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Statistical mechanics of magnetic bubble arrays. I. Topology and thermalization
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Bubble domains in thin magnetic garnet films are an experimentally accessible two-dimensional system
with well-characterized properties. Bubble arrays can be directly viewed with polarized light using opti-
cal microscopy, digital imaging, and computer-video techniques. The structure and dynamics of topo-
logical defects can be studied in detail. We present observations of the interactions and dynamics of de-
fects in magnetic bubble arrays. Quasithermal Brownian motion of bubbles in an applied ac magnetic
field arises from microscopic substrate roughness. Experimental measurements of diffusive bubble
motion are used to estimate the effective temperature, and the effective pinning energy and length scales
for microscopic roughness in the garnet film.

I. INTRODUCTION

Two-dimensional systems have generated considerable
interest in modern statistical mechanics and condensed
matter physics. Theoretical studies on two-dimensional
systems have focused on the characteristics of order and
on the nature of the transition from order to disorder. '

Two-dimensional systems lie between three-dimensional
systems that can be ordered at finite temperatures and
one-dimensional systems that are always disordered. To-
pological defects play an important role in the transition
from order to disorder, which has been addressed in
theory. '

Two-dimensional systems are attractive for experimen-
tal measurements, and have been investigated for some
time. Systems of hard spheres, polystyrene colloids,
magnetic holes in ferroQuids, vortex arrays in high-
temperature superconductors, ' '" liquid crystals, elec-
trons on Helium, and noble gases physisorbed on sub-
strates have been studied. In many of these experirnen-
tal systems (with the notable exceptions of colloids and
ferrofluids) the microscopic structural details are not ac-
cessible. In these cases direct observations are not experi-
mentally feasible using existing techniques, and only mac-
roscopic properties are measured.

Magnetic garnet films are a highly developed material
system. ' ' These garnet films display a rich variety of
domain structures with ordered phases and order-
disorder transitions. Of the different types of domains
that can be nucleated in these garnet films magnetic bub-
ble domains are the best characterized. ' The motion
of magnetic bubbles can be directly observed and fol-
lowed in time. Arrays of bubbles form an interesting and
novel system in which to study the statistical mechanics
of two-dimensional systems. The order-disorder transi-
tion in two-dimensions can be studied in detail, because
the topologica1 defects can be visualized and the micro-
scopic structural details are directly accessible. Assurnp-
tions concerning microscopic structure made in theory
can be directly tested and verified. In these experiments
thermal motion is simulated by the application of an ac
magnetic field. The ac field induces a slight breathing

motion of a bubble, produced by a small periodic con-
traction and expansion of the bubble radius. Microscopic
roughness in the garnet couples to this motion to produce
a jitter in the location of the bubble. Because the force
due to roughness has different values at different points,
the jitter of each bubble is spatially and temporally un-

correlated with the jitter of other bubbles in the lattice-
simulating thermal motion. Magnetic garnet films also
show other domain patterns including cellular domains
that exhibits a topological coarsening process analogous
to soap froths and ordered honeycomb cellular structures
that undergo a sharp topological transition to a disor-
dered froth, ' and strip patterns analogous to Lang-
muir films that exhibit a topological disordering transi-

26, 27

In this paper we describe the statistical mechanics of
two-dimensional arrays of magnetic bubbles in garnet
films. %e describe observations of different topological
defects and the process of thermalization of defects in

magnetic-bubble arrays. In part II, a companion paper
(see Ref. 29) we describe observations of two-dimensional
melting as the density of bubbles in the array is de-
creased. We begin in Sec. II of this paper (part I) with an

introduction to the properties of magnetic bubbles and
bubble arrays in our garnet films. In Sec. III we describe
the methods used to observe bubbles and structural de-
fects in arrays. In Sec. IV we describe experimental ob-
servations of the dynamics of topological defects, which

play an important role in the melting transition. In Sec.
V we describe the thermal motion of bubbles produced by
a superimposed ac magnetic field, and measurements of
the effective temperature. In Sec. VI we summarize our
conclusions. A brief early account of this work appeared
in Ref. 28.

II. BUBBLESAND BUBBLEARRAYS
IN GARNET FILMS

In this section we discuss the basic properties of mag-
netic bubbles and bubble arrays from a theoretical and an
experimental point of view, and describe the characteris-
tics of our samples.
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As illustrated in Fig. 1(a), a magnetic bubble is a cylin-
drical domain of reversed magnetization in a garnet film.
%e observe magnetic bubble arrays in a bismuth-
substituted iron garnet film with material composition
Fe»,Yi.20Bii.09Gdo 9sGao. 76Tmo. 09Oi2 grown by liquid
phase epitaxy at the Airtron Division of Litton Industries
for use in magneto-optic devices. The film has bulk
magnetization 4~M =190 G, thickness h =7.8 pm, and
Curie point &g„rje 170 'C. Like most garnet films
developed for devices, this film has strong growth in-
duced uniaxial magnetic anisotropy with easy axis per-
pendicular to the film plane. The anisotropy supports
domains comprised of magnetization aligned with or op-
posed to a perpendicular applied field Hz. The domain
walls are narrow (-0.1 pm) compared to the domain
sizes ( —10 pm), and have an effective domain wall energy
density (o a ) of 0.23 ergslcm measured using known ex-
pressions for the demagnetization field of isolated bubbles
and stripes. ' Because bubbles move without substantial
deformation in the film via lateral translation of domain
walls, bubble motion is essentially two dimensional. The
garnet films are grown in ultraclean conditions to mini-
mize microscopic material defects which contribute to
coercive friction that inhibits domain motion. Areas of
the wafer close to the center are used to avoid nonunifor-
mities that develop near the edges in the growth process.
Our sample has a usable low-defect area of 3 cm .

The energetics of an isolated bubble domain such as
the one shown in Fig. 1(a) have been thoroughly studied
for device applications. ' The total energy EIB of an
isolated bubble with respect to saturation (all the magne-
tization aligned perpendicular to the film and bubble ab-
sent) is

EIB=Em+EH +EM ~

The wall energy is E~=o.~A, where o.~ is the domain
wall energy per unit area and A is the area of the wall.

(a)

B

(b)

Hs
FIG. 1. (a) Schematic diagram of magnetic garnet film (thick-

ness h) with four cylindrical magnetic bubble domains (radius
r). Arrows represent film magnetization. A perpendicular dc
bias magnetic field H~ is applied opposing the bubble magneti-
zation as indicated. (b) Schematic diagram of hexagonal bubble
array (lattice spacing a & h, r). Stay fields Hz from neighboring
bubbles at the site of the striped bubble add to the bias field H&,
as shown.

The 6eld energy EH=pH& is the magnetic energy of the
bubble's magnetic dipole moment p in the applied per-
pendicular magnetic field Hz and EM is the demagnetiza-
tion energy. For an isolated bubble measured with
respect to saturation, EM represents a gain in energy due
to flux closure between oppositely aligned magnetization
on either side of the domain wall. At a given value of the
applied field Hz the bubble radius r adjusts to minimize
the total energy EIB. There are two physically important
values of Hz for isolated bubbles that bound the range of
bias fields within which the bubble is stable and energeti-
cally favorable. Isolated bubbles collapse at a field

Hs=HC0, for which the bubble radius r is rco. Both
H&0 and rco are well defined and reproducible values for
a particular garnet film. The collapse field Hco places an
upperbound on the range of Hz where an isolated bubble
domain is stable. A lower bound on the range of stable
fields is the run-out field Hz„at which the isolated bub-
ble elongates into a stripe (here RI stands for run-in from
stripe to bubble domains). ' '

An array of magnetic bubbles is illustrated in Fig. 1(b).
Ferromagnetic materials break into many domains in or-
der to reduce the total energy. ' Ho~ever, the evolution
of the pattern of magnetization is limited by the con-
straints associated with the creation or destruction of a
domain, and typical patterns are metastable. Under the
conditions studied here for which only bubble domains
are present, the number of bubbles is constant at a given
field H~, and they arrange themselves to reduce the total
energy. The total energy E„„„ofan array of bubble
domains shown in Fig. 1(b) has two terms

Earray +EIB+Eint (2)

The first term arises from the energy of isolated bubbles
in the applied magnetic field. This equals the product of
the number of bubbles present N and the energy of one
isolated bubble E,a from Eq. (I). The second term E&„,
arises from the repulsive interaction between bubbles. As
shown in Fig. 1(b), at the site of any bubble the stray field
produced by all other bubbles in the film add to the ap-
plied bias field Hz. This repulsive pairwise interaction
between bubbles is well approximated by a dipole-dipole
interaction when the interbubble spacing is larger than
the bubble size r and the thickness of the film h. Given
a uniform film magnetization M, the dipole moment of
the bubbles is p=2Mm. r h, where the factor 2M is the
change in magnetization with respect to saturation. For
a fixed number X of bubbles, the bubble array is under
pressure as a result of the repulsive forces between bub-
bles, and the conditions at the boundary of the array are
important. The energetically favorable configuration for
an array of bubbles far from the boundaries is a triangu-
lar lattice.

Bubble arrays were produced from a sea of bubbles,
created by first applying and then removing a strong in-
plane magnetic field of 2.5 kOe which overcomes the uni-
axial anisotropy. This technique is standard, and the
properties of the bubble sea are reproducible and uniform
throughout the film. This sea of bubbles is initially disor-
dered and has a high density ( —8000 mm ). Polycrys-
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talline bubble arrays with large crystallite sizes of
—12000 bubbles and bubble densities of -4000 mm
were produced from the sea by annealing in superirn-
posed spatially uniform ac and dc magnetic fields for a
period of 4 h. The amplitude and frequency of the ac
field were H„=20 Oe peak-to-peak and v=40 Hz, and
the value of the dc bias field was H~ =75 Oe, opposite to
the bubble magnetization.

Our experiments were conducted with an adjustable
applied bias field Hz oriented to oppose the magnetiza-
tion of the bubbles. As the bias H~ is increased from
zero, the net bubble magnetization which opposes H& de-
creases in four regimes. At small values of Hz, the num-
ber of bubbles remains constant, and their radii decrease
with increasing Hs (regime 1). At sufficiently large
values of Hz, the local field at some places in the film

exceeds the collapse field Hc0 and some bubbles are des-
troyed as Hz increases; at intermediate fields the bubble
radii also continue to decrease (regime 2). At larger
values of Hs (above 75 Oe for our samples) the bubble ra-
dius does not change significantly as the field is increased
and is uniform from bubble to bubble. In this regime the
net bubble magnetization decreases primarily via the de-
struction of bubbles as their local field reaches Hco (re-

gime 3). At very large values of Hs the areal density of
the bubbles is low and bubble-bubble interactions are
negligible (regime 4). We call this the isolated bubble re-
gime. Isolated bubbles collapse when the applied bias
field reaches the collapse field H~ =HC0, which for our
sample is HC0 = 103 Oe in the absence of an ac field.

III. VISUALIZATION OF BUBBLEARRAYS

We can directly observe this two-dimensional system
and follow the bubble motion in time. We use optical mi-
croscopy and the Faraday rotation of transmitted polar-
ized light to observe magnetic bubbles. The Airtron gar-
net film contains a large concentration of bismuth and
has an unusually large ratio of magneto-optic rotation to
absorption. Thus, images obtained are bright and have
high contrast. These images were recorded via a charge-
coupled-device camera, a video corrector, and an S-VHS
videocassette recorder onto videotape. The videocassette
recorder is interfaced to a computer through a frame-
grabber board, which was programed to capture video
images as a function of time by continuously converting
the video signal into bitmaps.

Our measurements are expressed in terms of the
motion of the centers of the bubbles in an array. The se-
quence of image-processing steps used to extract the bub-
ble centers from videodata is illustrated in Figs. 2(a) —2(c).
Figure 2(a) shows a section of a typical grey scale record-
ed image. Grey scale images were digitally processed to
equalize intensity differences across the field of view, and
then thredholded to produce sharp black and white pic-
tures as shown in Fig. 2(b). This technique accurately lo-
cates -98%%uo of the bubbles in the image. The errors in
locating the few remaining bubbles were usually due to
dust particles on the sample or in the optics. The bubbles
in these areas were carefully isolated by hand after identi-

fying the dust on the grey scale image. The algorithm
used for intensity equalization consists of dividing the
picture into squares of a specific size (20 pixels X 20 pix-
els), and then subtracting the average grey scale value of
each square from each pixel in that square. Our measure-
ments indicate that this algorithm does not introduce
significant distortions in the array of bubble centers.

After thresholding, the location of each bubble in the
picture was computed from the arithmetic means of the x
and y coordinates of all the pixels representing each bub-
ble, and the area of each bubble was determined from the
sum of the number of pixels. A spatial low-pass filter was
used to remove spurious single-pixel noise from the im-
ages. The product of these steps is illustrated by Fig.
2(c), which consists of an array of points at the centers of
the bubbles in Figs. 2(a) and 2(b). Note that the spatial
resolution in Fig. 2(c) is greater than that of either Fig.
2(a) or 2(b); as a result of averaging the uncertainly in the
location of bubble centers is less than one pixel in the
original image. The area of each recorded image was
1078X808 pm and the number of bubbles in an image
was as large as 1V -3000, for which the bubble spacing is
—10 pixels (17 pm).

Topological defects in bubble arrays are difficult to
determine by eye, especially when the number of defects
is large. We used Voronoi constructions to unambigu-
ously determine the type and location of topological de-
fects in arrays of bubble centers such as Fig. 2(c). A
Voronoi construction is the cellular pattern formed by
the perpendicular bisectors of all line segments joining
neighboring bubbles; for each bubble site the correct cell
is the smallest polygon formed by any possible combina-
tion of perpendicular bisectors. This construction is
unique for a given set of points. Topological defects can
be expressed in terms of disclinations, which are sites
with greater or fewer than six adjacent sites. A site with
a five-sided polygon in the Voronoi construction is a five-
fold disclination with topological charge —1, and a site
with a seven-sided polygon is a sevenfold disclination
with topological charge +1. This construction also mea-
sures the quantities necessary to probe orientational or-
der, specifically the midpoints of the lines connecting ad-
jacent bubbles (bond centers), and the angles these lines
make with respect to the horizontal (bond angles). The
algorithm used to implement Voronoi constructions is de-
scribed Ref. 34.

Figure 3(a) is the Voronoi construction for the bubble
center array shown in Fig. 2(c). The disclinations
identified using the construction in Fig. 3(a) are displayed
in Fig. 3(b): here the black squares correspond to fivefold
disclinations and the black circles correspond to seven-
fold disclinations. A black circle and a black square
separated by one lattice spacing corresponds to an edge
dislocation.

IV. TOPOLOGICAL DEFECTS IN BUBBLEARRAYS

In this section we present direct observations and rnea-
surements of the properties and interactions of topologi-
cal defects in bubble arrays. The evolution of bubble ar-
rays and topological defects can be viewed directly in
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space and time as described in the previous section. Bub-
ble arrays are a real physical system in which the static
and dynamic properties of topological defects can be
studied. Early observations of topological defects in
closely packed bubble arrays (in regime 1 or 2) were made
by coolhouse and Chaudhari.

In a perfect hexagonal lattice all bubbles are sixfold
coordinated and the Voronoi construction is a perfect
honeycomb structure. As illustrated in Figs. 4(a) and

4(b), fivefold and sevenfold disclinations can be made
from a perfect hexagonal crystal by removing or adding
one 60' wedge. As shown, the strain field associated with
an isolated disclination is approximately rotationally
symmetric and independent of distance from the disclina-
tion, and the total strain energy increases with the size of
the system. In our bubble arrays we observe four-,
five-, seven-, and eightfold disclinations. As shown in
Fig. 4(a) and 4(b) isolated disclinations destroy both
translational and orientational order in a lattice. '

Isolated disclinations with opposite topological charge

attract each other strongly and form clusters which cor-
respond to more complex topological defects. A five-
seven disclination pair forms an edge dislocation, which
corresponds to two additional half-rows of bubbles, indi-
cated by the dotted lines in Fig. 4(c). Dislocations do not
destroy orientational order, but do destroy translational
order, as seen by the Burger's circuit around the disloca-
tion in Fig. 4(c) (heavy black line) which does not close
upon itself. ' In our arrays we commonly observe five-
seven edge dislocations, as shown in Fig. 3(b). Disloca-
tions move relatively easily in the glide direction perpen-
dicular to the line joining the five- and sevenfold disclina-
tions, but less easily in the climb direction parallel to this
line, because climb involves the absorption and emission
of vacancies and interstitials while glide does not. Dislo-
cations produce a dipolar strain field which falls off with
distance as l lr, and the energy associated with a disloca-
tion increases as the logarithm of the system size.

Isolated dislocations attract each other via their strain
fields, and form more complex defects composed of two
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FIG. 2. (a) Section of a grey scale image of a bubble array as
acquired. (b) Section of the image after equalizing and thresh-
olding. (c) Bubble locations determined form the thresholded
image; dots correspond to the bubble centers.

FIG. 3. (a) Voronoi construction of the bubbles center array
in Fig. 2{c); this construction is used to determine bond infor-
mation and isolate lattice defects. (b) Topological defects isolat-
ed from the Voronoi construction in (a). The open squares,
black square, and black circles correspond to four-, five-, and
sevenfold disclinations (see text).
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(a)

~ ~

(c)

(c

FIG. 4. Topological defects commonly observed in two-
dimensional magnetic bubble arrays: (a) and (b) are five- and
sevenfold disclinations and (c) is an edge dislocation formed
from a five-seven disclination pair. The dashed line in (a) and
(b) denote what would be 60' wedges in the corresponding hex-
agonal lattice without defects. The dashed lines in (c) denote
two extra rows in the lattice, associated with the dislocation.
The heavy black line in (c) is a Burger's circuit around the dislo-
cation.

or more dislocations. Examples of different types of de-
fects from bubble array data are shown in Figs. 5(a)—5(e).
Pairs of dislocations with antiparallel Burger's vectors
preserve both rotational and translational order. Shown
in Fig. 5(a) is a virtual pair, also called a lattice shear or a
twisted bond. A virtual pair has no missing or addi-
tional bubbles. This dislocation pair arises by a slight dis-
tortion of a defect-free hexagonal lattice, and the two
dislocations can annihilate in the same manner in which
they were created. Virtual pairs can be thermally excited
in bubble arrays at all densities, and are especially impor-
tant close to the hexatic-to-liquid transition. An in-
terstitial and a vacancy are shown in Figs. 5(b) and 5(c),
respectively. The glide plane of these dislocations are
separated by one lattice spacing in the climb direction
such that the extra rows add to give the vacancy or sub-
tract to give an interstitial. Equivalently, this can be seen

by drawing a Burger's circuit around the pair, counting
the number of bubbles enclosed, and comparing this
number with that for a perfect lattice.

The most common mode of dislocation interaction we
observe is the glide of dislocations onto one another, re-
sulting in combination into fewer dislocations or separa-
tion into more dislocations. As examples we have includ-
ed two other observed structures in Figs. 5(d) and 5(e).
These are three- and four-dislocation clusters correspond-
ing to interstitials. The structure in Fig. 5(d) has been
called a centered interstitial previously. The structure
in Fig. 5(b) can be recovered from the structure in Fig.
5(d) by gliding two dislocations onto one another and
combining them. Similarly the structure in 5(d) can be
recovered from that in 5(e) by dislocation glide. Gliding

~O.
.

' ~ ~~y
~a

FIG. 5. Sections of bubble array images showing common
defect structures with zero net Burger's vector. The dislocation
pair in (a) corresponds to a virtual pair, also called a twisted
bond or lattice shear. The dislocation pairs in (b) and (c) corre-
spond to an interstitial and a vacancy, respectively. The three-
and four-dislocation clusters in (d) and (e) correspond to inter-
stitials and can be obtained from (b) via dislocation glide.

the two dislocation sin Fig. 5(b) onto each other gives a
seven-four-seven triplet of disclinations, and this
configuration is called an edge interstitial.

V. QUASITHERMAL MOTION OF BUBBLES

Thermal motion of bubbles in our experiments is simu-
lated by the application of an ac magnetic field H„su-
perimposed on the dc field H~. This ac field agitates the
bubbles and produces random motion which simulates
thermal Brownian motion corresponding to an effective
temperature. This technique is standard in bubble
memory technology to overcome the effects of coercive
friction associated with microscopic roughness and allow
bubbles to move freely. On the basis of observations and
measurements we have constructed the following model
for this phenomena.

In an ideal garnet film grown on a perfectly smooth
substrate, an ac magnetic field acting on an isolated bub-
ble with radius r in a dc bias field H~ produces a breath-
ing motion of the bubble in which the bubble radius r un-

dergoes a slight periodic contraction and expansion. Our
observations indicate that the change in radius is small in
our experiments, consistent with measurements indicat-
ing r does not vary appreciably with Hz.

Substrate roughness in otherwise ideal garnet films pro-
duces microscopic, random disorder on short-length
scales. Because of this random disorder an isolated bub-
ble in the applied ac field executes its breathing motion
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on a rough surface analogous to sandpaper. When the
bubble contracts and expands, this random potential pro-
duces a force on the bubble which changes its position
slightly. As described below, we find that isolated bub-
bles diffuse in an apparently random way, indicating that
the length scale of the random substrate potential is less
than the size of the bubbles; we find no evidence of
coherent motion.

Now consider an array of bubbles. Because the disor-
der is random and short range, the force on bubbles at
different positions in the film is different. Therefore bub-
bles undergoing the same contraction and expansion cy-
cles under the ac field at different positions are kicked in
different directions, simulating thermal motion. We do
not see any evidence for coherent motion of bubble arrays
in the ac field, or the production of spatial patterns, indi-
cating that the substrate potential is fiat on length scales
larger than the bubble radius. In substrates of lesser
quality, not used in these experiments, we clearly observe
patterning as bubbles are attracted to low spots in the
substrate potential. The observed long-range uniformity
of this microscopic frictional pinning for dilute bubble ar-
rays indicates that the microscopic disorder has negligi-
ble structure at long wavelengths.

The random motion of iso1ated bubb1es in garnet films
is analogous to thermal Brownian motion. The motion of
a bubble in the film can be described by a Langevin equa-
tion for the bubble velocity v (t):

Mdv (t)/dt +v (t)/B =F(t)+/(t) . (3)

The term v (t)/B represents the viscous drag experienced
by the bubble as a result of many collisions with random
substrate roughness; F(t) is the net external force on a
bubble and /(t) is the rapidly fiuctuating force which
averages to zero over times much larger than the length
of one ac cycle. In the absence of an external force
F(t) =0, the bubble executes a random walk. The
diffusion constant for bubble motion D is determined by
the width of the Gaussian distribution of displacements
from the initial position. For a constant external force F
the bubble drifts with constant average velocity
(v(t)) =BF, where B is the bubble mobility. Assuming
that the bubble motion is Brownian, an Einstein relation
relates the mobility B to the diffusion constant D:

ks T,tt=D/B . (4)

Here, T,& is the effective temperature of the bubble
motion and kz is Boltzman's constant. Thus the action
of the ac field coupled with microscopic substrate rough-
ness is to produce viscous Brownian motion of bubbles
with an effective temperature T,z. Note that all our ex-
periments are performed at room temperature and we do
not vary the physical temperature of the sample.

In order to characterize bubble jitter in an applied ac
magnetic field and to study the effects of substrate rough-
ness, we made detailed observations of the dynamics of
the bubble motion. In these experiments the density of
the bubble lattice was reduced to p-50 mrn in order to
minimize interactions between bubbles (regime 4). The
dc bias H~ was held at 92 Oe for which the measured

bubble radius is r =4.8 pm. An ac field of frequency 40
Hz and adjustable amplitude H„was applied. We then
measured the diffusion constant D and the mobility B for
the motion of isolated bubbles as described below. The
time scales for all measurements were much larger than
the time scale of the ac field ( —' s).

The bubble diffusion constant D was measured by
direct observations of the motion of individual bubbles in
time under the influence of the ac field for a range of am-
plitudes H„. In order to do this we recorded the bubble
motion for long periods of time and digitized images at
periodic intervals for which the displacements were
smaller than the bubble spacing. We followed the motion
of each bubble from one image to the next by searching
locally to find the nearest bubble. This algorithm accu-
rately and quickly traces the path of each bubble in time.
The paths of many bubbles were measured to statistically
determine the diffusion constants D for isolated bubbles
as a function of the ac field amplitude H„.

The mobility B of isolated. bubbles was measured via
the velocity of bubbles under the influence of an in-plane
force applied by a magnetic field gradient. Consider an
isolated bubble, with radius r in a dc bias field Hz applied
along the z direction perpendicular to the film. A small
gradient in the perpendicular magnetic field 7Hz(x) is

applied by linearly varying the perpendicular field along
the x direction, so that the direction of the gradient lies
in the plane of the film. This gradient field produces an
in-plane force on the bubble pVHz(x)—. In our experi-
rnents the gradient field was produced by a pair of oppos-
ing coils on either side of the sample. The collapse field
of isolated bubbles was used to measure and characterize
the gradient magnetic field; the field is linear to +3%
over a 3000-pm region of the sample for a 0.011 Oe/pm
gradient.

The bubble mobility B was measured by subjecting
bubbles to a constant in-plane external force F via a gra-
dient magnetic field. The magnitude of the applied field
gradient was 0.005 Oe/pm for which F =8 X 10 dynes.
For this field gradient the bubble radius does not change
appreciably over 3000 pm, much larger than the field of
view. The bubble motion produced by this in-plane force
was recorded as above, and the bubble drift velocities U

parallel to F were directly measured for different values
of H„and used to determine the mobility B =v /F.

The measured bubble diffusion constant D and mobility
B are plotted versus the amplitude of the ac field H„ in

Figs. 6(a) and 6(b). As shown, the diffusion constant D
rises rapidly with H„, whereas the mobility B increases
linearly with H„above a depinning threshold. The
effective temperature T,~ of the bubbles was measured
using Einstein's relation Eq. (4) and is shown versus H„
in Fig. 7; the dashed line in Fig. 7 is a linear fit to the
data. As shown by this data, the ac magnetic field cou-
pled with microscopic substrate roughness simulates
thermal motion with effective temperatures T,&-10 K.
Figure 7 indicates that the analogy between quasithermal
motion of isolated magnetic bubbles and the Brownian
motion of pollen grains is good, but not perfect: there
might be small deviations from ideal Brownian dynamics
in the motion of magnetic bubbles.
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FIG. 6. (a) Measured bubble diffusion constant D vs peak-to-
peak amplitude of the applied ac field H„at frequency 40 Hz,
for isolated bubbles (density p=50 mm '). The dashed line is
an exponential fit to the data. (b) Measured bubble mobility 8
vs peak-to-peak amplitude of the applied ac field H„, for the
same conditions as in (a). The dashed line is a linear fit to the
data.
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FIG. 7. Measured effective bubble temperature T,ff vs peak-
to-peak amplitude of the applied ac field H„, determined from
measured diffusion constant D and mobility 8 via Einstein s re-
lation (see text). The dashed line is a linear fit.

As shown by the Arrhenius plot of the measured
diffusion constant D versus inverse temperature 1/T, fr in
Fig. 8, the diffusion of isolated bubbles is activated. The
diffusion constant for a simple hopping model is
D =vLpexp( E~IksT), —where the attempt rate v is

equal to the driving frequency 40 Hz, the average length
per hop is the pinning length scale Lp, and the Boltzman
factor is the probability of success for hopping over a pin-
ning energy barrier Ep. From the fitted dashed line in

Fig. 8 we obtain estimates of the pinning length scale
Lp—=0.4 pm and the pinning energy Ep=1X10 K,
which are consistent with the discussion of diffusive bub-

-10
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5 4 3

1/T (10 K )

0

FIG. 8. Arrhenius plot of the measured bubble diffusion con-
stant D vs effective temperature T,ff. The dashed line is a fit of
the form: D =vLpexp( —Ep/kz T) (see text).

ble motion given above. Because Lp is much smaller
than the bubble radius, we are justified in assuming that
the length scale of the substrate roughness is short. Also,
the pinning energy is larger than the measured effective
temperatures, consistent with a simple model for activat-
ed diffusion.

The absence of coherent motion of isolated bubbles,
and the fact that they show no observable tendency to
bunch together or form patterns, is strong evidence that
the garnet films used in this work are free from significant
inhomogeneity on long length scales that are comparable
to and larger than a bubble radius. The garnet film used
for this work is a single crystal grown on an untwinned
single crystal substrate. In the presence of an agitating ac
field, isolated bubbles are free to move. If minima in the
total potential were present the bubbles would How to-
ward them, thus decorating large-scale inhomogeneities
in film thickness or magnetic properties. In fact we have
seen bunching and pattering of this type in lesser-quality
garnet films, not used in this experiment.

VI. SUMMARY

In this paper we have described the structural and
thermal properties of magnetic-bubble arrays in thin gar-
net films. Structural defects in the bubble arrays are visu-
alized and expressed in terms of simple disclinations and
dislocations. Dislocation pairs are observed which corre-
spond to virtua1 pairs, and lattice vacancies and intersti-
tials. Dislocations are found to interact primarily via
glide, although climb is observed. Dislocation and dis-
clination motion is made possible in these arrays by ac-
field induced bubble jitter. Microscopic substrate rough-
ness couples with periodic forcing to produce diffusive
bubble motion. The effective temperature and diffusion
constant for bubble motion are measured versus the am-
plitude of the ac field, and it is found that diffusion is

thermally activated. These measurements also indicate
that the microscopic random substrate potential has
length scale less than the bubble size and energy greater
than the effective temperature. These properties of
magnetic-bubble arrays make this system well suited to
studies of the melting transition in two dimensions.
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