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Statistical mechanics of magnetic bubble arrays. II. observations of two-dimensional melting
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We report observations of a continuous hexatic-to-liquid melting transition as a function of density in

two-dimensional magnetic bubble arrays in garnet films. Bubble arrays can be directly viewed and their
motion recorded. The hexatic with orientational order undergoes a phase transition to form an isotropic
liquid when dislocations unbind into disclinations. Melting occurs via the formation of progressively
larger transient defect clusters that gradually percolate into one another, and eventually span the system

destroying orientational order. Observations made in a linear magnetic-field gradient indicate that the
transition is continuous. Defect dynamics, concentrations, and mobilities characterize the melting pro-
cess. At the transition bubble motion goes from constrained in the hexatic to diffusive in the liquid. The
transition is described well by a phenomenological criterion: melting occurs when the root mean square
of the difference between displacements of adjacent bubbles is —10% of the average lattice spacing. At
higher bubble densities, away from the transition, we observe a hexatic glass characterized by extended
orientational order, very few immobile dislocations, and short-range translational order limited by sub-

strate roughness.

I. INTRODUCTION

The nature of the melting transition that transforms a
crystalline two-dimensional solid, with long-range orien-
tational order and quasi-long-range translational order,
into an isotropic liquid has been a subject of considerable
interest and controversy over the past few decades. '

Two-dimensional lattices with continuous symmetries do
not display long-range translational order at finite tem-
peratures, because these systems are susceptible to long-
wavelength phonons. This result, originally postulated
by Peierls and Landau, was derived rigorously by Mer-
min, " who also showed that long-range orientational or-
der can be present despite the absence of long-range
translational order. However, in a broad class of two-
dimensional systems with two-dimensional order parame-
ters and Abelian symmetry (including two-dimensional
solids, superfluids, and x-y magnets), quasi-long-range
translational order in which translational correlations de-

cay algebraically is observed at finite temperatures.
Building on the ideas of Kosterlitz and Thouless,

Halperin and Nelson have proposed that melting in two-
dimensional solids is a continuous two-stage transition
driven by topological defects: dislocations and disclina-
tions. The crystalline phase is characterized by
quasi-long-range translational order and long-range
orientational order. The first stage of the melting transi-
tion occurs when dislocation pairs unbind to form a hex-
atic phase with short-range translational order and
quasi-long-range orientational order. The second stage
occurs when disclination pairs making up dislocations
unbind, destroying orientational order to form a liquid.
Young independently studied the crystal-to-hexatic tran-
sition via dislocation pair unbinding. Other theoretical
works' ' propose that two-dimensional melting is a sin-

gle first-order transition as in three dimensions. The na-

ture of two-dimensional melting has been studied in nu-
merical simulations, ' ' ' and experiments on a variety
of physical systems including binary arrays of hard
spheres, ' polystyrene colloids, ' ' holes in
ferrofluids, liquid crystals, ' electrons on Helium, '
and noble gases physisorbed on substrates. '

If present, substrate roughness acts to destroy quasi-
long-range translational order in two-dimensional solids.
Larking and Ovchinnikov have shown that translation-
al order is short-range in two-dimensional flux lattices in
the presence of weak collective pinning due to random
disorder. Recently, Chudnovsky extended this work to
show that orientational order is preserved despite the ab-
sence of translational order. He also suggested that the
hexatic-to-crystal transition is absent in two-dimensional
systems with substrate roughness, so that a hexatic glass
rather than a crystalline solid is the most ordered state.
Related theoretical work using a physically relevant mod-
el for the microscopic substrate roughness has been done
by Bouchaud, Mezard, and Yedidia. In both of these
theoretical approaches, translational order in the predict-
ed hexatic glasses is limited by substrate roughness rather
than by dislocations as in a Halperin-Nelson hexatic.
Nelson, Rubinstein, and Spaepen showed that frozen-in
dislocations can produce a glassy Halperin-Nelson hexat-
ic phase analogous to the equilibrium hexatic originally
proposed. ' A hexatic vortex glass has been imaged in
disordered high-T, superconductors, although dynamic
measurements have not been reported. ' Experimen-
tally it can be difficult to separate the effects of substrate
roughness from the effects of dislocations and residual
strain fields.

In this paper we present experimental observations of a
continuous hexatic-to-liquid melting transition near equi-
librium driven by topological defects in agreement with
the equilibrium Halperin-Nelson theory. Away from
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the transition we describe observations of glassy hexatics
associated with microscopic substrate roughness and
nonequilibrium dislocations, related to those described by
Chudnovsky, by Bouchaud, Mezard, and Yedidia and
by Nelson, Rubinstein and Spaepen. ' An early account
of this work appeared in Ref. 28.

Magnetic bubble arrays in thin garnet films are an easi-
ly accessible system in which to study two-dimensional
melting. Material properties of magnetic garnet films are
well understood, and bubble domains in these films have
been thoroughly investigated for device purposes. ' ' As
described in part I (Ref. 29), the motion of magnetic bub-
ble arrays can be visualized, recorded, and studied in de-
tail. Using Voronoi constructions topological defects can
be unambiguously identified and tracked. These advan-
tages are usually associated with numerical simulations
rather than experiments. However, numerical simulations
have severe constraints imposed by available computa-
tional time including relatively small numbers of parti-
cles, periodic boundary conditions, and short equilibra-
tion times. Our experiments are conducted on a real
physical system without built-in assumptions. By using
polycrystalline bubble arrays, we achieve boundary con-
ditions for individual grains that minimize residual stress
and make equilibration possible in experimentally acces-
sible times.

This paper is organized as follows. Section II describes
the experimental methods. Section III presents detailed
observations of the melting process and the related
phases via the visualization of topological defects. Sec-
tion IV presents statistical descriptions of the phase tran-
sition via correlation functions. Section V uses measure-
ments of the bubble diffusion constant and defect dynam-
ics to explore the process of equilibration. Section VI de-
scribes the behavior of defect concentrations and distri-
butions in the hexatic glass and the hexatic-to-liquid tran-
sition. In Sec. VII a phenomenological description de-
rived from measurements of the bubble displacements
and lattice spacing is used to describe the melting transi-
tion. In Sec. VIII we describe an experiment which
shows that the hexatic-to-liquid phase transition is con-
tinuous. In Sec. IX we summarize our findings, and
make comparisons with theory and numerical simula-
tions.

II. EXPERiMENTAL METHODS

Magnetic bubbles are cylindrical domains of reversed
magnetization in thin magnetic films, which have been
extensively studied in the past. ' ' In this work we use
thin films of bismuth-substituted-iron-garnet developed
for magneto-optic applications by the Airtron Division of
Litton Industries. The properties of these samples are
described in detail in Ref. 29. The film is grown on a
transparent substrate of nonmagnetic garnet with
matched lattice constant to a thickness 7.8 pm, with a
strong uniaxial anisotropy perpendicular to the plane of
the film. The measured magnetization and Curie temper-
ature are 4aM = 190 G and T,„„,= 170 C. Bubble
domain walls in this film are thin (-0.1 pm) compared
to the domain sizes ( —10 pm), and the motion of bubbles

within the film is two dimensional. Patterns of bubbles
can be viewed directly in real space and time via the
Faraday rotation of polarized light, and recorded using
optical microscopy and digital imaging techniques. Grey
scale images of bubble arrays are digitally processed to
find the bubble centers, which are indicated in the pro-
cessed data below by dots. Voronoi constructions on the
array of bubble centers were used to determine the coor-
dination of each bubble and to locate topological defects
in the array. In the processed images below, fivefold dis-
clinations are indicated by black squares and sevenfold
disclinations by black circles; rarer fourfold and eightfold
disclinations are indicated by open squares and circles,
respectively. Details of the experimental methods used to
record and analyze images, and extensive descriptions of
the topological structure and thermalization of the sys-
tem are given in Ref. 29.

Magnetic bubble arrays are created by briefly applying
a strong in-plane magnetic field (H =2.5 ko) which over-
comes the uniaxial anisotropy and rotates the magnetiza-
tion into the plane of the sample; when the in-plane field
is removed, a disordered sea of bubbles is created. The
sample is then placed under the microscope in a perpen-
dicular magnetic field with two components: a time-
dependent dc bias magnetic field Hz which opposes the
bubble magnetization, and a sinusoidal ac magnetic field
with variable amplitude H„and frequency 40 Hz. Poly-
crystalline bubble arrays are created by annealing the
disordered sea of bubbles in superimposed dc and ac mag-
netic fields. Experiments on the melting of bubble arrays
described below are done within single crystallites of
—12000 bubbles within a polycrystalline array. The ap-
plied perpendicular dc bias field Hz is used to adjust the
areal density p of the bubbles by destroying bubbles at
random locations, as described below. Isolated bubbles
collapse at a well-defined value H&0 of the applied field

H~, which for our samples is H~0=103 Oe in the ab-
sence of the ac field. Over the range of applied fields used
in this experiment (85 Oe &Hs & 95 Oe) the areal density
of the bubbles decreases with H~ via bubble collapse, but
the bubble radius does not vary appreciably, as described
for regime 3 in Ref. 29. The applied ac field H„is used
to overcome coercive friction and to create random bub-
ble motion which stimulates thermal motion, described in
detail in Ref. 29. The applied ac field produces a slight
breathing motion of the bubble radius, which couples to
the underlying microscopic substrate roughness to pro-
duce Brownian motion in the position of the bubbles cor-
responding to an effective temperature. For the work
described below, the amplitude of the ac field was fixed at
H„=6.6 Oe peak to peak.

The experiments on two-dimensional melting are per-
formed by decreasing the areal bubble density p from
-4000 mm to -500 mm by incrementing the bias
field Hz in small steps from 85 to 95 Oe. The steps in
field were adjusted to give an approximately steady de-
crease in density. Figure 1(a) plots the measured density

p versus H~ from one experimental run. The correspond-
ing increase in the average lattice spacing measured using
Voronoi constructions on the bubbles centers is shown
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FIG. 1. (a) Bubble density p averaged over several images
spanning a large area vs applied bias magnetic field H&, for one
experimental run of the melting experiment. Note the bubble
radius r does not change over the range of H& used. (b) Average
lattice spacing a determined from Voronoi constructions vs ap-
plied field H&.
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FIG. 2. Schematic diagram illustrating the introduction of
dislocations when bubbles collapse following a bias field incre-
ment. (a) Perfect hexagonal array at bias field Hz. (b) When
H& is incremented to H&+AH& bubbles collapse creating va-
cancies such as the one shown at the center of the array. (c) Va-
cancies relax into dislocations. Two dislocations are shown
here: black squares and circles represent five- and sevenfold dis-
clinations, respectively, and a five-seven pair corresponds to a
dislocation. (d) Dislocations then equilibrate with each other
and with the grain boundary, primarily via glide. Dashed lines
illustrate the extra rows associated with each dislocation, and
the glide direction is the lattice direction with no extra rows.

in Fig. 1(b). A reduction in the bubble density p follow-
ing an increment in bias field occurs via the collapse of
bubbles at randomly located positions in the array where
the total field exceeds the bubble collapse field H&0.
Each bubble that collapses leaves a vacancy in the array
which quickly relaxes into two or more dislocations.
This process is illustrated schematically in Fig. ~. When
the array in Fig. 2(a) is subject to a small increment in

H~, a bubble collapses creating a vacancy in the center of
Fig. 2(b). Neighboring bubbles move in to fill the vacan-
cy, which relaxes into a pair of dislocations, as shown in
Fig. 2(c). Each dislocation is composed of a bound five-
fold and sevenfold disclination pair; fivefold and seven-
fold disclinations are indicated in Fig. 2 by black squares
and circles, respectively. These dislocations typically
glide apart, and move separately, as shown in Fig. 2(d).
The two extra rows of bubbles corresponding to the pres-
ence of each dislocation are indicated by dashed lines.

Therefore, in this experiment each reduction in bubble
density p produces dislocations distributed over the ar-
ray. In order to permit these dislocations to equilibrate
with each other and with the grain boundary as described
below, the array is annealed after each step in Hz for 30
min in the applied ac field H„=6.6 Oe peak to peak.
Video images of the dynamics of the array are recorded
during this period. At the end of the annealing period
the amplitude of the ac field is gradually reduced to zero,
digital images of the array are recorded, and then the am-
plitude of the ac field is slowly turned up again to its pre-
vious value. Images are recorded without an ac field to
minimize the uncertainty in bubble locations.

Boundary conditions for a crystalline grain in the poly-
crystalline bubble array make equilibration possible in ex-
perimentally accessible time scales. The polycrystalline
array minimizes unwanted external stresses on the crys-
tallite. The grain boundary also serves as a reservoir of
dislocations surrounding the crystallite. Any point in the
crystallite can be reached by a dislocation of any orienta-
tion from the grain boundary via dislocation glide. The
slower process of dislocation climb is not necessary to at-
tain equilibrium for these boundary conditions, because
any climb event can be replaced by a "virtual" climb
composed of two glide events to and from the grain
boundary. In order to estimate the proximity to equilib-
rium, the diffusion constant for dislocation glide is mea-
sured by following the motion of dislocations over the
30-min annealing period after each increment in applied
field as discussed in Sec. V.

Because bubbles are widely spaced relative to their ra-
dii in this experiment, the bubble interaction energy is
well approximated by a simple dipole-dipole interaction
E ~ 1/r . As shown in Fig 1(b) the lattice spacings vary
from 17 to 47 pm. The bubble radius is uniform from
bubble to bubble, and does not vary appreciably over the
range of applied fields used in this experiment (85
Oe &Hii & 95 Oe), even though the density p varies by an
order of magnitude. The distribution of bubble radii was
measured following each step in Hz. The average bubble
radius r =3.26 pm varies by less than 0.13 pm over the
full range of bias field, and the measured standard devia-
tion of the distribution of bubble radii in any single image
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FIG. 3. Overview of the melting transition: sections of pro-
cessed images at the values of the bias field H& indicated illus-
trating the melting process (see text). Open squares, black
squares, black circles, and open circles represent bubbles with
four, five, seven, and eight adjacent bubbles in the hexagonal ar-
ray, corresponding to disclinations. Black square-black circle
pairs represent dislocations.

is ~0.4 pm. The bubble radius was also observed to be
independent of the coordination of the bubble in the ar-
ray. The magnetic dipole moment of each bubble

changes little with applied field Hz and is quite uniform
from bubble to bubble, because the bubble radius changes
little and the magnetization of the film is uniform. The
bubble dipole moment is p—=0.8 X 10 (Gaussian units)
and the bubble-bubble interaction energy is —10 —10 K
over the range of H&, corrections to the dipole approxi-
mation are estimated to be 2% to 14%.

III. MELTING OVERVIEW

Figures 3(a)—3(A present a series of processed images
selected from a larger set to illustrate the hexatic-to-
liquid melting transition as the bubble density p is re-
duced by increasing the applied bias field Hz. In these
images the white squares, black squares, black circles,
and white circles correspond to bubbles with four, five,
seven, and eight adjacent bubbles, respectively, represent-
ing lattice disclinations. Pairs of five- and sevenfold coor-
dinated disclinations, which corresponds to dislocations,
can be easily identified at high density, and tend to orient
head to tail as predicted by theory. As melting occurs
these disclination pairs increase in concentration and
form increasingly large transient clusters. The pairs
eventually dissociate and the clusters span the system,

destroying orientational order. in this section we review

this observed melting process, previously described in

Ref. 28.
The initial array in Fig. 3(a) has extended orientational

order, very low defect concentration, and low defect mo-

bility. Here dislocations are observed to glide across
—10% of the field of view in the annealing time. The ar-

ray in Fig. 3(a) appears crystalline, but is actually a hex-

atic glass with short-range translational order analogous
to that of Chudnovsky and of Bouchaud, Mezard, and
Yedidia. The dominant cause for the absence of
translational order in this hexatic glass is microscopic
roughness, although dislocations not included in these
theories do contribute to the disruption of translational
order in experiment. The bubble density p was reduced
between Figs. 3(a) and 3(b) by breaking bubbles at un-

correlated positions distributed uniformly over the array

by increasing the applied perpendicular dc bias magnetic
field Hz, as described above, creating vacancies that relax

into dislocations. After annealing, the result shown in

Fig. 3(b) is a Halperin-Nelson hexatic characterized by a
gas of dislocations which limits translational order: here
dislocations glide across -35% of the field of view in the
annealing time. Although the array is still far from equi-
librium, the dislocation gas closely resembles the hexatic
described by equilibrium Halperin-Nelson theory, be-

cause dislocations are created uniformly and can equili-
brate locally. The hexatic in Fig. 3(c) for lower bubble

density has diffusion constants similar to Fig. 3(b). In
Fig. 3(d) a dramatic increase in the dislocation concentra-
tion and mobility starts to occur. Here dislocations glide
across —110% of the field of view in the annealing time.
Dislocations begin to form transient clusters in Fig. 3(d).
These clusters evolve continuously in time, as the disloca-
tions constantly rearrange and go into and out of ex-
istence. In contrast to nuclei in first-order transitions
these transient clusters do not stabilize and grow upon at-
taining a critical size. Time-resolved images show events
corresponding to thermal excitation of virtual dislocation
pairs and dislocation regrouping, combination, and sepa-
ration on time scales —15 s, indicating that the hexatic is
near equilibrium, as discussed below. The hexatic-to-
liquid transition occurs over Figs. 3(d) and 3(e). In Fig.
3(e) larger transient defect clusters form as clusters begin
to join each other and percolate across the system: the
cluster size is comparable to the cluster spacing. The
diffusion constant for Fig. 3(e) and lower densities is large
but diScult to measure, because dislocations are continu-
ally created and destroyed. Finally, in Fig. 3(f), the tran-
sient defect clusters span the system, dislocations dissoci-
ate into disclinations, orientational order diminishes, and
the system is a liquid. Here isolated disclinations can be
identified, and it is no longer possible to uniquely pair
five- and sevenfold coordinated disclinations. At these
low densities, bubbles with four and eight adjacent bub-
bles are also often present. Isolated clusters are no longer
present in the system.

The series of measurements illustrated in Fig. 3 were
repeated four times, with similar results. Neither the
orientation of the bubble array in crystallites nor the lo-
cation of topological defects is determined by the garnet
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film or substrate, and both vary from measurement to
measurement. The melting process and dynamics are ob-
served to be qualitatively identical for all crystallites, and
the measured average properties quantitatively agree.
Therefore, melting driven by topological lattice defects is
intrinsic to the two-dimensional magnetic bubble array. Length
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Here„Eis the reciprocal lattice vector to the first Bragg
peak in the structure factor, determined from the mea-
sured bubble centers using a discrete Fourier transform.
The angle brackets represent an average over all pairs of
bubbles separated by r and an angular average over the
six vectors E measured from the two-dimensional struc-
ture factor. The orientational correlation function G8(r)
was calculated from the measured bond centers and an-
gles 9 using the orientational order parameter e' for a
hexagonal lattice:
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FIG. 4. Orientational correlation functions Gg(r) and
translational correlation functions GT(r) for the values of H&

indicated vs r in units of the average lattice spacing a.

IV. CORRELATION FUNCTIONS
AND CORRELATION LENGTHS

The evolution of the bubble array through the melting
transition can be characterized by the translational corre-
lation function GT(r) and the orientational correlation
function G8(r), which are shown in Fig. 4 for selected
values of bias field Hz. The translational correlation
function Gr(r) was calculated from the measured bubble
centers using the local Fourier component e' " as the or-
der parameter:

G (r)(8iK r'8 —iK .(r' —re)
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FIG. 5. Orientational correlation length (8, translational
correlation length gr, and average spacing between dislocations
LD, all in units of the average lattice spacing a vs bubble density

p. For p )3500 mm the system is a hexatic glass, and for 1600
mm &p & 3500 mm a hexatic. The hexatic-to-liquid transi-
tion occurs over 1100 mm &p & 1600 mm, and the system is
a liquid for p &1100mm

Here, the word "bond" refers to the line joining adjacent
bubbles. The angle brackets represent an average over
paris of bonds separated by r and an angular average over
n /3 radian segments.

In Fig. 5 the correlation lengths gr and (8 determined
from the measured translational and orientational corre-
lation functions are shown as a function of the bubble
density p. The translational correlation length gT was

determined from the width of the first Bragg peak in the
angular average of the structure factor using fits to a
Lorentzian line shape S(k) ~((k —K) +fr ) ', where k
is the reciprocal space variable. The orientational corre-
lation length (8 was measured from exponential fits—r /gg
e ' to the orientational correlation function over
O~r ~20a, where a is the average lattice spacing. The
average dislocation spacing I.D, also shown in Fig. 5, was
determined from the measured dislocation concentration
Xn using LD=(ED)

As shown in Figs. 4 and 5, translational order decays
exponentially at all bubble densities p. Translational or-
der in this system is disrupted by dislocations and by mi-

croscopic substrate roughness. Dislocations produce lat-
tice strains which decrease as 1/r away from the disloca-
tion. Microscopic roughness produces small random dis-
placements of individual bubbles, which strain the lattice.
The hexatic glass present at the highest bubble densities
shown in Figs. 3—5 (p-3800 mm to 3660 mm ) has
extended orientational order, but short-range translation-
al order, as shown in Fig. 5. For these data, dislocations
are far apart and large dislocation free regions exist, and

dynamic observations indicate that these dislocations are
relatively immobile. As shown in Fig. 5 the average
dislocation spacing is L,D -30a at the highest bubble den-

sities, while the translational correlation length is much
shorter, gT-7a, indicating that the dominant cause for
loss in translational order is microscopic roughness. This
observed hexatic glass is analogous to that predicted by
Chudnovsky and by Bouchaud, Mezard, and Yedidia,
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hexatic-to-liquid transition calculated in the equilibrium
Halperin-Nelson theory is g&=0.25, represented in Fig. 6

by the dotted line. The measured value g&=0.22+0. 10
at a data point p=1300 mm at the center of the ob-
served melting transition agrees well with the theoretical
prediction as shown in Fig. 6.

V. DEFECT DYNAMICS AND THERMALIZATION
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well with g&=0.25 (dashed line) predicted are at the hexatic-to-

liquid transition by the Halperin-Nelson theory.
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although dislocations are absent in the theoretical hexatic
glasses. Measurements indicate that the translational
correlation function of the observed hexatic glass decays
as GT(r)-e " with a=0.8+0. 1 at p=3796 mm
a =0.7+0. 1 at p =3746 mm and o.=0.8+0.2 at
p= 3661 mm . In comparison Chudnovsky predicts
a=2, and Bouchaud, Mezard, and Yedidia predict
a =0.67. We also determined the ratio R =g'$/gT of the
two extreme correlation lengths, measured from transla-
tional correlation functions GT(r) for values of r parallel
to E and for r perpendicular to E. We found that
R =1.7+0.3 at p=3796 mm R =1.2+0. 1 at p=3746
mm, and R = 1.9+0.8 at p =3661 mm . These
values are close to R =&3 predicted by Chudnovsky,
and R =1.67 predicted by Bouchaud, Mezard, and Yedi-
dla

At somewhat lower density, the array first forms a
nonequilibrium Halperin-Nelson hexatic which then ap-
proaches equilibrium at lower bubble densities [p-3660
mm to 1600 mm in Figs. 3(b) and 3(c), and in Figs. 4
and 5]. In this regime the orientational correlation
length is long g&-100a, while the translational correla-
tion length is quite short (T-Sa. The dislocation spac-
ing LD is comparable to the translational correlation
length (T, indicating that the dislocations account for the
absence of translational order. As shown in Figs. 4 and
5, orientational order drops sharply as the hexatic-to-
liquid transition occurs at lower bubble density, and the
system becomes a liquid at bubble densities below 1100
mm with short translational and orientational correla-
tion lengths approaching one lattice spacing.

In order to characterize the decay in orientational or-
der with bubble density p, we made an algebraic fit to the
orientational correlation function Ge(r) ~r over the
range 0~r 20a; the exponents ge obtained from these
fits are shown in Fig. 6. For the high-density hexatic glass
the exponent is quite small q&-0.01, while for the none-
quilibrium and equilibrium Halperin-Nelson hexatic the
exponent is somewhat larger g &0.1. For the liquid the
nominal exponent from the fit is large, q&) 1.0, although
the actual decay is exponential. The exponent at the

In part I (Ref. 29) we discussed measurements of the
thermal properties of isolated magnetic bubbles agitated
with an ac magnetic field. In this section we discuss mea-
surements of defect dynamics and thermalization of mag-
netic bubble arrays, made possible by agitation with an ac
magnetic field. Equilibrium is difficult to attain in many
two-dimensional systems because the time required is
long compared to time t,1; b for dislocation climb, given
by9

2
T

climb
climb

(3)

glide (4)
glide

The rate for dislocation glide is typically much faster
than for climb, and glide is the dominant mode of dislo-
cation motion observed in our bubble arrays. Climb is
also observed, but occurs more infrequently. However, in
this system any necessary climb event is equivalent to a
pair of glide events to and from the grain boundary, so
that climb events are not necessary to achieve equilibri-
um. The equilibration time for a given type of event can
be computed in principle from the nonequilibrium statist-
ical mechanics of a gas topological defects colliding with
each other and with the grain boundary.

We measured the rate of dislocation glide to estimate
the proximity to equilibrium at each value of the bubble
density p. We determined the diffusion constant D &;d, by
taking four successive images 15 s apart, and tracking the
motion of each dislocation across the images. In the hex-

where gT is the translational correlation length of the sys-
tem and D„;b is the diffusion constant for dislocation
climb. Dislocation climb is a slow process, because it re-
quires the absorption and emission of interstitials and va-
cancies, and long periods of time are typically required to
attain equilibrium. Boundary conditions present a
second problem in most systems because they impose
external stress which deforms the lattice.

Our experiments are done within single crystallites in a
polycrystalline array. The boundary condition for a crys-
tallite is the grain boundary, which is a reservoir of dislo-
cations surrounding the crystallite. These boundary con-
ditions have two important consequences. The grain
boundary acts to minimizes external stress on the crystal-
lite. The grain boundary also acts as a reservoir of de-
fects which can equilibrate with defects inside the crystal-
lite. Because the grain boundary surrounds the crystal-
lite, a dislocation of any orientation in the crystallite can
reach the grain boundary by glide, and the time for ex-
cess dislocations to escape is given by the glide diffusion
time tg»de.
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FIG. 7. (a)—(d) Four images taken 15 sec apart illustrate de-

fect dynamics near the melting transition. Dynamics shown in-

clude thermal excitations of virtual dislocation pairs, and defect
combinations and separations via dislocation glide (see text). (e)

Bubble motion determined from (a) —(d): each line represents
the motion of one bubble over the 45-sec period.

atic glass (for p=3800 mm to 3660 mm ) dislocations
are immobile. Measurements indicate that Dg&'d =0.6
pm /s to 0.8 pm /s, corresponding to dislocations
diffusing across only —10% of the field of view in the an-
nealing time. In the nonequilibrium Halperin-Nelson
hexatic (for p=3340 mm to 1980 mm ) the diffusion
constant jumps to D &;d,

———4 pm /s to 6 pm /s and the
dislocations become somewhat mobile. Here dislocations
glide across -35% of the field of view in the annealing
time. As the equilibrium hexatic is approached the
diffusion constant begins to rise: for p=1600 mm
(Hz =92.7 Oe) we measure the glide diffusion constant to
be Ds~;d, —= 11 pm /s and dislocations diffuse across
-50%%uo the field of view in the annealing time. At lower
densities (p ( 1600 mm ) the diffusion constant in-
creases sharply to Ds&;d, )40 pm /s. This rise in disloca-
tion mobility is accompanied by a dramatic increase in
dislocation concentration as described below. As a result
dislocation glide and regroup continuously producing
rapidly evolving defect dynamics, which makes an accu-
rate measurement of D &;d, difficult.

Figure 7 illustrates the rapid and complex dislocation
dynamics observed near the hexatic-to-liquid transition.
Figures 7(a)—7(d) show four sequential images of the ar-
ray taken 15 s apart at p=1300 mm (Hz =92.9 Oe).
Figure 7(e) shows the fiow diagram for Figs. 7(a)—7(d):

each line in Fig. 7(e) represents the motion of a bubble
over the 45-s period. Figure 7(e) shows that the disloca-
tion production and dynamics illustrated in Figs.
7(a)—7(d) is due to bubble motion in the array. The dislo-
cation dynamics illustrated in Figs. 7(a) —7(d) are de-
scribed below in terms of a few types of simple events.

The simplest defect cluster observed in Figs. 7(a)—7(d)
is a virtual dislocation pair, which is composed of two
dislocations with antiparallel Burger's vectors and com-
mon glide planes as described in Ref. 29. Virtual pairs
are easy to locate in Figs. 7(a) —7(d): they correspond to
two fivefold disclinations (two black squares) and two
sevenfold disclinations (two black circles) arranged in a
quadrupole. These virtual pairs are excited thermally
from a defect-free hexagonal array by a slight distortion
of the array. They annihilate in a similar manner when
the two dislocations glide onto one another and combine
to produce a defect-free hexagonal array. These thermal
excitations and annihilations account for the appearing
and disappearing virtual pairs in Figs. 7(a)—7(d). Near
the hexatic-to-liquid transition, these virtual pairs create
an additional source of dislocation production and de-
struction in the equilibrium array.

When gliding dislocations collide they can combine
into fewer dislocations. For example, two dislocations
whose Burger's vectors are not parallel and whose glide
planes are different can glide onto one another to form
one dislocation with a glide plane along the third direc-
tion of the hexagonal lattice. One such event occurs be-
tween Figs. 7(a) —7(b), in the lower right-hand corner of
the image: one of the dislocations in the virtual pair
combines with the third dislocation nearby. Dislocations
can also separate into more dislocations. A gliding dislo-
cation can split into two other dislocations, just as two
dislocations can combine into one. An event of this type
occurs between Figs. 7(a) and 7(b), just below the center
of the image. We also observe recombination events
where the disclinations from two colliding dislocations
swap partners and regroup into two new dislocations.

VI. DEFECT CONCENTRATIONS AND DISTRIBUTIONS

The hexatic-to-liquid transition in this system is driven

by topological defects as described above, in agreement
with the equilibrium Halperin-Nelson theory. In this
section we present measurements of concentrations and
distributions of topological defects as a function of the
bubble density p. We observe that the characteristic sig-
nature of the hexatic-to-liquid transition is a dramatic in-

crease in defect concentration and a sudden broadening
of the defect distribution. In the hexatic glass the mea-
sured defect concentration after 30 min of annealing is
observed to be directly proportional to the number of de-

fects introduced before annealing.
In this experiment the decrease in bubble density

occurs via bubble-collapse events distributed uniformly
over the array. The bubble-collapse events generate va-

cancies which relax into dislocations. We allow the array
to anneal for 30 min, and then record images and make
measurements. In order to estimate the extent of equili-
bration that occurs in the 30-min annealing period we
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FIG. 8. The measured disclination concentration ND after
annealing (No —N) a measure of the number of defects intro-
duced prior to annealing, where No is the number of bubbles
present at the start of the experiment and N is the number
present at the bias field at which the measurement was made
(see text).

compare the defect concentrations before and after an-
nealing. In Fig. 8 we plot XD the measured disclination
concentration after annealing versus (No N) a measur—e
of the number of defects introduced prior to annealing,
where No is the number of bubbles present at the start of
the experiment and N is the number present at the bias
field at which the measurement was made.

Figure 8 shows that in the hexatic glass
[(No N)(500 m—m ] the number of defects present
after annealing is directly proportional to the number in-
troduced prior to annealing. This implies that the defects
in the hexatic glass do not equilibrate in the annealing
period, which is consistent with measured values of Dg1;d,
presented above. In Fig. 8, after this initial linear in-
crease we see a change in slope at (No —N) =—500 mm
In the hexatic phase [(No —N)=500 mm to 2000
mm ] the slope is essentially zero, and the number of
defects in the annealed array is independent of the num-
ber of defects introduced by incrementing H~. Now
many of the dislocations introduced prior to annealing es-
cape to the grain boundary or annihilate each other dur-
ing the annealing period. However measured values of
D 1;d, presented above indicate that 30 min is not ade-
quate for complete equilibration in the high density
Halperin-Nelson hexatic. At these densities the extent of
equilibration indicated by Fig. 8 could be because disloca-
tions are introduced uniformly and can equilibrate local-
ly. At lower densities, Fig. 8 shows a sharp rise in the
number of disclinations in the annealed array near
(No —N)=2600 mm, which corresponds to H~ =92.9
Oe and p=1300 mm . This dramatic increase, accom-
panied by the thermal excitation of virtual dislocation
pairs, is a characteristic signature of the hexatic-to-liquid
transition. Above this sharp increase, for
(No —N) )3000 mm, the system is a liquid. The drop
in defect concentration at very large values of (No N)is-
an experimental artifact due to a decrease in the total

FIG. 9. Probability P(n) of a bubble having n adjacent bub-
bles vs n, for the values of H& indicated. Initially the distribu-
tion is sharply peaked at n =6. It broadens symmetrically at
the melting transition.

number of bubbles in an image.
To study the evolution of topo1ogical disorder we mea-

sured distributions of lattice defects in the system. In
Fig. 9 the probability of finding a bubble with n adjacent
bubbles is plotted versus n,, for a range of densities p.
Note that n =6 for all bubbles in a defect-free hexagonal
array, and this value of n does not represent a lattice de-
fect. The first distribution (H~ =89.0 Oe) shown in Fig.
9 is a typical distribution observed at hexatic glass densi-
ties. Here almost all the bubbles are sixfold coordinated,
indicating low topological disorder and defect concentra-
tion. The second distribution shown (H~ =92. 1 Oe) is
typically observed at Halperin-Nelson hexatic densities.
In this hexatic phase the distribution broadens to include
a few five- and sevenfold coordinated bubbles, corre-
sponding in Fig. 3 to a gas of dislocations. The next
three distributions in Fig. 9 show the array near the tran-
sition (H~ =92.7 Oe, 92.9 Oe, 93.1 Oe). The distribution
widens sharply at the hexatic-to-liquid transition taking
the system from sharp hexatic distributions to broad
liquid distributions. In the liquid phase (H~ =93.3 Oe,
93.4 Oe) the distribution includes many more five- and
sevenfold coordinated bubbles, and a few four- and eight-
fold coordinated bubbles, all corresponding to free dis-
clinations. In the liquid the distribution of disclinations
is not observed to vary appreciably with bubble density.

Figure 9 shows that the widening of the distribution at
the hexatic-to-liquid transition occurs symmetrically
around n =6. We define the topological charge e of a
bubble with n adjacent bubbles by e =(n —6). By this
definition sevenfold (eightfold) coordinated disclinations
have a topological charge of +1 (+2) while fivefold
(fourfold) coordinated disclinations have a topological
charge of —1 (

—2). The symmetrical broadening of the
distributions implies that the net sum of topological
charges in the system at any value of the bias field Hz
equals zero. As expected, topological charge neutrality,
an assumption made in the Halperin-Nelson theory of
two-dimensional melting, is preserved. Observations
of the array indicate that topological charge neutrality is
preserved locally as well, over areas with linear dimen-
sions of a few lattice spacings.
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VII. PHENOMKNOI. OGICAI. DESCRIPTIONS
OF MKI.TING

Phenomenological approaches such as the use of the
Lindemann criterion are very useful for characterizing
phase transitions in three dimensions. According to the
Lindemann criterion, melting occurs in three-
dimensional systems when the mean-square displace-
ments of particles from their equilibrium position in a lat-
tice (u (R) ) —=0. 1a, where a is the average lattice spac-
ing. Unfortunately ( u (R ) ) diverges with system size in
two dimensions. However, the mean square of the
difference between displacements of adjacent bubbles
((u(R+a) —u(R)) ) is finite in two dimensions, and
therefore a useful phenomenological measure of melt-
ing. Here, u (R) is the displacement of a bubble from
its position R in the ideal lattice, or r = (u (R )+R ) is the
actual position of the bubble in the array. The quantity
a, the lattice spacing of the ideal lattice, equals the aver-
age of the separations a between adjacent bubbles in the
array.

The distributions P(a) of adjacent bubble separations
n varies with bias field Hz as shown in Fig. 10. The dis-
tribution is sharply peaked for the hexatic glass and the
hexatic, as shown by the curves H~ =88.9 Oe to 92.5 Oe
in Fig. 10. The distribution broadens at the hexatic-to-
liquid transition, as shown by H~ =92.7 Oe to 93.1 Oe in
Fig. 10. For the liquid the distribution remains broad, as
shown by H~ =93~ 3 Oe and 93.8 Oe in Fig. 10.

In order to study the broadening of this distribution
P(a) at the transition, we measured the widths of the dis-
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FIG. 11. Standard deviations W of the distributions P{a)
shown in Fig. 10 vs the bias field H&. 8'is a useful phenomeno-
logical melting criterion in two dimensions (see text): at the
transition 8'—=0. 1a.

tribution as a function of H~. The result of this measure-
ment is standard deviations W of the distributions P(a)
of a, plotted as a function of Hz in Fig. 11. Figure 11
shows that at the phase transition 8'-=0. 1a. As Fig. 11
shows 8'-=0.06a in the hexatic phases, for H~ & 92.5 Oe.
At the hexatic-to-liquid phase transition F increases
sharply, between H~=92. 5 Oe and 93.1 Oe. For the
liquid phase 8'&0. 13a, for H~ &93.1 Oe. Note that
W = ((a —a) ) by definition, and it is straightforward to
show that ((a—a) )=((u(R+a) —u(R)} ). There-
fore, the hexatic-to-liquid transition in two-dimensional
magnetic bubble arrays occurs when the root-mean
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VIII. MELTING IN A GRADIENT
MAGNETIC FIELD

square of the difference between displacements of adja-
cent bubbles (((u (R +a)—u(R)) ) )'~ —=O. la. This
measured behavior agrees well with that found in the nu-
merical simulations described in Ref. 34, indicating that
the modified Lindemann criterion is useful for character-
izing melting transitions in two dimensions and for mak-
ing comparisons between different systems.

Our observations also indicate that at the hexatic-to-
liquid transition the motion of bubbles in the array goes
from constrained in the hexatic phase to diffusive in the
liquid phase. To study the bubble motion we determined
distributions P(u) of measured bubble displacements u

over constant time intervals t =5, 10, and 15 s. Figures
12(a) and 12(b) illustrate typical distributions observed in
the hexatic and liquid phases respectively. In Fig. 12(a),
P (u) does not vary appreciably with time, indicating con-
strained bubble motion. In Fig. 12(b), P(u) widens as a
function of time, and its mean value moves to larger u.
Figure 12(b) shows that the bubble motion is diffusive in
the liquid.

We determined a diffusion constant for bubble motion
Db„bb&e from the measured bubble displacements. In Fig.
13 we plot this diffusion constant Db„bb&e versus the bias
field Hs. In the hexatic glass (Hs =88.0 Oe to 89.9 Oe)
the bubble motion is constrained with Db„bb&e=—0.005
pm /s, and bubbles are trapped by the array. In the
Halperin-Nelson hexatic (Hs =90.6 Oe to 92.5 Oe), bub-
ble motion is still constrained with D&„&&~,-=0.01 pm /s.
At the hexatic-to-liquid transition the diffusion constant
increases rapidly over H&=92. 7 Oe to 93.1 Oe, with

Db„bb&e
———0. 1 pm /s at the center of the transition. In the

liquid phase (HB =93.3 Oe to 94.4 Oe) bubble motion is
diffusive with Dbubble 0. 15 pm /s.
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field. The gradient field produces a gradient in the bubble
density across an image, with a range spanning the transi-
tion. The presence of a melting front or phase separation
would be the signature of a first-order transition, while a
continuous coarsening of the array would signal a con-
tinuous phase transition.

In this experiment the annealed bubble array was
placed in a linearly varying perpendicular magnetic field
gradient of magnitude 0.005 Oe/pm. This gradient field
adds to the applied perpendicular bias magnetic field Hz.
Then Hz was increased slowly to 90.8 Oe, and the array
was allowed to anneal for 30 min in a 6.6-0e peak-to-
peak, 40-Hz perpendicular ac field. This ac field enables
the array to respond to the pressure gradient produced by
the gradient magnetic field, resulting in an equilibrium
bubble density gradient across the image. The charge-
coupled-device camera was set up so that the center of
the image obtained coincided with the center of the mag-
netic field gradient, where the magnetic field due to the
gradient is zero. Image of size 1460X1095 pm were
recorded. The gradient field produced a continuous
range of bias fields between 87.1 and 94.4 Oe across the
image, and the resulting bubble densities spanning the
image ranged continuously from hexatic-to-liquid values.

A section of a typical image obtained is shown in Fig.
14. The lattice spacing ranges from -20 pm on the left,
corresponding to hexatic densities, to -46 pm on the
right, corresponding to liquid densities, over a distance
1370 pm. Melting shown in Fig. 14 occurs via a process
similar to that in Fig. 3. A typical large-angle grain
boundary, which is the boundary condition on the crys-
tallite, is shown for comparison in the lower left-hand
corner of Fig. 14. We do not observe such large-angle
grain-boundary structures inside the crystallite at any
density. We do not observe an interface at the transition
separating the hexatic and liquid phases. We also do not
observe phase separation or two-phase coexistence. We
observe a gradual coarsening of the array from left to

Melting in two dimensions has generated controversy
in the past because competing theories have very different
predictions for the order of the phase transition. ' To
test whether the hexatic-to-liquid transition we observe is
first order we performed the melting experiment in the
presence of a sma11 linear gradient in the bias magnetic

FIG. 14. Melting in the presence of a linear gradient in the
vertical magnetic field indicates a continuous transition (see
text). The field increases by 7 Oe from left to right over a dis-
tance 1370 pm, and produces a gradient in the bubble density.
Lattice spacings range from 20 pm at the left to 46 pm at the
right, spanning the melting transition.
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right. The dislocations do cluster but the clusters rear-
range constantly and evolve continuously. These tran-
sient clusters do not nucleate and grow upon attaining a
critical size like those in first-order transitions. Our ob-
servations therefore indicate that the hexatic-to-liquid
transition is continuous. This is consistent with the mea-
sured gradual decrease in the bubble density p as a func-
tion of Hs in the original experiment, shown in Fig. 1(a).

To confirm that the continuous transition we observed
was not a result of an equilibration problem, we repeated
the gradient experiment allowing the array to anneal for
-2000 min (14 days) in the ac field. Our observations
were the same as above, confirming that the transition is
continuous. We estimate that in the 14-day annealing
peried the dislocations in the hexatic glass, hexatic, and
liquid can glide across -270%, —730%, and —2900%
of the field of view, respectively, or across —50%,
—115%, and -260% of the crystallite (size —10' bub-
bles), respectively. This system is clocked at the ac field
frequency of 40 Hz which implied that the array anneals
for —10 ac cycles. The annealing time equals —3X10
~, —1 X 10 r, and —6 X 10 ~ for the hexatic glass, hexat-
ic, and liquid phases, respectively, where ~ is the average
diffusion time for a dislocation to move one lattice spac-
ing.

IX. CONCLUSIONS

In this paper we have examined in detail the structural
and topological changes that occur in magnetic bubble
arrays undergoing the process of two-dimensional melt-
ing. The results agree with the predictions of the equilib-
rium Kosterlitz-Thouless-Halperin-Nelson- Young theory
for the hexatic and liquid phases, and for the hexatic-to-
liquid transition. We see transient cluster formation in
the hexatic phase. These clusters grow in size and per-
colate across the system as the bubble density decreases.
When the clusters span the system, we observe a liquid
with free disclinations. The diffusion constant for dislo-
cation glide and the defect dynamics indicate that the
system is at equilibrium near the transition. At the tran-
sition, virtual dislocation pairs are thermally excited and,
as a result, the defect concentration shows a dramatic in-
crease and the distribution of defects broadens suddenly.
The system maintains topological charge neutrality at all
densities. Observations in the presence of a gradient in
the bubble density indicate that the transition is continu-
ous. The melting transition is described well by a phe-
nomenological criterion analogous to the Lindernann cri-
terion: melting occurs when the root-mean square of the

difference between the displacements of adjacent bubbles
equals —10% of the average spacing between bubbles.

Because of the presence of microscopic disorder due to
substrate roughness in the sample, translational order is
short ranged for all densities in this system. Therefore at
high bubble densities, away from the transition, we see a
hexatic glass with low defect concentration and low de-
fect mobility, having short-range translational order and
long-range orientational order. A hexatic-to-crystal tran-
sition and a crystal phase that has algebraically decaying
quasi-long-range translational order is not seen.

The bubble-bubble interaction in this system is approx-
imated well by a simple dipolar repulsion (1/r ). For an
interaction of the form 1/r" one can show that the parti-
tion function depends only on the ratio I between the
average interaction energy per particle and the thermal
energy, and this ratio can be used to estimate the location
of the system in the phase diagram. ' At the hexatic-to-
liquid transition we determined this ratio
I,=(p"/a')/ks T to be —30, using measured values for
p, a, and T from Ref. 29 and this paper. This is close to
the value of I,=59—65 reported in numerical simula-
tions of systems with dipolar repulsion. ' ' Our results
do not agree with the conclusions reported in these nu-
merical simulations, for which first-order transitions are
obtained.

Two-dimensional arrays of magnetic bubbles provide a
means to study the melting process and the resulting
phases dynamically. The properties of this system and
the physical processes involved are similar in some ways
to the vortex arrays in type-II superconductors, and a
considerable amount of theory that has been worked out
for superconductors is applicable here. Although static
images of the vortex arrays have been observed,
dynamical properties are difficult to study using existing
techniques. Therefore results from magnetic-bubble ar-
rays might help us to understand the basic dynamical
properties of vortex arrays.
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