cycle orbit: V =0.000 12, E = 1.963 857402 804679 756
(dotted line). Eight-cycle orbit: V =0.0025,
E =1.996268618926149129 (solid line). The lines are guides
to the eye.

the (8+ l)th one. But the appearance of 2" ' new AB
type wave functions maintains the ratio between various
types of lattice-like wave functions. Thus we can find the
lattice-like wave functions with weak degree of extension
at any large N. Since successive iterations of the trace

)2 (a)
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8192
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-8192 0 8192 16384

N

(b)

8192
N

FIG. 10. Wave functions at the eigenenergies appearing for
the first time. (a) A chaotic wave function for V = 1 and
E =1~ 723847756906832 where X&4{E)=1.(b) A chaotic wave
function for V =2 and E = 1.335 707 112481 780 997 where
X]3 (E) = 1 ~ (c) An extended wave function for V = 1 and
E =1.7300707068698 where X&4(E)=1. The amplitudes of
smaller subpatterns are averaged. Three wave functions evolve

into AB-type lattice-like ones as X increases.

512
N

1024

FIG. 12. A self-similar wave function where V=0.7 and

E = 1.756670 883 151046245. The self-similarity can be shown

in the display of the difterent portions of the same wave func-

tion, The amplitudes of smaller subpatterns are averaged.
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FIG. 13. An extended wave function for V=0.00012 and
E =1.963857402804679756. The peaks in (a) are modulated
as shown in (b) at smaller length scales. The amplitudes of
smaller subpatterns are averaged.

FIG. 14. The f(a) spectrum for the wave function shown in

Fig. 12. q ranges from —5 to 64.

map yield aperiodic orbits before X (E)=1 for most en-
ergies, we consider these lattice-like wave functions to be
chaotic. In conclusion, the lattice-like wave functions
with strong degree of extension (large 8) are extended
and the ones with weak degree of extension (small 8)
chaotic. And they do not depend on boundary condi-
tions. The lattice-like states are due to resonant tunnel-
ings which arise from the symmetry of the TM lattice.

C. Self-similar and extended wave functions

Chaotic are most of the other half of all the eigenstates
which are given by X„(E)=1 and appear for the first
time. Some chaotic wave functions are shown in Fig. 10.
Simple calculation shows that there can not exist two-
cycle orbit. We were able to identify five-cycle, eight-
cycle, and nine-cycle orbit for the trace map as shown in
Fig. 11. The wave functions of five-cycle orbits are
shown in Figs. 12 and 13. We performed an MFA on the
wave function shown in Fig. 12 and obtained a continu-
ous f (a) spectrum, as shown in Fig. 14.

An MFA on the wave function shown in Fig. 13 yields
similar results as have been previously found for extended
wave functions in incommensurate systems. Multifrac-
tal features are found at very small length scales (L ( 16)
but are not maintained at larger length scales. We ob-
tained f =a= 1 for L greater than 16 and therefore con-
sider this wave function to be extended. We also obtained
similar results for the wave function shown in Fig. 10(c).
These extended wave functions, of course, evolve into
AB-type lattice-like wave functions. But it is very
diScult to see lattice-like features since both A and B
parts spread very evenly. Details of the nature of these
extended states wi11 be presented in the future.

IV. CONCLUSION

We have studied the tight-binding model with site en-
ergies arranged in the TM sequence and obtained several
electronic properties independent of V. The spectrum
shows highly fragmented structure and less clear self-
similarity than that of the spectrum of the Fibonacci lat-
tice. For the TM lattice of the nth order, we have found
that 2" ' eigenstates generated in the TM lattice of lower
order are described by the lattice-like wave functions.
The lattice-like wave functions are mostly chaotic and
they become more extended-like as n increases. We have
shown that the lattice-like wave functions with strong de-
gree of extension can be regarded as extended ones. Most
of the other 2" ' eigenfunctions are chaotic and a few of
them are self-similar or extended. We have discussed the
absence of localization in the TM lattice.

Our results show that critical states coexist with ex-
tended ones, which means that the spectrum consists of
the absolutely continuous parts and singular continuous
parts. The coexistence of critical and extended states has
been reported in some of generalized Fibonacci lat-
tices. ' ' Our results support the claim that the TM
lattice is intermediate between periodic and quasiperiodic
systems. More detailed investigations on the spectrum
will be reported later.
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