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Phase diagram of a hexagonal model with incommensurate phases
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A hexagonal two-dimensional model of particles with displacive degrees of freedom and inter-
acting via a potential with harmonic and anharmonic third- and fourth-order terms has been con-
sidered. The calculated phase diagram has incommensurate and commensurate phases with both
one-cBmensional 1q and two-dimensional 3q modulations. The incommensurate 3q phase proves to
be stable in the presence of the third-order anharmonic term and close to the phase boundary of the
normal phase. The commensurate phases with 1q and 3q modulations, characterized by the wave
vector 3, are found to be degenerate and stable in the same region of the phase diagram.

I. INTRODUCTION

A number of crystals have been found that possess in-
commensurate phases. Such phases exist in magnetic sys-
tems, dielectrics, and metallic alloys. Very often the ori-
gin of the incommensurability can be traced back to com-
petitive forces acting at mutually incommensurate length
scales. The best-known incommensurate phases~ occur
in crystals with orthorhombic frame symmetry, but all
of them show one-dimensional (1q) modulations propa-
gating, as a rule, along high-symmetry lattice directions.
A two-dimensional incommensurate modulation occurs
rather seldomly. One example is known in tetragonal
crystals of barium sodium niobate. ~ In a few hexago-
nal crystals two-dimensional (3q) incommensurate phases
have been reported. There, the 3q modulation is a su-

perposition of three 1q modulations aligned along three
equivalent high-symmetry directions. Hence, the 3q mod-
ulation preserves the point symmetry of the hexagonal
plane. Quartz, s'4 A1PO4, s and the charge-density-wave
material 2H-TaSe2, s~ belong to that class of crystals.
In quartz the uniaxial stress causes the 3q modulation
to become a 1q modulation. ~o The 3q commensurate and
incommensurate phases are also formed by deuterium D z
adsorbed on graphite surfaces.

There are two types of theoretical models being used
in studies of incommensurate phases. The first kind be-
longs to the ANNNI (axial next-nearest-neighbors Ising)
model which has been formulated in both two- and three-
dimensional versions. ~2 An ANNNI model has spin-z~

particles on either rectangular or tetragonal lattices. In
the direction of the modulation, which is the unique axis,
there are first- and second-neighbor interactions; there
are also ferromagnetic interactions perpendicular to it.
These models possess sophisticated phase diagrams with
a variety of commensurate and incommensurate phases,
but again all of the phases prove to be of the lq type.

The second type of models uses continuous displace-
ment variables. To that class belongs the Frenkel-
Kantorova model which can be solved analytically. ~s An-
other representative of this type is the frustrated P
model, which consists of an ensemble of particles

located at the sites of a rectangular or tetragonal lattice,
with each particle subject to a fourth-order site potential
and coupled harmonically to its neighbors. The phase
diagrams of these models show a number of commensu-
rate and incommensurate 1q phases. The models have
been used to study a number of families of crystals with
incommensurate phase transitions. In particular, the
A 2BX 4 compounds, such as K 2Se04, Rb 2ZnC1 4,
Rb qZnBr 4, and the whole family of tetramethyl ammo-
nium tetrachlorometallates, ~s can be described qualita-
tively by these models. The same model was used to
study the kinetics of transformation from commensurate
to incommensurate phases and between the incommen-
surate phases themselves.

There are models on a square lattice that exhibit
two-dimensional modulated phases. One such model
is the lattice-gas mode124 with three-body forces be-
tween the atoms and molecules adsorbed at the sur-
face; another is the Ising model with up to third-nearest-
neighbor couplings, 2s as is the BNNNI (biaxial next-
nearest-neighbor Ising) model. 2s The phase diagrams of
the mentioned models have mainly commensurate phases
with 1q and 2q modulations.

In this paper we discuss a model on a two-dimensional
hexagonal lattice that exhibits stable incommensurate
phases of 1q and 3q modulations. We propose a frus-
trated P4-type model of particles with continuous dis-
placement variables, located on sites of the hexagonal lat-
tice. The particles are coupled harmonically to the neigh-
bors and subject to the site potential with anharmonic
third- and fourth-order terms. The positive fourth-order
term guarantees the general stability of solutions. The
third-order term allows us to couple three modulation
waves propagating in the hexagonal plane along three
symmetric directions inclined by 120' to one another and
thus stabilizing the 3q modulated phases. A similar form
of free energy has been used in the discussion of incom-
mensurate phases27 and of amplitudons and phasons~s

in quartz-type crystals. The aim of this paper is to cal-
culate the phase diagram of the hexagonal model and to
give the phase boundaries between the normal, 1q and 3q
modulated, and low-index commensurate phases.
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II. MODEL (a) (b)

The model considered here is a simple two-dimensional
hexagonal lattice with one particle per unit cell, Fig. 1(a).
Each particle has one degree of freedom which is a dis-
placement Zj, /, perpendicular to the plane of the model.
Each particle interacts with the nearest and next-nearest
neighbors via harmonic forces and is located in the local
anharmonic potential. The potential energy is written as

b'

a

FIG. 1. (a) Direct and (b) reciprocal-lattice vectors of the
hexagonal model.
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The potential energy can be written in dimensionless quantities by using the length Zo = (c/g)1/2 and energy
vo = c /g units, and by introducing a new displacement variable zj l = Z~ //Zo and new parameters A = a/c,
B = b/c, H = h/(cg) /, and V = v///o. Then, the potential energy, Eq. (1), without loss of generality, takes the form

V =
2 ) ( AZ& l + BZj,l(Zj+1, l + Zj 1,l + Zj, l—+1 + Zj, l 1+Zj—+1,/+1 + Zj —1,l —1.)

2

+Zj, l(Zj+1 l 1 + Zj 1,l+1 + Zj+2, l+1 + Zj 2,l 1+Zj+—1 l+2 + Zj 1,/ 2) + HZj l + Z~ /}2
3 4 s (2)

where only three independent parameters A, B, and H exist.
The potential energy, Eq. (2), could be rewritten with reciprocal-space variables by applying the usual transforma-

tion to normal modes q/„

~
—2mik Rp, t

k

where Rj l = ja+ tb is the position vector of the particle at site (j, t), k = k a' + kbb' represents the wave vector,
and a, b and a', b' are the unit vectors of the direct and reciprocal lattices, respectively [Fig. 1(b)]. Using Eq. (3),
the potential energy, Eq. (2), becomes

( ) ~ (kl)Qk Qk ~(kl +k2 kl) ++ ) Qk, Qk Qk ~(kl+k2 4 k3 k2)
ky, kg ky )kg, k3

Qk Qk Ql Ql b(kl+ k2 4 k3 4. k4 —T3)l
kg, kg, k3,k4

with the dispersion curve

(4)

u2(k) = A+ 2B cos2xk, + cos2~kb+ cos2~(k, + kb) + 2 cos21r(k, —kb) + cos2~(2k, + kb) + cos2vr(k, + 2kb) .

Here T], T2, and v3 denote reciprocal-lattice vectors.
Normal terms with r1 —— r2 = rs = 0 describe
the incommensurate modulation. The umklapp terms
with nonzero reciprocal-lattice vectors v; contribute to
the commensurate phases only. The dispersion curve,
Eq. (5), consists of a single branch with a nonzero value
at the Brillouin zone center. Ets surface has a sixfold
symmetry as the hexagonal lattice. The minimum of
u2(k~, kb), when negative, describes the wave vector and
the direction of the static modulation. Our simple form
of the potential energy, and hence the dispersion curve,
allows us to produce a global minimum of u2(k, kb),
along the high-symmetry directions [1,0] (and equiva-
lent) only. Our attempts to produce a global minimum

I

of u2(k, kb) at a general point of the Brillouin zone,
admitting even interaction up to six nearest neighbors,
have failed. Let us denote by q the wave vector at the
minimum of cu2(q~, 0). The dispersion curve (d (q~, 0)
shows six equivalent minima which defines a set of six
symmetric wave vectors. To produce an incommensu-
rate modulation a condensation of modes of one, two,
or three pairs of opposite wave vectors from this set,
are required. Condensation of one pair leads to a one-
dimensional strip modulation, denoted here as 1q. Such
a 1q phase is modulated along the direction of the con-
densed wave vectors. Condensation of the two pairs of
wave vectors would cause a two-dimensional modulation
(2q), but in our model this configuration never becomes
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stable. Condensation of all six wave vectors generates a
two-dimensional modulation called 3q and this one pre-
serves the threefold point symmetry of the hexagonal
lattice. The 1q or 3q incommensurate or commensurate
modulations are characterized by wave-vector values that
are usually close but not necessarily identical to the wave
vector q~ of the minimum of the dispersion curve. The
difference comes from the influence of higher-order har-
monics and/or additional umklapp terms, which cause
the potential energy, Eq. (2), to have a minimum at a
different value of the wave vector than q .

III. NUMERICAL METHOD

k = —a'=
M

m an+ 2m
(6)

and similarly for k b Here, . n and rn are integers
and we have limited their values to n = 0, 1, . . . , 14 and
m = 0, 1, . . . , 7. This choice guarantees that for any pos-
itive pair of (n, m) the ratio N/M is confined to the in-

terval [0, z] and all necessary simple commensurate val-

ues are included. In the following all the phases with

N/M = i, 2, s, 4, s, and s we call commensurate. The
remaining high-order commensurate phases are treated
by us as incommensurate ones, since they prove to be
stable in negligible regions of the phase diagram.

The potential energy of 1q phases have been treated in
a similar way as the 3q modulations. The only difference
was that the lozenges were reduced to M x 1 chains, and
the initial conditions were taken in the form of a single
cosine wave directed along a*.

The ground-state phase diagram of the hexagonal
model is defined in three-dimensional space of A, B, and
H coordinates, where A, B, and H denote the parame-
ters of the potential energy, Eq. (2). The phase diagram
is found numerically by minimizing the potential energy,
Eq. (2), for a set of parameters A, B, and H using the
gradient method. s In order to locate the phase bound-
aries we performed the minimization procedure for Sq
and 1q modulations separately. For the 3q modulation
one selects a crystallite in the form of a lozenge of M x M
lattice constants with edges parallel to the lattice vectors
a and b. Due to such a choice, a commensurate modu-
lation characterized by the wave vectors k~ = (N/M)a*
and k ~ = (N/M)b'—, where N and M are integers and
N & M, fits to the size of the lozenge. In other words,
such a modulation repeats with the period of M x M
lattice constants. Periodic boundary conditions were im-

posed on lozenges. The minimization procedure began
from initial conditions taken in the form of three cosine
waves of particle displacements directed along the direc-
tions a*, —b*, and b* —a*.

We have selected a set of the following wave vectors:

harmonic. These amplitudes are denoted by r)i, r)2, r)s for
the normal modes Q~. , Q~ „Q~. .. respectively, where
the wave vectors q~, q ~, qb correspond to the set of
minima of the dispersion curve, Eq. (5). Counting the
number of equivalent terms in the summation of Eq. (4),
one finds

V =
2 ( 2u (q~, 0)(rli + gg + qs) + 12Hglri2gs

+6(rli + '92 + qs) + 24(rlirlz + rli'Qs + 'Oz'9s) ).
(7)

Vi, = —iz~ (q. 0)(o) i 4 (10)

Similarly for the 3q incommensurate modulation, de-
fined by rl = gi = g2 = gs, the potential energy, Eq. (7),
reduces to

Vs~ = Scu (q, 0)rl + 6HrP + 45'

and hence the amplitude and ground-state energy be-
come

qo = 2'o[H+ sgn(—H) H —
s ~ (q„0)],

Vs = z[~ (qa) 0)+ Hrfo]rlo

(12)

(13)

Comparing the potential energies Vi~ and Vs for 1q(o) (o)

and Sq incommensurate modulations we can Iind that
the Sq phase always occurs between the normal and 1q
phases. Therefore, the phase boundary between the nor-

mal and Sq incommensurate phases is defined by the con-

dition V„) = Vs
) ——0, and using Eqs. (12) and (13) one

finds for it

~2(q, O) = —,'5H . (i4)

Here, uz(q~, 0) is the value of the dispersion curve

at this minimum, where its derivative vanishes,

Bcu (q~, 0)/Bk~ = 0. This condition together with Eq. (5)
gives

The normal phase of our model is defined by rli

gz = gs = 0, and hence its potential energy, Eq. (?), is

A single domain of the strip 1q incommensurate phase
is defined by gz = rjs = 0 and its potential energy, Eq. (7),
in the approximation of a single harmonic becomes

Viq ——ur (q~, 0)g, +Sg, .

From the extremum condition one finds its amplitude and
ground-state energy as

rl, = ~ (q„0),2= 12

B = —(1 + 2 cos 2rrq ). (i5)

IV. SOME SOLUTIONS

Here we give some simple analytical solutions. For
that we write Eq. (4) for the incommensurate phase in

the approximation of amplitudes of the first modulation ~ (q, O)=A —B —3 (16)

Hence, B must be confined to the interval —3 & B & 1.
Combining Eq. (15) and Eq. (5) one finds the value of
the dispersion curve at the minimum as
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and together with Eq. (14) one finds the equation fur the
phase boundary between the normal and Sq incommen-
surate phase as

A= iH +B +3. (17)
At the finite value of H this phase boundary is intersected
by regions of commensurate phases, which slightly enter
into the stability region of the normal phase.

V. PHASE DIAGRAM

0 0.1
1.5 '

t

1.0

0.5

0."'

I

14i3q

I, 3q

qa 0.3 0.4 0.5

I, 3q

I, 3q

5, 3q
1
3) 1qi 3q

1
3q

I, 3q

1

The phase diagram of the hexagonal model is defined
in three-dimensional space spanned by three coordinates
of the potential parameters A, B, and K. The modu-
lated phases may exist in part of the (A, B,H) space
confined by three surfaces: B = —3 and 8 = 1 and ap-
proximately isH2+ B + 3 = A, Eq. (17). The plane
H = 0 is a symmetry plane of the phase diagram. Out-
side the mentioned region the dispersion curve, Eq. (5),
has a minimum either at the zone center or at the zone
boundary, therefore, there one can expect normal or sim-
ple commensurate phases only. The phase diagram has
been found numerically by the procedure described in
Sec. III.

Figure 2 shows two sections of the phase diagram, for
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FIG. 2. Two sections of the phase diagram of the hexag-
onal model for (a) H = 0 and (b) H = 1. N denotes normal
phase. The wave vector g of the minimum of the dispersion
curve is related to B by Eq. (15).
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FIG. 3. Sections of the phase diagram of the hexagonal

model on the parabola A —B =
3 and for constant value of

the minimum of the dispersion curve u (q ) = 3, Eq. (16).

03

H = 0 and H = 1, Figs. 2(a) and 2(b), respectively.
In Fig. 3 we present another section of the phase dia-
gram, a curved plane which is perpendicular to planes
H = 0 and H = 1 and is given by the parabola equation
A —B2 = N. The intersections of this curved plane with
H = 0 and H = 1 planes in Fig. 2 form parabolas and
are located down from the phase boundary to normal
phase at distances hA = s and s, respectively. Along
these intersection lines the minimum of the dispersion
curve is fixed and reads cu2(q„0) = —s. In Figs. 2 and
3 one sees regions of commensurate and incommensurate
phases and the most interesting features appear close to
the phase boundary to the normal phase. All modulated
phases of the phase diagram propagate along [1,0] or
equivalent directions. Phases with the modulation wave
vector rotated away from this high-symmetry direction,
and phases modulated along another high-symmetry di-
rection [1,1] prove to be unstable. Therefore, the phase
diagram, Figs. 2 and 3, gives a complete set of modu-
lated phases of the hexagonal model. The 3q modulated
phases exist at finite H. At H = 0 one finds 1q modu-
lated phases only.

Normal phase and commensurate phases with the mod-
ulation wave vectors k~ = 0, si, 4, s, s2, and 2 cover a con-
siderably large area of the phase diagram. Some of the
displacement patterns of commensurate phases are shown
in Fig. 4. The commensurate phase k = 0 may exist
in one domain only, with all particles having the same
displacement. There are two phases for each of the wave
vectors k 5 3 5 and &, onewith lq, thesecondwith
3q modulation. All Sq phases are stable in narrow regions
close to the normal phase. The only exception occurs for
the 1q and 3q commensurate phases k~ = si which are
degenerate and stable in the same region of the phase di-
agram. The mutual degeneracy follows from the form of
the potential energy. Indeed, inserting into Eq. (2) the
corresponding particle configurations (zp p, zi p = z2p)
and (zp p = zi p = zi, i, zz, p = zp, i = Z2, i = zp, 2 = z1,2 =
z2,2) for the 1q and Sq unit cells of phase k~ = s, respec-
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3, 3g l

4) 3g:

FIG. 4. (a)—(c) Patterns of displacements of the commen-
surate phases k 2 3 4 respectively, for 1q and 3q mod-
ulations. Solid and open symbols correspond to positive and
negative displacements.

tively, one finds the same value of the potential energies.
Such degeneracy may lead to unusual domain patterns,
since domains of different kinds, can coexist in the same
crystal.

The incommensurate phases with 1q and 3q modula-
tions occupy the volume of the phase diagram between
the normal and commensurate phases. As a rule, the 3q
incommensurate modulation appears between the phase
boundary to normal phase and 1q incommensurate mod-
ulation. These 3q regions shrink to zero when B ap-
proaches zero, and when the 3q region approaches the
commensurate phase k = 0. At large ~H~, the regions
of 1q and 3q incommensurate phases decrease again since
commensurate phases k~ = 0, z, si, 4i, si, and s increase
the range of their stability,

Notice discontinuities of the 3q-1q phase boundary ob-
served between incommensurate and commensurate re-
gions.

VI. FINAL REMARKS

The calculated phase diagram of the hexagonal model
corresponds to its ground state. In applications this

model can be considered as a selection of those degrees
of freedom of a real crystal that are responsible for the
formation of commensurate and incommensurate modu-
lations. The behavior of the phase diagram at finite tem-
perature is easy to find in mean-field approximation, 6 5

in which the parameters A, B,H are renormalized and
become slightly temperature dependent. However, this
renormalization might underestimate the temperature
dependence in the real crystal, in which usually many
degrees of freedom, not taken into account in our model,
do inHuence the renormalization of the potential param-
eters. It is believed that a temperature run carried out
with a real crystal possessing modulated phases can be
approximately represented on our phase diagram by a
line. Along such a line usually the parameter A changes
a lot, while H and B stay rather constant. If that is
the case then the temperature interval of stability of the
3q incommensurate phase could be quite narrow as de-
duced from Fig. 2. Consequently, a careful experimental
procedure might be required in order to detect the 3q
modulation.

This hexagonal model cannot be directly applied to
the 3q incommensurate phase of quartz (or AlP04).
The space group and the symmetry of the soft mode
of quartz are different from the ones of our hexagonal
model. The relevant Landau free energy of quartz con-
tains soft-mode and strain variables involving a peculiar
wave-vector dependence of the expansion coefFicients. In
effect, in stress-free quartz the 3q modulated phase is
slightly rotated away from the high-symmetry direction,
and on cooling one finds a sequence of phases: normal
~ 1q —+ 3q —+ commensurate k = 0, which is different
from the sequence: normal —+ 3q ~ 1q —+ commensurate
k = 0 suggested by our hexagonal model.
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