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We present the results of a first-principles study of the composition-temperature phase diagram for
fcc-based Ti-Al alloys and the related structural and thermodynamic properties. In the approach taken
in this study, local-density-functional theory is combined with the formalism of the cluster-variation
method (CVM). In particular, the formation energy, bulk modulus, and atomic volume of metastable fcc
Ti, fcc Al, and nine ordered fcc intermetallic Ti-Al compounds have been calculated using the full-
potential linear-muffin-tin-orbital method. It is shown how the results of these calculations can be used
to obtain a set of volume-dependent effective cluster interactions (ECI’s) which parametrize the total en-
ergies of fcc-based Ti-Al alloys. We discuss in detail how these parameters can be used to determine for-
mation energies, atomic volume, and bulk moduli for both ordered and disordered alloys, and as an ex-
ample we calculate these properties for alloys containing random distributions of Ti and Al atoms as a
function of composition. Furthermore, these ECI’s are used in conjunction with the CVM to calculate
the solid-state, fcc, composition-temperature phase diagram.

I. INTRODUCTION

Ordered intermetallic compounds possess many prop-
erties which make them attractive as potential high-
temperature structural materials. In particular, the
strong bonding between unlike atoms in many of these
compounds leads to high melting points and large elastic
moduli, implying high strength at elevated temperatures.
However, a major barrier to the widespread use of or-
dered intermetallics is that most of them lack room-
temperature ductility and/or toughness.' ™3

The ordered intermetallic compounds found in the Ti-
Al system are particularly promising for aerospace appli-
cations because in addition to their excellent high-
temperature properties, these alloys are about half as
dense as the Ni-based superalloys which have traditional-
ly been used in this industry. For this reason, much
research has been directed at trying to improve the duc-
tility of the Ti;Al, TiAl, and TiAl; compounds without
appreciably altering the other excellent mechanical prop-
erties. In particular, the effect of stoichiometry, ternary
additions, and processing conditions upon the properties
of these alloys is being investigated. ' 3

Of primary importance in attempting to engineer the
properties of the Ti-Al compounds is an understanding of
the equilibrium and metastable phases in this system and
their range of (meta)stability with respect to experimen-
tally controlled parameters such as composition (¢) and
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temperature (7). For this reason, the equilibrium c-T
phase diagram for this system has been extensively stud-
ied and much research involving techniques such as rapid
solidification has been directed at trying to examine
metastable structures. Furthermore, the effect of the
structure of the alloys on the mechanical and thermo-
dynamic properties must also be understood in order to
guide research on this system.

A thorough assessment of the experimental work
which has been performed to study the equilibrium and
metastable phases in this system can be found in Ref. 4,
from which the phase diagram in Fig. 1 is redrawn. Solid
and dashed lines in Fig. 1 indicate phase boundaries
which are, respectively, either well determined or conjec-
tured based upon incomplete experimental evidence.
From Fig. 1 we see that for compositions less than ap-
proximately 10 at. % Al, a-Ti is in equilibrium, which
has the hcp structure and which transforms to the bec 8
phase at high temperatures. For compositions between
25 and 35 at. % Al, a, (Ti;Al), which forms in the D0,y
superstructure of the hcp lattice, is found to be stable. a,
undergoes a solid-state order-disorder transformation to
a at roughly 1400 K. For larger concentrations of Al,
the equilibrium phases all form in fcc-based structures,
some of which are described in Fig. 2. In particular, the
y (TiAl) compound forms in the L1, structure and is
stable over an extended composition range. At 75 at. %
Al a DO0,, structure is stable in only a very small compo-
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See Ref. 5
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FIG. 1. Experimental Ti-Al phase diagram redrawn from

Murray (Ref. 4). Solid and dashed lines indicate phase boun-
daries which are, respectively, well determined or conjectured
based upon incomplete experimental evidence. The dashed
square surrounds a part of the phase diagram which has been
shown to be incorrect, and currently accepted phase boundaries
are given in Ref. 5.

sition range. Both the TiAl and TiAl; compounds
remain ordered up to their melting points. The dashed
box in Fig. 1 surrounds a portion of the phase diagram
which has now been shown to be incorrect. Currently ac-
cepted equilibrium phase boundaries can be found in Ref.
5.

The portion of the phase diagram between 55 and 75
at. % Al in Fig. 1 is not as well established experimental-
ly as the rest. In particular, at composition TiAl, two
phases have been observed with structures which are de-

MARK ASTA et al. 46

scribed by Loiseau et al.® as consisting of nonconserva-
tively antiphased L1, unit cells. According to Murray*
the details of the transformations between these phases
are unresolved at present. Furthermore, an ordered
Ti;Al; superstructure was reported to have been observed
by Miida, Hashimoto, and Watanabe.” However, a more
recent study has concluded that this compound is not
stable.® Also, the region labeled & in Fig. 1 as well as the
portion of the phase diagram labeled “LPS” contain
long-period superlattice structures which can be de-
scribed as consisting of one-dimensionally, conservatively
antiphased L 1, unit cells.”!® The reason for the relative
stability of these phases and the particular sequences of
these structures which are seen in this and other systems
has been the subject of much theoretical and experimen-
tal work.%!'~!* Finally, at low temperatures and at 75
at. % Al, van Loo and Rieck!® have found evidence for
the existence of a compound with a structure different
from that of the DO,,, although more experimental work
is needed to better characterize this phase and its possible
stability.

Metastable phase equilibria have been investigated
near the BTi—aTi transition as well as in the region of
Al-rich alloys.!>!® Additionally, evidence for a metasta-
ble TiyAl L 1, phase has been found.'® The existence of a
metastable L 1, phase is consistent with the ab initio cal-
culations of Hong et al.,'” which show that this fcc su-
perstructure at composition Ti;Al is only very slightly
less energetically stable (less than 1 mRy/atom) than the
equilibrium DO,q structure.

Several ab initio electronic structure calculations
have been undertaken to better understand the stability
of the various Ti-Al compounds. These studies have
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FIG. 2. Description of the fcc-based structures considered in this study. (100) projections indicate atomic positions in the struc-
tures projected onto the (100) plane. Empty circles symbolize 4 atoms and filled circles are for B atoms. The smaller circles in these
projections denote atoms which are displaced by [100] above the atoms denoted by larger circles. Half-filled circles denote atomic

positions which are alternately occupied by A4 and B atoms along the [100] direction. Unit-cell vectors are given in terms of the con-

ventional fcc unit cell.
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shown that the bonding in this system is characterized by
d(Ti-)-d(Ti) and d(Ti)-p(Al) electronic interactions, the
latter becoming more important as the Al concentration
is increased, and that the bonding is highly directional for
Al-rich compositions.!”?°"22 In particular, the bonding
between second-neighbor Ti atoms is important for the
stability of the DO, structure at Ti;Al,!” while at TiAl,
second-neighbor Ti-Al bonds lead to the stability of the
DO0,, structure for which hybridization between p(Al) and
d(Ti) electrons is enhanced.?® The importance of the Ti-
Al bonds for the stability of the DO0,, TiAl; phase is
thought to be the reason for the strong effect which
tetragonal distortion has on the total energy of this struc-
ture.?*?*2* Furthermore, Chubb, Papaconstantopoulos,
and Klein?® have shown that the fact that the ¢ /a ratio of
L1, TiAl is greater than one can be explained by the na-
ture of the Ti-Ti bonding in this structure.
Electronic-structure calculations have also been used
to understand the structural and mechanical properties of
the Ti-Al compounds. For example, among other prop-

erties, the equilibrium lattice parameters,'”2072 elastic
moduli, 072226 antiphase boundary (APB) ener-
17,2026

gies, 2?2 heats of formation, and the energy asso-
ciated with the creation of twins in various Ti-Al struc-
tures?"2* have been determined and calculated values are
found to be in excellent agreement with experimental ob-
servations and measurements. A major limitation of
these calculations is that only stoichiometric compounds
at zero temperature are considered. The effect of varia-
tions in composition and temperature on the stability and
structural and mechanical properties of a given com-
pound cannot readily be taken into account. For this
reason, Morinaga et al.?” have performed calculations on
Ti-Al clusters using the discrete variational (DV)-Xa
method?® to examine the effect of the Al concentration
and ternary additions on the electronic structure of the
L1, TiAl phase; these authors conclude that the experi-
mental observation that this phase is more brittle at Al-
rich compositions can be understood by the fact that the
addition of Al enhances the p-d bonding effects.

In this paper we present preliminary results of an ab-
initio study of the c-T phase diagram in the Al-Ti system.
In such a study, the relative stability of the hcp-, bee-,
and fcc-based structures in this system must be under-
stood and as a first step we consider only the fcc-based
compounds. The formation energies of the structures de-
scribed in Fig. 2 have been calculated using the full-
potential linear-muffin-tin-orbital (FP-LMTO) method?
in order to study which of these are energetically favored.
The fcc superstructures in Fig. 2 include those which are
known to be stable, namely the DO,, and L 1,, as well as
several which are not experimentally observed. The ener-
gies of these nonequilibrium structures are needed in or-
der to obtain a set of effective cluster interactions’®~3?
(ECI’s) which parametrize the total energy of this alloy
system.

ECI’s can be used in conjunction with the cluster-
variation method*> (CVM) to determine many thermo-
dynamic and structural properties as a function of com-
position and temperature for both (partially) ordered and
disordered alloy phases. In particular, in this paper we
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will show how these interaction parameters can be used
to determine the volume, formation energy, bulk
modulus, and free energy for any configuration of atoms
in an alloy system. As an example, these properties will
be calculated for alloys containing completely random
distributions of Al and Ti atoms as a function of concen-
tration, and the effect of atomic ordering and composi-
tion can then be examined. Furthermore, the solid-state,
fcc phase diagram will also be computed.

The remainder of this paper is organized as follows: in
Secs. II and III the details of the electronic structure cal-
culations, the method of obtaining a set of ECI’s, and the
calculation of the phase diagram are discussed. The re-
sults of the FP-LMTO calculations are then given and
are used to obtain a set of ECI’s. Finally, results ob-
tained with these interaction parameters, including the
phase diagram, are presented and discussed.

II. ELECTRONIC STRUCTURE CALCULATIONS

Our purpose in performing total-energy calculations of
Ti-Al fcc superstructures in this paper is to obtain a set of
ECI’s which can be used to study phase stability and the
effect of composition and the state of order on the prop-
erties of the compounds in this alloy system. For this
reason, the number of superstructures for which these
total-energy calculations must be performed is equal to
(or greater than) the number of ECI’s which we expect to
be important for describing the energetics of this system.
In particular, the stability of a DO,, relative to an L1,
structure, such as is experimentally observed at 75 at. %
Al in this system, can only be modeled by a set of ECI’s
which include interaction parameters beyond the range of
the nearest-neighbor pair of the fcc lattice. Since there
are ten distinct clusters of atoms within the range of the
second-neighbor pair of the fcc lattice, the total energies
of at least this many fcc superstructures must be calculat-
ed.

Furthermore, the effect of structural relaxation on the
total energies of all of the fcc superstructures must be
taken into account since these energies are to be used for
the purpose of studying the relative stability of various al-
loy phases in this system. For example, previous studies
have shown?' ~2* that the L 1, structure at 75 at. % Al is
incorrectly predicted to be the more energetically stable
phase in a first-principles total-energy calculation if the
tetragonal distortion of the DO,, structure is not taken
into account.

In Sec. III it is shown that, provided total energies of
“fully relaxed” ordered compounds are used to obtain the
ECD’s, the effect of structural relaxation will be included
in the parametrization of the energy of a given alloy com-
pound in terms of these interaction parameters. We
must, therefore, find the minimum of the total energy
with respect to all structural degrees of freedom for all of
the ordered compounds, including those which are not
experimentally observed.

A. Method

To calculate the total energies within the local density
approximation'®!? (LDA), we used the method of linear
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muffin tin orbitals** (LMTO?s), as it is known to be highly
efficient and generally applicable. For the present work
we used the full-potential version of the method,?’ as one
of us has shown in detail®® that employing the spherical
approximation for the potential, as is customary in the
LMTO and Korringa-Kohn-Rostoker (KKR) methods,
does not produce sufficiently accurate results for the Ti-
Al system. This is particularly true with respect to lattice
distortions and associated energies of relaxation.

In these calculations, the local exchange-correlation
potential of von Barth and Hedin®® was used. The charge
density was expanded to / =6 inside the spheres, though
I =4 was found to be adequate to compare total-energy
differences. In all cases, a basis set of 22 orbitals/atom
was used, which entailed a tripling of the s and p orbitals
and a doubling of the d orbitals. This was sufficient to
converge the total energy with respect to basis to an abso-
lute precision of approximately 1 mRy/atom; errors in
energy differences are expected to be much smaller. With
respect to the k-point summations, both sampling and
tetrahedron schemes were used; the total energy was con-
verged to approximately 0.03 mRy/atom in each case,
with the number of irreducible k points being typically
300.

Both non-self-consistent and fully self-consistent calcu-
lations were carried out on each structure as a function of
the atomic volume (). For each volume, the structure
was relaxed with respect to all degrees of freedom ap-
propriate to it; for example the D0,, was relaxed with
respect to ¢ /a. The equilibrium total energy (E,), atom-
ic volume ({,), and bulk modulus (B) is then determined
for each structure using a third-order fit of the total ener-
gy (E) to the atomic volume ().

For the purpose of studying the relative stability of the
different fcc superstructures, it is convenient to consider
the formation energy [AE(¢)] of each structure (¢),
which is defined as

AE($)=E(¢)—c4Eq(Alfec)—(1—c4)Eq(Ti,fec) ,
(1

where E(Alfcc) and E,(Ti,fcc) are the equilibrium total
energies of fcc Al and fcc Ti, and where ¢ 6 is the atomic
concentration of Al in ¢.

B. Description of structures

The fcc superstructures considered in this study are de-
scribed in Fig. 2, and among them are those known to be
stable or possibly metastable, i.e., the L1,, L 1j, and DO0,,,
as mentioned in the Introduction. The ordered super-
structures in Fig. 2 can be classified according to the
dominant special-point ordering wave,”3® which is
defined as the compositional k vector responsible for
atomic ordering in the structure. On the fcc lattice there
are three ordering wave families: (100), (110), and
(11L) The L1, and L1, structures belong to the (100)
family, the “MoPt, type,” “40” (*40” is the number as-
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signed to this structure by Kanamori and Kakehashi in
Ref. 39), and DO,, to {(110), and the L1, to the (111
family.’’

From the experimental studies of phase stability in the
Ti-Al system discussed in the Introduction, it can be con-
cluded that {100) and {110) ordering waves are impor-
tant in this system. Furthermore, most of the metastable
and stable fcc superstructures observed in Ti-Al can be
stabilized by nearest- and next-nearest-neighbor effective
pair interactions.?”3*% We have included the 40,
MoPt,-type, and L1, structures in this study since they
are also stabilized by first- and second-neighbor effective
pair interactions* and because the first two belong to the
relevant ordering wave families. These structures are
candidate metastable phases in this system.

The space group symmetry of the structures given in
Fig. 2 dictates the degrees of freedom for structural relax-
ation. The fcc and L1, have cubic symmetry and the
only degree of freedom is the lattice parameter a. DO,,
and 40 are body-centered tetragonal while L1, is simple
tetragonal; in these structures the [100] and [001] direc-
tions are not equivalent by symmetry and therefore the
lattice parameters a and ¢ need to be varied independent-
ly in the total-energy calculations. Although L1, is
rhombohedral, we find that the unrelaxed structure (i.e.,
the one for which the atoms sit at the ideal fcc lattice
sites) is the most energetically stable one so that only the
effect on the total energy of the lattice parameter a is con-
sidered in this paper.

Finally, the MoPt,-type structure is a body-centered
orthorhombic one in which the three axes of the unit cell
are not of the same length. For the ideal geometry (i.e.,
one which corresponds to the fcc lattice) we see that the
lattice parameters a, b, and ¢, which describe the length
along [100], [0 —1 1] and [011], respectively, are related
by b/a=(1/2)""? and ¢ /a =(9/2)'/?. Furthermore, the
distance between the 4 and B atoms at positions (0,0,0)
and (0,,1) is not related to the lattice parameter ¢ by
symmetry; we calculate this distance at equilibrium to be
0.335¢ and c¢/3 for the TiAl, and Ti,Al MoPt,-type
phases, respectively, where the latter value is the ideal
one.

III. CLUSTER EXPANSIONS AND EFFECTIVE
CLUSTER INTERACTIONS

The method described in Sec. II will be used to obtain
the formation energies, bulk moduli, and equilibrium lat-
tice parameters for stoichiometric compounds possessing
translational symmetry. We now discuss how from these
results a set of ECI’s, which can be used to determine the
same properties for an alloy with an arbitrary
configuration of atoms, can be obtained.

A. Binary alloys and the Ising model

An exact description of the dependence of alloy prop-
erties on variables such as composition and temperature
requires a knowledge of the partition function or,
equivalently, the free energy of the system. Determining
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these functions is an intractable problem for macroscopic
systems and for this reason the Ising model is commonly
used in theoretical studies of alloys.

As discussed in detail in Ref. 41, the only approxima-
tion which is made in formally mapping the real alloy
onto an Ising lattice is that every microstate which is ac-
cessible to the system has an atomic configuration where
each atom can unambiguously be assigned to a lattice
point on a given lattice. Provided this can be done, to
each state of the alloy system a configuration of spins
(where an up spin symbolizes occupation by an A4 atom
and a down spin corresponds to a B atom in an AB
binary alloy system) on an appropriate Ising lattice can
be assigned. In general, therefore, a given arrangement
of Ising spins corresponds to many different states of the
real alloy system. For example, in the present study a re-
laxed MoPt,-type structure and one with an ideal fcc
geometry would both be associated with same Ising spin
configuration.

It can be shown*! that at finite T the partition function
of the alloy system can be reduced to that of the
equivalent Ising model by integrating out the degrees of
freedom associated with the many states corresponding
to a given spin configuration. An approximate solution
of the partition function of the Ising model, for example
within the framework of the CVM, can then be used to
determine the phase diagram as well as all related ther-
modynamic and structural properties.

B. Cluster expansions of the energy

As an example of the use of the Ising model, consider
the formation energy (AE) for fcc-based Ti-Al alloys with
a fixed atomic volume ({2). From the model described in
the Appendix, the formation energy is expressed as a
function only of the average atomic volume and the
configuration of the Ti and Al atoms on the ideal fcc lat-
tice. The Ising model is defined by assigning spin values
to the sites of the ideal fcc lattice which take on values
+1 (—1) if an atom is occupied by an Al (Ti) atom. The
set of spins defines the vector o, which completely
specifies the atomic configuration on the ideal fcc lattice.
In short, using the model described in the Appendix, the
formation energy is a function of () and o only.

In order to determine the functional dependence of
AE(0,Q) on o, the Ising lattice description is only useful
if the coupling constants between the spin variables are
specified and can be associated with the properties of the
real system. A formally exact way of defining the interac-
tions between pairs or, more generally, clusters of spins,
is given in the paper of Sanchez, Ducastelle, and Gra-
tias.>® These authors show that any function of the Ising
spin configuration o can be expanded in terms of a com-
plete orthonormal set of cluster functions. For a binary
system on a lattice with N sites, there exists 2" such clus-
ter functions defined as

(Dazapap' Tt Opr (2)

where a=(p,p’,...,p") defines a set of lattice points
commonly referred to as a cluster and where o is the
spin variable which takes on values +1 or —1 depending
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on which type of atom is associated with site p. In par-
ticular, the formation energy of the alloy at volume ()
can be expanded in terms of these cluster functions as fol-
lows:

AE(0,Q)= > E (Q)®P,(0), (3)
where the E ,(Q) are the ECI’s and are defined by

L 1 ARG, @

1
Trd(o,) RETLY

2nﬂ 0(1

E (Q)=

a

with n, and o, denoting the number of lattice points and
the configuration of spins on the cluster a, respectively.
The first trace in (4) is over the spin configurations of
cluster a while the second trace is over all configurations
of the lattice consistent with o,. Note that the ECI’s are
defined in terms of an average of the energy over all
atomic configurations and are, therefore, independent of
o. A well known example of the expression (4) is that for
the pair cluster:

E, (Q)=1[E ,(Q)+Ep(Q)—2E 13(Q)], (5)

where E_ ,(Q) is the average of AE(0,Q) over all
configurations containing 4 atoms at sites p and p’ and
similarly for Ezp(Q) and E 45(Q2).

At this point, expansion (3) does not simplify the prob-
lem of finding the value of AE(0,{}) for an arbitrary
configuration o since the knowledge of 2 ECT’s is still
required. However, as is shown in Refs. 41 and 30, the
ECI’s for clusters which are related by the space group
symmetry of the disordered lattice (the fcc lattice in this
study) are equivalent; this follows from the definition of
the ECI’s given in Eq. (4). Therefore, we can rewrite (3)
by grouping equivalent terms together as

Ae(o,Q)=—11\7AE(a,Q)= S E(Qm B o), (6

where the primed sum is over all clusters which are dis-
tinct by symmetry. m, is the number of clusters a@ which
are equivalent by symmetry divided by the number of
sites N, and the overbar over the cluster function in (6)
denotes that it is averaged over all of these equivalent
clusters on the lattice. It is worth noting that in this
study the ECDI’s in expansion (6) have the full symmetry
of the fcc lattice even though the equilibrium structure of
the real alloy corresponding to a given configuration o
may not.

The number of ECI’s which must be determined in ex-
pansion (6) is still very large for a lattice describing a
macroscopic system. Therefore, this expansion becomes
useful if we assume that ECI’s beyond a certain range and
for clusters containing a large number of points are negli-
gible. Recent studies’>** suggest that this assumption is
a valid one. Therefore, we write

a

Ae(o, Q)= 3" E (Q)m B y(0) , %)

where the sum is over a small set of clusters (a) up to
some maximal one (a,, ).
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At this point, the problem of finding the equilibrium
value of the total energy for a given configuration with an
atomic volume () has been reduced to that of evaluating
expansion (7). Two approximations which have been
made in arriving at (7) should be noted. First of all, as
discussed in the Appendix, we assume that the contribu-
tion to the formation energy of an alloy at fixed () associ-
ated with structural relaxation can be expressed as a
function of o and Q only. Therefore, it is assumed that
structural relaxation is in some sense small enough that
in the relaxed state the position of the atoms can still be
associated with the ideal fcc lattice sites and the atomic
configuration can, therefore, be specified by o. This as-
sumption allows us to write the formation energy as a
function of the configuration and the average atomic
volume only. The configurational dependence of
Ae(0,() can then be expressed in terms of an expansion
in cluster functions associated with the ideal fcc lattice.
The ECI’s are the expansion coefficients which are
defined in terms of an average over all atomic
configurations of the formation energy, Ae (o, ), accord-
ing to Eq. (4). Therefore, the ECI’s are independent of
the atomic configuration and are functions only of the
average atomic volume.

Another approximation made in using (7) to obtain the
formation energy of an alloy system is that only a small
set of ECI’s are considered. This second approximation
can be improved by including more ECI’s in the expan-
sion. Several other approximations are also commonly
used in practice when calculating the ECI’s. In the next
section we describe a method for obtaining these interac-
tions from the results of first-principles total-energy cal-
culations for perfectly ordered stoichiometric alloy com-
pounds.

C. Method for determining the effective cluster interactions

Provided that expansion (7) in terms of a subset of
ECPI’s (Z in number) from the complete set gives an accu-
rate description of the configurational dependence of the
equilibrium energy, the formation energies of a set of or-
dered structures can be calculated and the resulting set of
equations can be inverted to obtain the ECI’s. This is the
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approach first implemented by Connolly and Williams. **

As mentioned earlier, the effect of structural relaxation
on the value of the ECI’s must be included in order to
correctly model phase stability of Ti-Al alloys; in Sec.
111 B, we showed that the model for alloy formation de-
scribed in the Appendix allows us to include the effect of
the energy of relaxation on these interaction parameters.
In particular, the ECI’s are determined at each volume in
terms of formation energies of structurally relaxed alloys
according to (4). Therefore, formation energies of com-
pletely relaxed ordered structures will be used to obtain
the ECI’s in this study.

In order to extract the ECD’s, the set of ordered struc-
tures can be Z (the number of ECI’s to be determined) in
number, in which case the ECI’s can be obtained by in-
verting (7) as follows:

1
mtl

z
E(Q)=— Ae(9,Q)D; '(¢) , 8)
¢

where the interaction is defined in terms of a sum over
the structures ¢ of the product of the equilibrium forma-
tion energies times a weight factor which is the inverse of
the matrix of averaged cluster functions. Alternately, a
set of X structural energies can be used with X >Z, in
which case the ECDI’s can be obtained by minimizing the
weighted variance:

2

X z _
S 0, | Ae($,Q)— 3 m E (Q)B,(4) | =Min , ©
¢ a

where the weights (w,) are defined to be the number of
variants of the structure ¢ on the lattice. For the fcc (and
bece) lattices we have

w,=48N($)/Ng($) (10)

with No(¢) and Ng(¢) being the number of atoms per
unit cell and number of point group operations for ¢, re-
spectively. Formula (9) was suggested by Lu et al.*> The
values of w, for the structures considered in this study
are given in Table I.

A basic problem when ordered structural energies are

TABLE 1. The average value of the 15 cluster functions considered in this paper and the weight variables w(¢) for the eleven

structures described in Fig. 2. w(¢) is defined in Eq. (10).

(D(I
Structure  w(¢) 1 2 34 5 6 7 8 9 10 11 12 13 14 15
fecc A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
fcc B I 1 1 1 1 -1 -1 -1 -l 1 1 1 -1 1
L1, 4B 4 1 1 o 1 0 e e 0 1 1 1
L1, 4B, 4 1 =1 o 1 0 1 -1 1 -1 0 1 -1 1
L1, AB 6 1 o -1 1 -1 1 o 0 0 0 1 -1 1 o 1
Do, 4B 12 1 4 o oz L 1 11 1 1 g -1 L -1 0
Do, 4B, 12 1 -1 o oz 1 1 L 1 1 L - -1 L 1 0
40 AB 2 1 o -+ 1 1 1 o o0 0 0 1 I 0o -1
MoPt, 4,8 18 1 EEt S 2 St S St B St S S !
MoPy 4B, 18 1 -+ —i 11—l L1l p b
L1, AB 8 1 0 0 -1 0 1 0o o o o -1 0 1 0 -1
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used to calculate ECI’s is that these interaction parame-
ters are not uniquely determined. In other words, the
values of the ECI’s may differ according to the set of
structures used. This is particularly the case if the num-
ber of ordered formation energies is equal to the number
of ECI’s determined through Eq. (8); by using a large set
of ordered formation energies, checks can be made as to
how well the ECI’s describe Ae(¢,Q) for structures not
used to calculate these interactions.

In this study, the ECI’s and Ae(¢,{) are taken to have
a quadratic volume dependence, as suggested in (the ap-
pendix of) Ref. 44 (a quadratic fit is found to be
sufficiently accurate over the volume range of interest in
the study of this alloy system due to the small difference
in the molar volumes of Ti and Al). The equilibrium en-
ergies of the structures described in Fig. 2 have been cal-
culated as a function of atomic volume and the results are
fit to the form:

Ae(¢,Q)= Ao(d)+ A4,($)Q+ A,(4)Q?, (11)
where
A0(¢)=Aeo(¢yno)+%B(¢)Qo(¢) s 1
2)
A,($)=—B(#), A,(¢)=-L8)

T 204(¢)

and B (¢) and Qy(¢) are the bulk modulus and equilibri-
um atomic volume of structure ¢, respectively. We as-
sume the following functional dependence on  for the
ECP’s:

E,(Q)=ay(a)+a,(a)Q+a,(a)Q?, (13)

where the coefficients a;(a) are determined by minimiz-
ing the weighted variance:

X
S s [A()— 3 mya;(a)®,(¢) |>*=Min , (14)
¢ a

by analogy with (9).

As pointed out by Ferreira, Wei, and Zunger,45 we do
not want the properties calculated with the ECI’s to be
too sensitive to errors in the formation energies of the or-
dered structures which are used to obtain the interac-
tions. These authors introduce a quantity which can be
used to determine the effect of these errors on the forma-
tion energy of the random configuration of atoms at
¢ =0.5. However, this quantity can only be determined
when (8) is used to obtain the ECI’s and cannot be used
as a criterion for choosing the optimal set of ECI’s in this
study (since the number of energies is larger than the
number of ECI’s being determined). Instead, we deter-
mine the orthogonality of the averaged cluster functions
by calculating O, which is defined as:

1 X X Za A
"‘m§ % §¢a(¢>¢a(¢ ) (15)

where the primed sum excludes the structure ¢. The
circumflex on the averaged cluster function denotes that
it is normalized as follows:
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D, (¢)

Z —
S [@ )

3 (4)= — (16)

The value of O can range between zero for a completely
orthogonal set of cluster functions and one for a set con-
sisting of cluster functions of identical structures.

The formation energies for a large set of structures can
be calculated in order to use Eqgs. (8) or (9) to obtain a set
of ECD’s in practice. Then, the averaged cluster functions
for many clusters can be determined for each structure.
The set of ECI’s which will be used in (7) are then chosen
as the ones which best describe the configurational depen-
dence of Ae(o,Q) for these structures. This is the ap-
proach taken in the study by Ferreira, Wei, and
Zunger,* where out of clusters 1-9 and 11 and 12 shown
in Fig. 3, the optimum set of ECI’s is found to consist of
clusters 1-7 and 11 for the semiconductor alloy systems
considered by these authors.

In Fig. 3 we describe the 15 clusters considered in this
study and list the values of the multiplicity (m,) for
each. The averaged cluster functions for each structure
are given in Table I. As was mentioned in the Introduc-
tion, many of the fcc phases which are observed in this
system can be stabilized by first- and second-neighbor
pair interactions, and for this reason all clusters within
this range have been included in this study. Further-
more, several studies*>**6 have shown that the third-
and fourth-neighbor pair ECI’s are generally of the same
order of magnitude as the second-neighbor pair interac-
tion. Additionally, it has been shown that linear many-
body cluster interactions are often sizable.?*’ There-
fore, the linear triplet, the third- and fourth-neighbor
pair, and the triangle consisting of one third- and two
first-neighbor pairs are considered as well in this study.

We have determined all subsets of n ECI’s from the set
of 15 clusters described in Fig. 3, where n ranges from 5
to 9. For a given n, the optimum set of cluster interac-
tions has been chosen as the one which minimizes the
predictive error in the energy according to (9) for the 11
structures considered in this paper. We find that for
some values of n more than one set of ECI’s have the
same minimum predictive error and in these cases we
choose the set which additionally has the minimum value
of 0. This most orthogonal set should have ECI’s which
are less sensitive to errors in the calculated values of €os
Q, and B for the ordered structures used to obtain these
parameters. Furthermore, this set of clusters spans the
greatest volume of configuration space.

D. Phase diagram calculation

If thermal (vibrational) effects on the energy and entro-
py of the alloy system are not taken into account and the
electronic entropy is neglected, Eq. (7) can be used in
conjunction with the CVM expressions for the
configurational entropy of an Ising lattice to form an ap-
proximate free-energy functional for the real alloy. This
functional can be expressed in terms of a linearly in-
dependent set of correlation functions (£,) which are
defined to be the ensemble averages of the cluster func-
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tions (®,).°** The free energy and equilibrium atomic
volume at a given composition and temperature can be
obtained by minimizing the free-energy functional with
respect to ) and the set of correlation functions §&,.
From the free energy, the equilibrium phase boundaries
at a given temperature can be obtained using common
tangent constructions in the usual way. The locus of
these phase boundaries constitutes the binary c-T phase
diagram.

In the present study, the tetrahedron-octahedron*® ap-
proximation of the CVM has been used for the
configurational entropy of the fcc Ising lattice. The free-
energy functional has the following form:

Ay

F(Q,T)=3'E (Q)mE,

—kgT 3 myy,>x.0,)Inx,(0,),
ae(T+0) o

(17)

where the first term represents the internal energy (ex-
pressed as a formation energy) and comes from the en-

FIG. 3. Clusters considered in the expansion of the total en-
ergy. Filled circles denote the atoms in a given cluster. Cluster
1 is the “empty cluster” which corresponds to the constant
(configurationally invariant) term in the expansion of the ener-
gy. m, refers to the multiplicity of cluster a as defined in the
text.
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semble average of the expression for the energy, Eq. (7).
The second term on the right-hand side of (17) gives the
CVM expression for the configurational entropy; the first
sum is over all subclusters of the tetrahedron and oc-
tahedron (T +O) and the second sum is over the possible
configurations on these subclusters. The y, in (17) are
the Kikuchi-Barker coefficients***’ and the x (o) are
referred to as cluster probabilities and are the ensemble
averages of the fraction of clusters a on the lattice which
have the configuration o ,. These cluster probabilities are
linearly related to the correlation functions.*®* The
primed sums in (17) are again over all clusters which are
distinct by symmetry.

As we show in Sec. IVC, it is necessary to include
ECI’'s for clusters which are not subclusters of the
tetrahedron and octahedron (i.e., these ECI’s correspond
to clusters with a range larger than the second-neighbor
pair of the fcc lattice) in order to parametrize well the en-
ergetics of the fcc superstructures in this system. For
these clusters outside the range of the tetrahedron and
octahedron, the value of the correlation function at a
given concentration and temperature cannot be directly
determined by minimizing Eq. (17). Therefore, for these
clusters we express the correlation functions as linear
combinations of products of the correlation functions of
subclusters of the tetrahedron and octahedron by setting
the cumulant of the cluster function equal to zero, as sug-
gested by Carlsson™ and Ferreira, Wei, and Zunger. ¥

E. Concentration dependence

From the minimization of the CVM free-energy func-
tional (17), various thermodynamic and structural prop-
erties of an alloy phase can be determined as a function of
composition and temperature. As an example, consider a
completely random mixture of atoms on a lattice with an
infinite number of sites (such a configuration of atoms
will be referred to as a random alloy in the remainder of
this paper). Such a state would be practically observed in
a disordered alloy phase in the limit of very high temper-
atures where the entropy drives the thermodynamics.
For such a random alloy the lattice averages of the clus-
ter functions take on the following values:

@ (rand.,c)=(o)"*=(2c—1)"", (18)

where we have used the fact that the average spin (o) is
related to the concentration ¢ by (o )=2c —1. There-
fore, for a random alloy, the expression for the energy
takes the following form:

a

eo(rand., Q)= 3 E(Q)m (2 —1)"¢ , (19)

which is a polynomial in the concentration. The equilib-
rium atomic volume and bulk modulus for a random al-
loy at a given concentration can be determined from the
first and second volume derivatives of Eq. (19), respec-
tively. Examples of the concentration dependence of
these properties for the Ti-Al system are given in Sec.
IVF.
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IV. RESULTS AND DISCUSSION

A. Results of electronic structure calculations

Table II lists the results of the present FP-LMTO elec-
tronic structure calculations of the formation energies,
bulk moduli, and lattice constants of the fcc superstruc-
tures described in Fig. 2. It can be seen that the struc-
tures belonging to the (110) family are found to undergo
structural relaxations further from the ideal fcc geometry
than do those of the (100) and (111) families. For ex-
ample, at 50 at. % Al the 40 structure has a c¢/a ratio
which is 15% larger than ideal, while the equilibrium
value for the L1, is only 1% larger than ideal and the
L1, is found to undergo no structural relaxation.

The values of the formation energies are plotted versus
the concentration of Al in Fig. 4, where it can be seen
that among the structures considered here the most ener-
getically stable intermetallic phases are the L1, Ti;Al,
L1, TiAl, and DO,, TiAl; compounds. The 40, DO,,, and
L1, structures are unstable at 50, 25, and 75 at. % Al, re-
spectively, by only 2 mRy/atom (1 mRy/atom=1.312...
kJ/mole). The L1, structure is seen to be 17.6
mRy/atom less energetically stable than the L1, The
MoPt,-type Ti,Al and TiAl, phases are unstable by 3.8
mRy/atom and 12.2 mRy/atom with respect to phase
separation between the stable Ti;Al and TiAl or TiAl,y
and TiAl compounds, respectively. In general, we see
that at 25, 50, and 75 at. % Al the {110)- and (100)-
type structures are all rather close in energy and that the
latter are more stable at Ti-rich compositions. This rever-
sal in the stability of the (100) family structures with
respect to those of the (110) family can only be modeled
by a set of ECI’s which are either concentration-
dependent and/or which include multiatom (i.e., more
than two atoms) interactions.

The calculated molar volumes of the structures con-
sidered in this study are plotted in Fig. 5 as a function of
the concentration of Al. From this plot we can see a
significant deviation from Vegard’s law by comparing the
filled circles with the dashed line. The deviation is max-
imum at 75 at. % Al, where the L1, and DO,, structures
have volumes which are 6% and 5% smaller, respective-
ly, than would be expected from Vegard’s law. In gen-
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FIG. 4. Formation energies of fcc Ti-Al intermetallic com-
pounds as calculated by the FP-LMTO method vs the atomic
concentration of Al. The solid lines connect the energetically
stable structures.

eral, the molar volume is a stronger function of composi-
tion than it is of the atomic structure at a given
stoichiometry. This can be seen by noting that in going
from O to 75 at.% Al we observed a 6% change in
volume, while the maximum effect that the structure has
on the volume at a given composition is the 3%
difference between the L1, and L 1, structures. Further-
more, it is seen that the highest symmetry structures have
the smallest molar volumes at 25, 50, and 75 at. % Al and
that these are also the most energetically stable with the
exception of the TiAl; compounds.

Figure 6 shows the dependence of the calculated bulk
moduli on the concentration of Al. It can be seen that
the addition of Al to pure Ti has a small effect on the
bulk modulus while the opposite is true when Ti is added
to Al In fact, the bulk modulus of the TiAl; DO0,, com-
pound is 50% larger than that of fcc Al, indicating that

TABLE II. Results of FP-LMTO calculations of equilibrium lattice constants, bulk moduli, and for-
mation energies for fcc Al, fcc Ti, and nine fcc intermetallic Ti-Al compounds.

Composition Structure AE (mRy/atom) B (Mbar) Rys ( A) b/a c/a
Ti fcc 1.20 1.58
Ti;Al DO,, —22.6 1.27 1.56 2.12
Ti;Al L1, —24.6 1.27 1.55
Ti,Al MoPt, —25.7 1.27 1.56 0.76 2.29
TiAl L1, —16.6 1.17 1.56
TiAl 40 —32.2 1.27 1.55 2.30
TiAl L1, —342 1.28 1.54 1.01
TiAl, MoPt, —21.5 1.15 1.54 1.00 3.67
TiAl, DO,, —33.0 1.18 1.54 2.24
TiAl; L1, —31.3 1.18 1.53
Al fcc 0.84 1.56
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FIG. 5. Calculated molar volumes of fcc Ti-Al intermetallic
compounds vs atomic concentration of Al for the 11 fcc struc-
tures considered in this study. The dashed line indicates the
functional dependence of the molar volume on concentration
expected from Vegard’s law.

the d electrons of Ti have a strong effect on the bonding
in this system, as was noted by Fu.?

B. Discussion of electronic structure calculations

As mentioned in the Introduction, many electronic
structure calculations of Ti-Al intermetallic compounds
have been undertaken for the purpose of understanding
the relative stability and mechanical properties of these
alloys. It is not our purpose to reproduce the results of
these calculations in this paper, but, rather, to calculate
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FIG. 6. Calculated bulk moduli of fcc Ti-Al intermetallic
compounds vs the atomic concentration of Al for the 11 fcc
structures considered in this study.
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the total energies of a large number of fcc superstructures
for the purpose of obtaining a set of ECI’s which describe
well the energetics of fcc Ti-Al alloys. Nevertheless, it is
interesting to compare our results to those of previous
calculations and to experiment as given in Table III in or-
der to examine the agreement between the different com-
putational approaches and experiment.

In general, we see that excellent agreement with previ-
ous calculations is obtained. In particular, values of the
bulk moduli calculated here agree well with the full-
potential linearized-augmented-plane-wave (FLAPW)
calculations, as well as LMTO calculations in the atomic
sphere approximation (ASA), and FP-LMTO results of
Refs. 17, 20-22, 26, and 52 for all compounds given in
Table II except for L1, TiAl;. For this L1, structure,
our calculated bulk modulus agrees completely with the
FLAPW result of Ref. 22 but is 7% larger and 21%
smaller than the FLAPW and LMTO-ASA results of
Refs. 21 and 20, respectively. A comparison can be made
between the calculated value of the bulk modulus and an
experimentally measured value for pure fcc Al. In Ref.
51 (see references therein for experimental results),
Sluiter et al. give a compilation of experimentally deter-
mined bulk moduli for Al extrapolated to T=0 K and
show that the average of the measured values is 0.822
Mbar, which is within 10% of our calculated value of
0.84 Mbar.

The present results for the Wigner-Seitz radius (R yyg)
agree to within 1% of those determined using the
FLAPW, !7:21.22.26 314 another version of the FP-LMTO
approach. Our calculated values of R yg are 2% small-
er than the experimental values, as is commonly found
in calculations that make use of the LDA. The LMTO-
ASA calculations'”?*® give consistently larger values of
R g which are in somewhat better agreement with exper-
iment than our own and the other full-potential calcula-
tions just mentioned. We consider this fact to be fortui-
tous due to the shape approximations to the potential
made in the case of the ASA. For the DO,, structures,
our calculated values of ¢ /a given in Table II are within
2% of the results of Refs. 17, 22, and 23 and 1% of the
experimental result®® for TiAl;. For the L1, our calculat-
ed c/a is in complete agreement with the previous FP-
LMTO calculation,®? is 3% smaller than the result of
Chubb, Papaconstantopoulos, and Klein,?® and is less
than 1% smaller than the experimentally determined
value.

The structural energy difference between the DO,, and
L1, structures can also be compared with previous calcu-
lations. At composition Ti;Al the difference in energy
between these structures was found to be
Aey(DO,,,TizAl)—Aey(L 1, Ti;A)=1.5 mRy/atom by
Hong et al.,'” in excellent agreement with the present re-

sults. At 75 at.% Al it is found that
Aey(DO0,,,TiAly) — Aey(L 1,,TiAl;)=—3.7 mRy/atom,
—2.2 mRy/atom, —3.7 mRy/atom, and —4.0

mRy/atom in Refs. 20, 22, 25, and 23, respectively. Of
these, the FLAPW results of Ref. 22 agree best with our
own, while those of the ASA calculations?>?>%’ are about
twice as large.

Hence, we find excellent agreement between the results
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TABLE III. Results of previous first-principles electronic structure calculations and experimentally
measured values of the bulk modulus and lattice parameters for fcc Ti-Al structures.

Composition Structure B (Mbar) Rys (A) c/a
Ti,Al DO, 1.28° 1.56,21.58° 2.131°
Ti,Al L1, 1.2%° 1.56,%1.58°
TiAl L1, 1.26° 1.54%0 1.01¢

1.27" 1.037"
1.24¢ ' ‘
(1.57Y (1.016Y
TiAl, DO, 1.2,61.18%8 1.54,981.55¢° 2.21,72.258
(1.56') (2.234})
TiAl, L1, 1.5,1.10,°1.188 1.53,%81.54°

*FLAPW results of Ref. 17.

L. MTO-ASA results of Ref. 17.
‘FLAPW results of Ref. 21.
dFP-LMTO results of Ref. 52.
‘LMTO-ASA results of Ref. 20.

fLMTO-ASA with Ewald correction results from Ref. 23.

EFLAPW results of Ref. 22.
'FLAPW results of Ref. 26.

iExperimentally measured results of the lattice parameter according to Ref. 53.

of our own calculations and those obtained with the
FLAPW method and another FP-LMTO method in par-
ticular. The agreement between our results and the ex-
perimental values of Ryg and B is also quite good in the
cases where comparisons have been made. Furthermore,
the fact that we find the L1, Ti;Al, L1, TiAl, and D0,,
TiAl; compounds to be the most stable among those fcc
superstructures considered in this study agrees with the
experimental evidence for the metastability!® of the first
and stability* of the second and third phases.

C. Effective cluster interactions

We have determined the optimum sets of ECI’s con-
taining between five and nine of the interactions corre-
sponding to the clusters described in Fig. 3 using the
method discussed in Sec. III C. From these sets of ECI’s
the formation energies, equilibrium volumes, and bulk

moduli of the 11 structures were determined by making
use of (7) and the first and second volume derivatives of
this expansion. The weighted root-mean-square (rms) er-
ror involved in predicting these properties was then cal-
culated according to (9). Table IV shows the results of
these calculations for the optimal sets of ECI’s which
gave the smallest predictive error in the formation ener-
gies. In addition, the value of O (which is related to the
orthogonality of the cluster functions) and the formation
energy of the random alloy at ¢ =0.5 are also given in
this table.

From Table IV we see that the value of the predictive
error in the energies decreases monotonically as the num-
ber of clusters in the expansion is increased as does the
value of O. Furthermore, the prediction of the atomic
volume also improves as the number of ECI’s is in-
creased, except in going from six to seven interactions,
and the predictive error in the bulk modulus is around
3% for six or more interactions. Finally, note that the

TABLE 1IV. Results of ECI determination for sets of clusters containing between five and nine in-
teractions. The set of ECI’s listed in this table are the optimum ones according to the criteria discussed
in the text. Predictive errors for the formation energies, molar volumes, and bulk moduli are given as
well as the formation energy of the random alloy at 50 at. % Al. The value of the orthogonality param-
eter O defined in the text is also given for these sets of ECI’s.

rms predictive errors

Aey V B Ae(rand.,c =0.5)

Clusters (mRy/atom) (cm?/mole) (Mbar) (mRy/atom) o
123411 2.6 0.102 0.06 —20.7 0.547 44
1234711 2.3 0.021 0.03 —20.7 0.499 78
1234101114 1.7 0.075 0.04 —20.7 0.41192
12347101114 1.1 0.012 0.03 —20.7 0.38179
1234710111415 0.3 0.009 0.03 —21.0 0.305 32
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formation energy of the random alloy at ¢ =0.5 is pre-
dicted to be the same by all sets of ECI’s except for the
final set of nine, for which it changes by less than 1
mRy/atom, indicating that the expansion for this ran-
dom alloy is well converged.

The set of nine interactions listed at the bottom of
Table IV has been used in the remainder of this paper
since for this set of ECI’s the predictive error in the ener-
gy is less than 1 mRy/atom (which is one-half of the
smallest structural energy difference for the fcc super-
structures considered). In Fig. 7 we show that the values
of the formation energies predicted by this set of ECI’s
are very close to those determined from the FP-LMTO
calculations, and the relative stability of the fcc struc-
tures is well reproduced.

We find that the optimum set of nine interactions in
this system consists of the empty cluster, the nearest- and
next-nearest-neighbor pairs, the nearest-neighbor isos-
celes triangle, the linear triplet, the nearest-neighbor reg-
ular tetrahedron, the pyramid, and the octahedron. It is
interesting to note that this set of ECI’s is different than
the set which was found in Ref. 45 for semiconductor al-
loys and which has been used successfully to determine
the ground states of many intermetallic systems.*>*
First of all, we find that nine instead of eight interactions
are needed to characterize accurately the formation ener-
gies of the structures considered in this system. Further-
more, the third- and fourth-neighbor pair interactions are
not found to be important in describing the total energy
of the alloys in this system. From these observations it
seems that the choice of the optimal set of ECDI’s is, in
general, dependent on the system under study. Also, we
find that the linear triplet ECI is important, in agreement
with the results of Wolverton et al.’> and Bieber and
Gautier.*” This interaction was not considered by Fer-
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FIG. 7. Predicted formation energies from the nine ECI’s
listed in Table S. Open squares indicate the FP-LMTO results
and filled circles indicate predicted values from the cluster ex-
pansion of the energy (7). Open circles indicate predicted for-
mation energies, from the cluster expansion, for the experimen-
tally observed Ti;Als and TiAl, phases.
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reira, Wei, and Zunger.45

In Table V the values of the coefficients a,(a) defined
in Eq. (13) are given for the optimum set of nine ECI’s.
In addition, the values of these ECI’s at (=9.68
cm?®/mole (the calculated equilibrium molar volume of
the L 1, structure) are also given. We find that, except for
the empty and point clusters, the two largest ECI’s are
those for the nearest- and next-nearest-neighbor pairs.
Also, the pyramid and octahedron interactions are quite
large in magnitude, indicating the importance of many-
body ECT’s in this system.

The range of interest of the molar volume for the Ti-Al
system is between 9 and 10 cm®/mole. In Table V we
also indicate the absolute value of the difference between
the maximum and minimum value of each ECI (|AE,|)
in this range of volumes. We can see from the values of
|AE,| that the dominant contributions to the volume
dependence of the energy of the alloy come from the
empty and point ECI’s. All ECI’s except the one corre-
sponding to the configurationally independent term in the
energy [ Ey(Q)] are observed to change monotonically in
this volume range.

D. Ground states on the fcc lattice

The results of Sec. IV A have shown that of the struc-
tures considered in the band-structure calculations, the
L1, structure at 25 at. % Al, the L1 at 50 at. % Al, and
the DO0,, at 75 at. % Al are the most stable fcc super-
structures. The ECI’s can be used to perform a complete
ground-state search to find those structures which are en-
ergetically stable at T=0 K out of all possible atomic
configurations. Such a study has been undertaken by Lu
and co-workers*»** and Wolverton et al.*® for other me-
tallic alloy systems. In this paper, a complete ground-
state search is complicated by the volume dependence of
the ECI’s and has not yet been undertaken. Instead, we
will use the ECI’s to check whether the experimentally
observed phases between 55 and 75 at. % Al are predict-
ed to be stable in this system. It should be emphasized
that once a suitable set of ECI’s has been determined, the
formation energies of any fcc superstructure, regardless
of the size of the unit cell, can be determined so that no
further electronic structure calculations are required.
Furthermore, the effect of structural relaxation on these
formation energies is included since these ECI’s were
determined using energies of ‘“fully relaxed” ordered
structures.

At composition TiAl, two phases (the phase boun-
daries of these compounds are shown as dashed lines in
Fig. 1) have been observed, which can be described as be-
ing made up of nonconservatively antiphased L1, unit
cells, with each one displaying a different periodicity of
these APB’s.® According to Loiseau et al.,® at low tem-
peratures the ZrGa, prototype structure is the stable one
while at higher temperatures the HfGa, prototype is
found. These two compounds are degenerate in energy
when described by ECI’s up to the range of the eighth-
neighbor pair so that we find the same formation energy
of —31.9 mRy/atom, bulk modulus of 1.2 Mbar, and mo-
lar volume of 9.23 cm®/mole for each.
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TABLE V. Volume dependence and values of ECI’s for the optimum set of nine interactions given in
Table IV. Coefficients a;(a) give the functional dependence of the ECI’s on the molar volume, as dis-
cussed in the text. |AE,| is the absolute value of the difference between the minimum and maximum
values of the interaction for cluster a in the molar volume range 9-10 cm®/mole. Additionally,
E_(V =9.68 cm’/mole) is the value of each ECI at the calculated molar volume of the L 1, TiAl phase.
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a,(a) a,(a) as(a) E, (V=9.68 cm?/mole) |AE,]|

Cluster (mRy) (mRy mole/cm?) (mRy mole?/cm®) (mRy) (mRy)
1 378.95 —83.69 4.39 —20.19 1.30
2 —43.93 5.53 —0.16 —5.64 2.44
3 —4.24 2.25 —0.14 4.06 0.49
4 2.92 —1.60 0.11 —2.32 047
7 —1.20 0.46 —0.03 0.32 0.14
10 0.05 —0.18 0.01 —0.59 0.05
11 0.71 0.22 —0.02 0.65 0.22
14 —4.08 1.11 —0.06 1.09 0.02
15 —2.77 0.81 —0.04 1.64 0.11

The calculated formation energy of these TiAl, com-
pounds are plotted in Fig. 7 (indicated as TiAl,), where it
can be seen that although these TiAl, compounds are
more stable than the MoPt, type, they are not found to
be in equilibrium at 7=0 K in this system, according to
the present calculation. These TiAl, phases are unstable
by only 1.8 mRy/atom with respect to phase separation
between the DO,, TiAl; and L 1, TiAl compounds. Since
it is likely that long-ranged effective cluster interactions
not considered in this study are responsible for the stabil-
ity of these TiAl, compounds, the value of 1.8 mRy/atom
gives an idea of the contribution these ECI’s make to the
formation energy of the alloys in this system. This con-
tribution is small compared to the formation energies of
the fcc Ti-Al alloys and should therefore not affect the re-
sults of the phase diagram calculation to be discussed in
Sec. IVE.

The cluster expansion can also be used to check the
stability of the Ti;Al; phase, which was claimed to be
stable by Miida, Hashimoto, and Watanabe’ and was
later shown to be unstable.® We find that the formation
energy of this structure is also —31.9 mRy/atom, and the
bulk modulus and molar volume are 1.2 Mbar and 9.27
cm?®/mole, respectively. The calculated formation energy
of this compound is also plotted in Fig. 7 (indicated as
Ti;Als) where it is shown that this phase is calculated to
be unstable with respect to phase separation between the
L1, TiAl and ZrGa,-type TiAl, compounds at zero tem-
perature by only 0.6 mRy/atom.

E. Phase diagram

The method described in Sec. III D has been used to
calculate the solid-state, fcc, ¢-T phase diagram of the
Ti-Al system. The set of nine interactions given in Table
V has been used in this calculation and of these interac-
tion parameters, only the one corresponding to cluster 10
(the linear triplet cluster) gives a term in the internal en-
ergy which is not included in the tetrahedron-octahedron
approximation of the CVM. Therefore, the correlation
function for the linear triplet cluster was treated in the
manner discussed at the end of Sec. III D. In Sec. IVD

we showed that among the fcc superstructures experi-
mentally observed in this system, only the L1, Ti;Al, L1,
TiAl, and DO0,, TiAl; compounds are predicted to be
stable at T=0 K by our total energy calculations, and
only these ordered compounds and the fcc disordered
phase are considered in our computation of the phase di-
agram.

The calculated phase diagram is shown in Fig. 8, which
indicates that the L1, Ti;Al and L1, TiAl phases are
stable over an extended composition range up to the
order-disorder transition temperatures of ~3100 K and

5000
~4100K
4000
FCC
g
= 3000 | ~3000K
DOz
2000 |
1000 " - " s
0 20 40 60 80 100
Ti C (at. % Al) Al

FIG. 8. Calculated composition-temperature phase diagram
for fcc-based Ti-Al phases. The small dots correspond to calcu-
lated phase boundaries and the solid lines represent fits to these
points. The stability regions for the ordered Ti;Al, TiAl, and
TiAly; compounds are indicated by the Strukturbericht designa-
tion for their structures: L1, L1y, and DO,,, respectively.
Temperatures in this figure refer to transitions from ordered
phases to disordered fcc for the L1, and L1, structures and for
the peritectoid reaction (D0,,—L1,+fcc) for the DO,, struc-
ture.
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~4100 K, respectively. The DO,, TiAl; compound, by
contrast, is found to be stable over a relatively small con-
centration range up to ~3000 K, where it undergoes a
peritectoid reaction to L 1+ fcc.

The experimentally determined phase diagram shown
in Fig. 1 contains phase boundaries between hcp, bcc,
and liquid as well as fcc phases while only fcc phases are
considered in our calculations. Therefore, a comparison
between our computed phase diagram and experiment
can be made only for Al-rich compositions. We predict
that both the L1; TiAl and DO,, TiAl; compounds are
ordered well above their experimentally observed melting
points, in agreement with the experimental phase dia-
gram. Additionally, we find a much narrower concentra-
tion range for the stability of the DO,, TiAl; than for the
L1, TiAl compound, also in agreement with experimen-
tal observations. Furthermore, the small energy
difference between the DO0,, and L1, TiAl; structures
found in this study is indicative of a small (100) APB en-
ergy, which is consistent with the many experimentally
observed one-dimensional long-period superstruc-
tures’”'% in this system.

A shortcoming of the calculated phase diagram is our
prediction that solid solution of Ti in Al is stable over an
extended composition range at low temperatures while
experimentally it is found that Ti is soluble only up to a
maximum of 2 at. % below the melting point of Al. The
stability of the disordered solid solution with respect to
phase separation between the D0,, TiAl; compound and
pure fcc Al is also reflected in Fig. 9(a). In this figure it
can be seen that the formation energy of the random al-
loy (indicated by the dashed line) is actually less than that
of the phase-separated state (indicated by the solid line)
between 90 and 100 at. % Al. The random alloy should
not be stable at 7=0 K, and indeed we have found that
additional ordered phases are stabilized by our set of
ECI’s between 75 and 100 at.% Al. A ground-state
search, such as has been undertaken in Refs. 43, 54, and
55, is needed to find which ordered structures are the
lowest-energy ones in this composition range; the results
of such an analysis is presently being undertaken.

The Ti-rich portion of the phase diagram contains hcp
and bcc phases in reality so that the fcc solid solution and
L1, Ti;Al compound are actually unstable in this system.
A comparison with the experimental phase diagram for
concentrations less than 50 at. % Al will be possible when
the hcp and bee phases are included in our calculations.

F. Structural and thermodynamic properties
of disordered alloys

The values of the formation energies, molar volumes,
and bulk moduli for random Ti-Al alloys have been cal-
culated from the optimum set of nine ECI’s using Eq. (19)
and the first and second volume derivatives of this expan-
sion. In Figs. 9(a)-9(c) the values of these properties as a
function of concentration are shown as dashed lines.

In Fig. 9(a) we see that the formation energy of the
random alloy has a roughly parabolic dependence on the
concentration, with a minimum near 60 at. % Al. From
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Eq. (19) we see that the formation energy of the random
alloy is expressed as a polynomial in the concentration
with an nth-order term, which has contributions from
clusters with »n or more points. Therefore, the roughly
parabolic dependence of the formation energy of the ran-
dom alloy on concentration is indicative that effective
pair interactions dominate in this system. The filled
squares in Fig. 9(a) indicate the FP-LMTO values of the
formation energy for the L1, Ti;Al, L1, TiAl, and DO0,,
TiAl; compounds, which are the phases found to be most
stable among those considered. The difference between
the formation energy of an ordered structure and the ran-
dom alloy at the same concentration is defined as the or-
dering energy:

Aeq(d)=Aey(¢p)—Aey(rand.,cy) , (20)

where the formation energies on the right-hand side of
the equation are evaluated at the equilibrium volume of
the ordered structure ¢ and of the random alloy, respec-
tively. We find that the values of Ae,, are 9.4
mRy/atom, 13.1 mRy/atom, and 13.5 mRy/atom for the
L1, Ti;Al, L1, TiAl, and DO,, TiAl; compounds, respec-
tively.

The open symbols in Fig. 9(a) are the heats of forma-
tion measured from calorimetry experiments.>®>’ In or-
der to compare these experimental results with our calcu-
lated formation energies, we have used the energy
difference between fcc and hcp Ti calculated with the
FP-LMTO method in Ref. 35. This energy difference is
needed for a comparison because the heats of formation
are measured experimentally for alloys forming from hcp
Ti and fcc Al. We find excellent agreement between the
experimental heats of formation and the formation ener-
gies obtained from our calculations. For example, the ex-
perimental measurements show that the heat of forma-
tion is largest in magnitude at roughly 60 at. % Al, as we
find to be true for the formation energy of the random al-
loy.

In Fig. 9(b) we see that even for the random alloy a
significant deviation from Vegard’s law is found for the
molar volume versus concentration of Al. The molar
volume of the random alloys are roughly 0.2 cm®/mole
larger than those of the stable ordered structures, as can
be seen by comparing the dashed line with the filled
squares in this figure. The open symbols again corre-
spond to experimental measurements.>® The fact that the
experimentally determined molar volumes are larger than
our calculated values is consistent with the fact that these
measurements are made at elevated temperatures and the
fact that the LDA calculations are known to underesti-
mate the value of the lattice parameter by a few percent.
The agreement with the experimental values can be made
better by including an approximate correction for the vi-
brational entropy in our calculations, as has been done by
Moruzzi, Janak, and Schwarz® and by Sanchez, Stark,
and Moruzzi.>® The experimentally observed concentra-
tion dependence of the molar volume is well described by
our calculations, as can be seen by comparing the open
and filled symbols. In particular, the molar volume is ex-
perimentally found to reach a minimum at 75 at. % Al,
as we find to be true for the ordered and disordered al-
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loys.
In Fig. 9(c) we again notice that the bulk modulus
changes more upon the addition of Ti to Al than when Al
is added to Ti even in the case of the random alloy, al-
though the effect is not as strong as for the ordered com-
pounds. Furthermore, we see that the random alloy con-
sistently has a lower bulk modulus than that of the or-
dered intermetallic compounds in this system. By com-
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paring Figs. 6 and 9(c) with Fig. 4, a correspondence can
be established between the relative stability (energetically)
of a set of phases and the magnitude of the bulk modulus
at a given concentration. At 50 at. % Al the L1, is less
stable energetically than the random alloy, which in turn
is less stable than the 40 structure; the L1, is the most
stable TiAl compound. These phases can be ordered in
the same way according to the value of their bulk moduli.
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FIG. 9. Properties of random fcc Ti-Al alloys vs atomic concentration of Al obtained from the volume-dependent set of nine ECI’s
given in Table V. (a) Formation energies for the random alloys are indicated by the dashed line. Filled squares represent FP-LMTO
results for the energetically stable structures. The energy difference between fcc and hep Ti is taken from Ref. 35. Open squares and
circles indicate experimentally measured heats of formation from Refs. 56 and 57, respectively. (b) Molar volumes of the random al-
loys are indicated by the dashed line. Filled squares represent FP-LMTO results for the energetically stable structures. Open squares
denote the experimentally measured molar volumes from Ref. 53. (c) Bulk moduli for random alloys are indicated by the dashed line
and solid circles symbolize the FP-LMTO results for the energetically stable structures.
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A similar correspondence between the formation energy
and the bulk modulus can be made at 25 and 75 at. % Al,
so we can conclude that the more stable a structure is en-
ergetically at a given composition, the larger the bulk
modulus will be.

V. SUMMARY

We have presented the results of a first-principles study
of the phase stability and structural and thermodynamic
properties of fcc-based phases in the Ti-Al system. The
FP-LMTO approach has been used to calculate the for-
mation energy, bulk modulus, and molar volume for fcc
Ti, fcc Al, and nine fcc intermetallic Ti-Al compounds.
Of the fcc superstructures studied the L1, Ti;Al, L1,
TiAl, and DO,, TiAl; compounds are found to be most
stable energetically. Therefore, as we go from pure fcc Ti
to pure fcc Al, we find a reversal in the relative stability
of (100) and (110) family structures due to the large
structural relaxations these latter structures undergo at
Al-rich concentrations. We find significant deviations
from Vegard’s law for the atomic volume, and the value
of the bulk modulus is close to that of pure fcc Ti for all
of the intermetallic compounds including Al-rich ones.
Hence, it is clear that the composition has a nontrivial
effect on the properties of this alloy system.

The results of these FP-LMTO calculations can be
used in conjunction with an Ising-model description of
the Ti-Al, fcc-based alloy system to determine structural
and thermodynamic properties for any configuration of
atoms. In particular, we have discussed in detail how
total-energy calculations as a function of the atomic
volume for perfectly ordered, stoichiometric compounds
can be used to obtain volume-dependent ECI’s, which
can in turn be used to determine the formation energy,
molar volume, and bulk modulus of any Ti-Al compound.

Because of the sizable dependence of many of the alloy
properties on composition and atomic ordering, a large
set of ECI’s and, hence, a large number of total-energy
calculations, are needed to parametrize the energetics of
this system. Furthermore, the energy associated with
structural relaxation in many of the noncubic Ti-Al fcc
superstructures is very large and plays an important role
in, for example, the stability of the DO,, relative to the
L1, structure at 75 at. % Al.2!~2* Therefore, this relaxa-
tion effect must be taken into account in our determina-
tion of the ECI’s, and, hence, in our total-energy calcula-
tions. In other words, a large number of fully relaxed
total-energy calculations are absolutely necessary in this
study, and so is, therefore, a full-potential band-structure
approach. The large computational effort is worthwhile
considering that the result is a set of ECI’s which can be
used to determine the effect of composition and ordering
on the formation energy, volume, and bulk modulus of
any fcc-based alloy compound. In particular, these prop-
erties can be determined for phases which are only par-
tially ordered or completely disordered.

The Ising-model description of this alloy system, to-
gether with the CVM, has been used to formulate a free-
energy functional from which a composition-temperature
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phase diagram for the fcc-based Ti-Al phases has been
calculated. The calculated phase diagram shows that the
ordered fcc superstructures in this system are stable with
respect to disordered solid solutions to very high temper-
atures ( > 3000 K), which is consistent with the fact that
these compounds are experimentally observed to remain
ordered up to their melting points. Furthermore, we find
a much narrower composition range for the stability of
the DO,, TiAl; compound than for the L1, TiAl com-
pound as is observed experimentally. In general, the
agreement with experiment is encouraging, particularly
since no adjustable parameters were used in our calcula-
tions.

As an example of how the Ising-model description al-
lows the calculation of many properties of this alloy sys-
tem, we have determined the effect of the concentration
of Al on the properties of random alloys. The results ob-
tained for the molar volume and formation energy show
good agreement with the experimentally observed depen-
dence of these properties on the composition. We are
therefore encouraged to continue this study by including
hep and bece phases as well as the fcc phases considered in
this paper.
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APPENDIX

Our model for the formation of an fcc-based Ti-Al al-
loy with a given configuration of Ti and Al atoms and a
fixed average atomic volume is the following (which is
closely related to the model described in Ref. 51): (1) An
amount (1—c¢) of fcc Ti is compressed or expanded to
have the specified atomic volume (). The same is done
for an amount ¢ of fcc Al. The total energy required is
called the elastic energy, E®*(c,Q). (Note that o
specifies the arrangement of the Ti and Al atoms on the
ideal fcc lattice and also, therefore, the value of the con-
centration c.) (2) The Ti and Al atoms are mixed while
remaining on the sites of an ideal fcc lattice with atomic
volume (Q; the associated energy is the so-called chemical
energy, E*™(o,Q). (3) Finally, the atoms relax away
from the ideal lattice sites in a manner which preserves
the average atomic volume (Q). In this model we will as-
sume that the relaxations are in some sense small enough
that the atoms can be uniquely assigned to the sites of the
ideal fcc lattice and that the configuration of atoms is un-
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changed due to relaxation. With this assumption, which
will not be valid if a structural instability exists for some
atomic configuration, the energy associated with relaxa-
tion, denoted as E™?*¢,Q), is a function of the
configuration of atoms on the ideal fcc lattice and the
average atomic volume only.

In summary, in this model for alloy formation the total
formation energy can be written as a function of the aver-
age atomic volume and configuration only. The equilibri-
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um value of the average atomic volume () will be the
one which minimizes the total formation energy:

AE(0,Q)=E®(g,Q0)+E®™(g,Q)+E™(g,Q) .
(A1)

The bulk modulus is defined in terms of the second
derivative of Eq. (A1) with respect to (2.
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