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a-y transition in Ce. II. A detailed analysis of the Kondo volume-collapse model
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The Kondo volume-collapse (KVC) model of the a-y transition in Ce metal is examined quantitatively
using Anderson impurity Hamiltonian parameters obtained from electron spectroscopy. After the hy-
bridization from spectroscopy is scaled by 1.12 to reproduce exactly the experimental zero-temperature
susceptibility, the calculation, with no further adjustable parameters, predicts a phase boundary in good
agreement with experiment. It is found that the cohesive energy contribution from the hybridization of
unoccupied f states and conduction states is quantitatively important in Ce, with a value much larger
than the Kondo energy. This contribution is equally large and important for La and Pr, for which the
hybridization is often ignored. It is, however, almost spin independent, so that it does not contribute
directly to the Kondo energy. Thus the 4f cohesive energy contribution is large in both the a and y
phases, while only the Kondo spin Auctuation energy (and entropy) causes the a-y transition. This dis-

tinguishes the KVC model from the Mott transition model. The Anderson-Hamiltonian-based KVC
model is also distinguished from the Kondo-Hamiltonian-based spin-only version of the KVC model in

that the latter approach cannot make direct contact with spectroscopic data because charge degrees of
freedom are ignored from the outset. This work provides a quantitative confirmation that a unified un-

derstanding of the high-energy spectroscopic and low-energy thermodynamic properties of Ce metal has
been achieved at the quantitative level.

I. INTRODUCTION

The @~a transition in Ce metal, initially discovered
at about 8 kbar by room-temperature compression, ' is ex-
tremely interesting because it is the only solid-solid tran-
sition in an elemental metal which has a phase boundary
terminating at a critical point, in analogy with the well-
known liquid-gas phase boundary. This transition is first
order and isostructural, fcc~fcc, involving the loss of
magnetic moments and a volume decrease of about 15%
in the a phase. It is generally agreed that in the y phase
there is one localized 4f electron per cerium atom and
that the phase transition involves some change in the
state of the 4f electron. Specific mechanisms proposed
for the transition include the promotional model, the
Mott transition model, and the Kondo volume-collapse
(KVC) model. The first two of these involve energy
scales for charge fluctuations and the third involves the
energy scale for spin fluctuations. Only the third is even
qualitatively consistent with all the known experimental
properties of the two phases and of the transition between
them.

In the promotional model the 4f level moves from
below to above the Fermi energy (EF) in the @~a transi-
tion, so that the electronic configuration changes from
4f 'c to 4f c, where c" denotes n conduction electrons
per cerium. The relevant energy scales are the binding
energy of the 4f electron in the y phase, and the 4f level
width. Theoretical studies showed that this model re-
quires the 4f binding energy to be -0.1 eV, so that the
f level width must be-much smaller, say, 0.01 eV, in or-
der that the position of the f level, above or below EF, is
well defined. However, photoemission, ' x-ray-
absorption, ' ' Compton scattering, ' and positron an-

nihilation' measurements show that there is little
difference in the f occupation in the two phases, and that
the 4f binding energy is -2 eV, an order of magnitude
too large. The width is also much larger, -0.5 eV. The
large binding energy was predicted by Johansson from
cohesive energy arguments, and used to motivate his
Mott transition picture, in which the 4f electron retains
its 4f character, but is described by traditional band
theory, in the a phase. In this model the relevant energy
scales are those determining the transition from localized
behavior to band behavior, i.e., the Coulomb repulsion U
between 4f electrons on the same atom, and the 4f level
width. Photoemission ' and bremsstrahlung iso-
chromat spectroscopy' show that U is -6 eV in both
phases and that there is only a small difference in width
in the two phases. Experimentally, then, all the charge
fluctuation energy scales are too large by an order of
magnitude, and too similar in the two phases, to account
directly for the transition.

The KVC model involves the spin degrees of freedom,
and the relevant energy scale is the spin fluctuation ener-
gy of the 4f electrons. This energy scale is much smaller
than the energy scale for charge fluctuations, and is in
fact the one appropriate to the y —+a transition. An ear-
ly suggestion to this effect was made by Edelstein. ' As
proposed by Allen and Martin in 1982, and further ela-
borated in 1985, the KUC model provides a unified view
of the magnetic, thermodynamic, and spectroscopic prop-
erties of the two phases. The important feature of the
model is the use of the Kondo aspects of the Anderson
impurity Hamiltonian (AIH), ' such that the thermo-
dynamic and magnetic properties of each of the two
phases are controlled by a single energy scale, the Kondo
energy T~. Tz is an emergent low-energy scale of the
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AIH, and results from Uirtual charge fluctuations of the
form f 'c ~f c and f 'c ~f c, i.e., of the kind given
a static role in the promotional and Mott transition mod-
els. Using an analytical result for Tz that is valid to first
order in the inverse degeneracy expansion for the degen-
erate AIH, for the case of a flat conduction band and an
infinite value of U, the model yielded a phase diagram in
good agreement with experiment, using Hamiltonian pa-
rameters qualitatively consistent with, but not derived ex-
plicitly from, spectroscopy. The KVC model has also
been studied using the Kondo Hamiltonian instead of
the Anderson Hamiltonian. This approach cannot make
contact with the important spectroscopic data because
charge degrees of freedom are ignored from the outset.

During the last decade an important theoretical ad-
vance in treating the AIH has been made by Gunnarsson
and Schonhammer (GS), using the I/N expansion.
The GS theory provides a systematic method for calcu-
lating the various electron spectra and ground-state prop-
erties of the AIH. In addition several electron spectros-
copy measurements for a and y-Ce have appeared in the
literature. The combination of the GS theory and
the electron spectroscopy results provides the opportuni-
ty to examine the KVC model much more stringently
than ever before. In the companion paper it has been
found that the GS theory provides a remarkably good
description of all the spectroscopy data, using the same
set of Hamiltonian parameters, if a surface valence
change is taken into account. The value of the zero-
temperature susceptibility, y(0), calculated from bulk
Hamiltonian parameters is very close to the experimental
value. It was found that the very small Tz values ob-
tained in the analysis of Ref. 26, which posed a serious
challenge to the overall consistency of the KVC model,
resulted from ignoring the surface contribution in the
spectral analysis.

In this paper, we examine the KVC model quantita-
tively using Anderson impurity Hamiltonian parameters
obtained from electron spectroscopy. All the spectrosco-
py and ground-state calculations are performed to second
order in the I /N expansion with finite U value. After the
hybridization from spectroscopy is scaled by 1.12 to get
the correct zero-temperature susceptibility, we perform a
calculation, with no further adjustable parameters, of the
a-y transition in the KVC model. The calculated phase
diagram is in good agreement with the experimental one.
We find that the cohesive energy contribution from the
hybridization of unoccupied f states and conduction
states is quantitatively important in Ce, with a value
much larger than the Kondo energy. This contribution is
equally large and important in La and Pr, for which the
hybridization is often ignored. It is, however, almost the
same for the lowest-energy singlet and magnetic states, so
that it does not contribute directly to the Kondo energy.
Thus the 4f cohesive energy contribution is large in both
the a and y phases, while only the Kondo spin fluctua-
tion energy (and entropy) causes the a-y transition. This
distinguishes the KVC model from the Mott transition
model of Johansson, in which the two phases differ by
the presence and absence of the entire 4f cohesive ener-

gy. The KVC model using the Anderson Hamiltonian is

also distinguished from the purely spin-based approach,
using the Kondo Hamiltonian, where such important as-
pects of the charge fluctuations cannot be treated. This
work provides a quantitative confirmation that a unified
understanding of the high-energy spectroscopic and the
low-energy thermodynamic properties of the a and y Ce
has been achieved.

The remainder of this paper is organized as follows.
Section II summarizes the results of the Anderson impur-
ity Hamiltonian analysis of the a- and y-Ce spectra, ob-
tained in the companion paper. Section III gives the
details of the KVC calculation using the spectroscopic
parameters, and Sec. IV discusses the results of the calcu-
lation. Section V states the conclusions. In Appendix A
we present the Anderson impurity Hamiltonian analysis
of the La and Pr spectra, which is needed in the KVC
calculation, as discussed in detail later. Appendix B gives
a pedogogical discussion of the asymmetry between the
f and f states in Ce.

II. SPECTROSCOPY RESULTS

TABLE I. Anderson impurity Hamiltonian parameters and
ground-state properties of a and y Ce.

cf (eV)
U (eV)
b,,„, (meV)

nf
y(0) (10 emu/mol)

g(0),», (10 ' emu/mol)

a-Ce

—1.27+0.04
6

66.3+2.0
0.861+0.015

0.70+0.10
0.53 (Ref. 30)

y-Ce

—1.27+0.04
6

32.220.4
0.971+0.006

8.0+1.4
-4.3 (see text)

In the Anderson impurity Hamiltonian, the f electrons
in a localized state of energy cf and degeneracy N hybri-
dize with the conduction electrons via a matrix element
V(s), and repel each other with Coulomb energy U. The
energy dependence of V(s) for each of the two phases has
been calculated in the local spin-density approximation.
The bulk Hamiltonian parameters and ground-state prop-
erties obtained from the analysis of the companion pa-
per " are summarized in Table I. The parameter 6 is the
average of ir~ V(E)~ over a 3-eV range below Ez, and nf
is the f-level occupation. For comparison, the experi-
mental y(0) values for both phases are also shown in the
table. Because y(0) is not directly accessible for y-Ce,
the experimental value given here has been deduced from
the quasielastic-neutron-scattering linewidth I, ' using
the theoretical result that for the temperature of in-
terest I = Tz and the following relation:

l —w
y(0) =C

~K

where C is the Curie constant for the spin-orbit split state
j =

—,', and w (f ) is the occupation of the f
configuration. The y(0) values calculated from the spec-
troscopic parameters are slightly larger than the experi-
mental ones. One possible reason, as stated elsewhere
in detail, is the renormalization of V(r. ) due to the
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Couloinb interaction between f and conduction electrons.
To get the correct y(0) value, therefore, requires a small
increase for the hybridization determined from spectros-
copy. This renormalization of the hybridization 6 is 1.12
for both phases, and changes the nf values to 0.843 and
0.957 for the a and y phases, respectively. Thus both
phases are still in the Kondo regime where nf is ~0.8,
and so the change in nf is far less than expected in the
promotional model. Hereafter, there are no other param-
eters adjusted throughout this calculation.

III. KVC CALCULATION

In the KVC model, the free energy of the system is
written as '

F(u, T)=Eo(u)+E, (u)+Ex(u, T), (2)

where v and T are the volume and temperature. Eo(v) is
the cohesive energy contribution from all sources except
the f electrons. The second term is the ground-state en-

ergy of the AIH used to describe the f electron, and in-
cludes both spin and charge fluctuation contributions.
The third term is the temperature-dependent part of the
free energy from the f electrons, which is related to the
f-electron specific heat. The specific heat of the lattice
and conduction electrons is very small compared with
that of the f electrons, and so the temperature depen-
dence of the E0 term is ignored. In previous KVC calcu-
lations, ' Eo(u) and E, (u) were regarded as "normal"
and "anomalous" contributions to the cohesive energy.
Eo(v) was found empirically by averaging the bulk modu-
li of La and Pr, which are, respectively, the left and right
neighbors of Ce in the periodic table, and which do not
display anomalous behavior. Es, (u) was found as the
ground-state energy of the Anderson model with infinite
U.

In the present calculation with finite U, it is essential to
modify the previous treatment of Eo(v) to account for the
large contribution of the 4f states to the ground-state
energy of the AIH, i.e., to Es, (u). This 4f contribution
to the total cohesive energy is of similar size for La, Ce,
and Pr because the hybridization and f-state affinity ener-

gy have similar values in the three materials. It is there-
fore an important part of the elastic energy of La and Pr.
To avoid double counting this large energy in the first
two terms of Eq. (2) we calculate Eu(u) as

(u) = (v —u )&—Ei »p&(v)0 2 N g. s.

The elastic energy term is the "normal" term of previous
KVC calculations, with BN =280 kbar and vN =36 A be-
ing the averages of the La and Pr bulk rnoduli and
volumes, respectively. E" '(v) is the average of the 4f
contributions to the elastic energies of La and Pr. A GS
analysis adapted to the La and Pr electron spectra is de-
scribed in Appendix A, and the Hamiltonian parameters
obtained are used to calculate E '(v) from the
ground-state energy of the AIH for La and Pr. As dis-
cussed in detail in the next section, only the Kondo part
of the total 4f energy is important for the a-y transition.

The temperature-dependent part of the free energy in
Eq. (2) is, from a standard thermodynamic relation,

r C„(u, T')
Ex ( v, T)= J d T'C„(v, T') T—J d T'

0 0
(4)

IV. RESULTS AND DISCUSSIONS

The role of the various f contributions to the cohesive
energy can be understood with the aid of Fig. 1. The
two lower curves show the volume dependence of Eg,
and E ', '. In the volume region of the figure, E '; ' is a
straight line, and its magnitude is comparable to E, for
Ce. E, for La is entirely due to the mixing of 4f ' states
into the ground state, Eg, for Pr is almost entirely due

As in the previous KVC calculations, ' the specific heat
is taken from the Bethe ansatz result of Rajan for the
Kondo Hamiltonian with N =6. In this case, the result is
a universal function C„(T/Tx ). In the extreme Kondo
limit (nf =1), the Anderson impurity Hamiltonian is
equivalent to the Kondo Hamiltonian. Although Bethe
ansatz calculations for the thermodynamic properties of
the Anderson Hamiltonian with infinite U value are also
available, the lack of universality and the limit to
infinite U value prevent using the result in this work. For
the parameter ranges of a and y Ce, the contribution to
the total specific heat from charge fluctuation is estimat-
ed to be —10%. Thus the use of the Kondo result,
which has no charge fluctuation degree of freedom, is ap-
propriate.

In calculating the a-y transition, all Hamiltonian pa-
rameters are fixed except that the hybridization changes
with the volume, in accordance with the result from spec-
troscopy that only the hybridization value is different in
the two phases. As done previously, the inverse power-
law dependence of hybridization on volume is approxi-
mated by a linear interpolation of the values in the a and

y phases, i.e.,

v v V V~
b,„(e)= 6 (e)+ b,r(s) .

Vy V& Vy V

The ground-state energy E, and the zero-temperature
susceptibility y(0) are then calculated as a function of
volume u. Tx is derived from y(0) using Eq. (1).
Es", '(v) is calculated for the Hainiltonian parameters
obtained in Appendix A. The volume and energy depen-
dences of the hybridization for La and Pr are taken to be
the same as for Ce [Eq. (5)]. However, the magnitude of
the hybridization has to be scaled from the Ce value by
1.79 and 0.64 for La and Pr, respectively, as determined
by fitting the La and Pr spectra at their normal volumes.
The decrease in hybridization from La to Ce to Pr is
probably due to the decreasing orbital size of the 4f
states with increasing atomic number in the rare-earth
series. All the free-energy contributions are inserted
into Eq. (2), and the pressure-vs-volume isotherms are
calculated from the therrnodynarnic relation,

BF(u, T)
Bv



5050 J. W. ALLEN AND L. Z. LIU 46

0.0

~ —0.2

w —0.4

—0.6
I

0.7
I I

0.8
vjv„

I

0.9

FIG. 1. The curves in the figure from bottom to top are
identified as (a)-(d): (a) Singlet ground-state energy of Ce, E~, ,
(b) f-configuration contribution to the cohesive energy in La
and Pr, E~" ', (c) difference of (a) —(b), and (d) minus the Kon-
do temperature of Ce, —T&(v), as a function of reduced volume
U /V~.

Eo(v)+E, (v)= (u —u~) +[E, (v) —E" '(v)] .

to mixing of f states into the ground state, with negligi-
ble contribution from the f ' states. E" ' can be
thought of as an estimate of the f contribution for Ce,
which is large even though the f ground-state occupa-
tion is small, —3% for a-Ce at T—20 K and pressure
-0 kbar. Eg E

g
' can be thought of as an estimate

of the f contribution to the ground-state energy in Ce.
It is very important that, unlike the f contribution,

the f contribution is almost independent of whether or
not the ground state is a singlet. The energy lowering of
the singlet below the magnetic state, i.e., the Kondo ener-

gy, is mainly from hybridization of f into the ground
state in the case of Ce. It is the Kondo energy that is
essential for the n-y transition, and it is this energy that
is much larger for Ce than for La or Pr. The asymmetry
between the f and f states is exclusively for the large-N
limit, and has been discussed in detail by Gunnarsson and
Schonhammer. ' ' ' In Appendix B we present a pedo-
gogical discussion of this.

Using Eq. (3), the first two terms of Eq. (2) can be writ-
ten as

treme Kondo limit with nf —1, this dependence is ex-
ponential in ( E—f /NfpV ).

Shown in Fig. 2 are the isotherms calculated using Eq.
(6). The calculation predicts a first-order phase transition
with volume changes from vz/U&=0. 96 to U~/U~ =0.87
at room temperature. The experimental values of the
room-temperature volume for the two phases are marked
as arrows. The phase boundary, constructed from Fig. 2
using the equal-area scheme, ' is compared with the ex-
perimental one in Fig. 3. The reported experimental er-
ror bars for the critical point at T-600 K and P-20
kbar are shown by the box size, and this provides an esti-
mate of the uncertainty in the experimental phase bound-
ary. It is important to note that the slopes of the calcu-
lated and experimental phase boundaries are approxi-
mately equal. According to the Clapeyron equation, if
the volume change is correctly predicted this means that
the change of the spin fluctuation entropy during the
phase transition is the right amount of entropy needed
for this transition. This can also be confirmed in a
different way. From the Clapeyron equation the entropy
change during the phase transition is AS =AV dP/dT.
Knowing the experimental volume change and the slope
of the experimental phase boundary, AS is estimated to
be =1.54k~, where k~ is the Boltzmann constant. The
entropy for the J=

—,
' state, appropriate for Ce, is

S =kzln6=1. 79k&, which is very close to the value re-

quired for the transition. These arguments are strong
evidence that the Kondo effect is indeed the dominant
force for the transition, and that the charge fluctuation
entropy is negligible. The calculated phase boundary ter-

20

~ 10

M

W

(7)

The quantity in brackets is essentially the Kondo energy
of Ce, as can be seen from the top two curves of Fig. l,
which show that ksTx(u) and [E, (v) E'(v)] ar—e
very nearly the same. For a first-order GS treatment of
the AIH with infinite U, as done in the previous KVC cal-
culations, ' Es; '(u) is zero, and Es, (v) equals k& Tz
Thus [E, (v) —E" '(v)] is the appropriate generaliza-
tion for the "anomalous" 4f energy term of the previous
KVC calculations. Note that quantities with a significant
Kondo contribution are not linear in v, reflecting a rapid
dependence of the Kondo energy on the AIH parameters.
In the simplest case of a first-order GS treatment with
infinite U and constant hybridization V, and near the ex-

1.0 0.95
I

0.9
V/Va

0.85 0.8

FIG. 2. I'-V isotherms for T from 0 to 640 K with equal in-

crements AT=40 K. The arrows mark the experimental equi-

librium volumes of the a and y phases at room temperature.
The horizontal dashed lines indicate the equilibrium pressure
for a given temperature on the phase diagram.
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porate the E ", ' term in the free energy shifts the a-y
transition line by 40 kbar to negative pressures.
Nonetheless, an exact DFT calculation should reproduce
the zero-temperature transition correctly. We point out
that an exact DFT calculation is not synonymous with
the Mott transition model. Such an exact calculation
would incorporate for both phases the spin fluctuation
effects which are missed in the current approximate DFT
treatments, and which are not part of the Mott transition
model as it has been described. But it seems possible that
some approximate version of the DFT might treat the in-

terplay of spin and charge fluctuations well enough to
give a good description of the phase transition, and also
of the properties associated with the phases, such as the
magnetic susceptibilities.

V. CONCLUSION

FIG. 3. Comparison between experimental (Ref. 2) and the
calculated phase diagrams. The box around the experimental
critical point indicates the uncertainty.

minates in a critical point near 520 K and 13 kbar, close
to the experimental one. In the theory, the critical point
pressure is very sensitive to the correction E"", '. Small
adjustments of the spectroscopically determined La and
Pr parameters could be made to produce agreement with
the experimental critical point, but such fine tuning has
not been done here. The second critical point at a nega-
tive pressure, a prediction specific to the KVC model, is
observed in alloys, where it is shifted to the physical ob-
servable positive pressure region. The previous KVC cal-
culations ' gave a good phase boundary description be-
cause the important f contribution to the ground-state
energy Es, (v) in Ce, neglected for infinite U, roughly
cancels the correction to Eo(v) from the La and Pr f
states [Eqs. (2) and (3)], and because adjustable parame-
ters were used in the calculation.

Finally, we turn our attention to the implications of
density-functional theory (DFT) for discerning the ap-
propriate model of the y~a transition, a subject which
is often misunderstood and deserves some comment.
Published efforts using the local density approxima-
tion (LDA) to the DFT have not been very successful.
There was not clear evidence for a first-order transition
and the predicted transition pressure is over an order of
magnitude larger than the experimental value. The most
recent calculation, which includes the effects of spin po-
larization within the LDA and includes spin-orbit cou-
pling, was able to produce a first-order transition at zero
temperature, although the predicted pressure is at ——30
kbar as compared to the experimental value of ——7
kbar estimated from the phase diagram. We speculate
that the difficulties of approximate DFT theories to date
in reproducing the transition pressure is that they do not
take out the appropriate small spin fluctuation part of the
total 4f cohesive energy. They still retain too much of
the spirit of the Mott transition model, in which the total
4f cohesive energy produces the phase transition.
Indeed, in the present KVC calculation, failure to incor-

In summary, we have used the Anderson impurity
Harniltonian parameters from electron spectroscopy to
calculate the a-y transition in Ce in the KVC model.
After the hybridization obtained from spectroscopy is
scaled by 1.12 to reproduce exactly the experimental
zero-temperature susceptibility, the calculation, with no
further adjustable parameters, predicts a phase boundary
in good agreement with the experimental one. It is found
that the cohesive energy contribution from the hybridiza-
tion of unoccupied f states and conduction states is quan-
titatively important in Ce, as well as in La and Pr, for
which the hybridization is often ignored. This contribu-
tion to the 4f cohesive energy is, however, almost spin in-
dependent, so that it does not contribute directly to the
Kondo energy. It is the Kondo spin fluctuation energy
and entropy in Ce that are responsible for the a-y transi-
tion, and this distinguishes the KVC model from the
Mott transition model where the spin and charge contri-
butions are not separated, and where the entire 4f
cohesive energy turns on and off at the phase transition.
The KVC model using the Anderson Hamiltonian is also
distinguished from the pure spin version of the KVC
model using the Kondo Hamiltonian, in that the latter
approach cannot make direct contact with spectroscopic
data and the influence of the f state to the cohesive en-

ergy mentioned above cannot be discussed. This work
provides a quantitative confirmation that the Anderson-
Hamiltonian-based KVC model can explain the a-y tran-
sition in Ce, and that a unified understanding of the
high-energy spectroscopic and the low-energy thermo-
dynarnic properties of the a and y Ce has been achieved
at the quantitative level.
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APPENDIX A: AIH ANALYSIS
OF La AND Pr SPECTRA

La BIS Pr BIS

JJI, I ~ I I ~ I

0 5 10 0 5
ENERGY RELATIVE To EF (eV)

I

10

La 3d XPS

In this appendix we present the results of a GS analysis
of the electron spectra for La and Pr. Although a generic
calculation for Pr 4f photoemission spectroscopy (PES)
was done previously, there are no calculations for 4f
bremsstrahlung isochromatic spectroscopy (BIS) and 3d
x-ray photoemission spectroscopy (XPS). It has been
found that surface emission is not negligible in quantita-
tive spectral analysis, ' especially for a-like com-
pounds. This surface emission contribution is most im-
portant for the valence band spectrum which is often tak-
en at low photon energies. BIS and 3d XPS spectra taken
at Al Ka energy (1486.6 eV) are less surface sensitive be-
cause the electrons involved have large kinetic energies
and therefore have large escape depth. For La and Pr,
which are very y-like with weak hybridization, we there-
fore use the BIS and 3d XPS spectra for our fitting and
ignore the surface emission. Detailed methods of analyz-
ing the spectra are presented in Refs. 21, 22, and 27.

The hybridization parameters b, (s) for La and Pr were

TABLE II. Anderson impurity Hamiltonian parameters and
ground-state properties of La and Pr. For Pr cf is the energy
difference E(f )

—E(f').
La Pr

cf (eV)
U (eV)

Uf, (eV)

5,. „, (meV)
n ()

n

72

n

Z„(eV)

5.2

8.5
28.7
0.988

0.012

0.067

—3.3
7.3

1 1 ' 3
21.8

0.003

0.984

0.013

0.073

APPENDIX B: ASYMMETRY BETWEEN f
AND f ~ STATES

taken to be the same as those of a and g Ce, extrapolated
to the volumes of La and Pr [U =37.5 A for La, and 34.6
A for Pr (Ref. 50)j using Eq. (4). This approach relies on
the fact that the details of the energy dependence of b,(s)
are not very important for BIS and 3d XPS spectra. The
extrapolated theoretical hybridization (b,,„,= 16 meV for
La, and 34 meV for Pr) has to be scaled in order to fit the
spectrum. Figure 4 shows the comparison between the
calculated (solid line) and experimental ' (dotted) 4f
BIS and 3d XPS spectra. The fitting parameters and the
occupations for the various f configurations are shown in
Table II. The position of the f ~f ' peak in the La BIS
spectrum determines the La cf value. The La 3d XPS
spectrum has a spin-orbit splitting energy of 16.2 eV.
The size of the f peak on the low-binding-energy side is
a measure of the hybridization strength. For Pr, the po-
sition of the f ~f ' ionization peak in the valence band
spectrum (taken with photon energy 80 eV, not shown
here) determines the Pr ef =E(f ) E(f') val—ue. The
multiplet splittings in the Pr BIS spectrum ' are included,
and the average position of the f —+f peak determines
the U value. The Pr 3d XPS spectrum has a spin-orbit
splitting of 20.4 eV. The 3d3/2 peak has final-state multi-

plet and energy loss structures at —25 eV and —15 eV,
respectively. These structures are not included in the
theory, and the fitting is therefore done for the 3d 5&&

peak.

I ~ I ~ I

—30 -20 —10 0 10 -20
RELATIVE ENERGY (eV)

I

0 20

FIG. 4. Gunnarsson-Schonhammer calculation (solid line)
and experimental data (dots) of La and Pr BIS and 3d XPS spec-
tra. The inelastic background and conduction density of states
in the BIS data is taken as straight lines. The experimental data
are taken from the following works: BIS, Ref. 51; La 3d XPS,
Ref. 52; and Pr 3d XPS, Ref. 53.

In this appendix we present a pedagogical discussion
of the asymmetry between the f and f states in Ce.
This asymmetry is exclusively for the large-N limit, and
has been discussed in detail by Gunnarsson and
Schonhammer ' ' in both analytical and numerical
forms.

In the N~ac limit, f, f', and f states with no
electron-hole excitations in the conduction band, denoted

by GS as "first-order, " form a complete set of basis states
for the ground state. We denote these three states by ~0),
~s ), and ~Ee'), respectively, where E and e' are the energy
of the valence holes in the f ' and f states, for which one
and two conduction electrons are transferred to the f lev-
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el, respectively. Both c and c' are variables having the
range from the Fermi energy to the bottom of the valence
band. Thus the ~E) and the ~eE') states are single and
double continua, while the ~0) state is a single state.

Consider first the f f-coupling. The lowest-energy
~e) state is ~Ez). The f to f' hopping matrix element
is ~1/v'v, from the normalization of the Bloch wave
function, where v is the volume of the whole solid. The
perturbation of the ~E~) state by coupling to the ~0)
state then vanishes as v goes to infinity. In the 1/N ex-
pansion theory, this is avoided by making a linear com-
bination of the ~e ) states, i.e., summing over a part of the
continuum from E~ to some energy Ep Tp ~ The
coefficient of the basis states in this linear combination is
~1/&u, from the normalization of the summed state.
Because ~e) is a continuum, the sum is an integral over
energy, and is ~ U, from a phase space argument, which
then cancels the 1/U coming from the matrix element and
the basis state coefficient. The f -f ' hopping is therefore
stabilized by making this sum, and the hopping matrix
element is ~+To. However, making the sum also
drives the energy of the summed state up because states
with higher energies are mixed in. The competition be-
tween these two effects determines the cutoff energy Tp.
In addition each

~

e, ) state in the sum has by construction
a zero z component of the angular momentum, but is not
a singlet. By summing over all channels of the N degen-
eracy, one makes a singlet state, which is energetically
favorable because it increases the coupling to the ~0)
state from V to ~N V. The+ coupling to the singlet f '

ground state is therefore &N times stronger than that to
the magnetic f ' state, and this difference gives rise to the
Kondo effect. For the f to singlet f' coupling it is
found ' that the cutoff energy Tp discussed above is ap-
proximately the Kondo temperature Tz.

When considering the f ' fcoupling, -there are, how-
ever, the following differences.

(1) It is not necessary to make a sum over
~
e ) states to

get a finite f '-f coupling, because ~sE') is a double con-
tinuum so that the state IEF ) couples to a continuum of

~ EFe' ) states. Summing over this continuum E' then gen-
erates the volume factor needed to stabilize the perturba-

tion of the ~EF ) state as the volume goes to infinity. The

f ' f -coupling is therefore a much bigger effect than the

f ' f-coupling, really because each ~e) state couples to
an entire continuum of

~

EE') states rather than just one
~0) state.

(2) The f ' to f coupling does not depend on whether
the f ' state is magnetic or not, i.e., it does not enhance
the coupling to make a singlet by summing the

~
E ) over

the N degenerate channels. In this case, it is easy to show
that the summation just divides up the weight of the
ground state into N pieces, with each of them coupling
the same way to the ~ee') states. Therefore, if the ~0)
state is turned off, the f '-f coupling would give exactly
the same contribution to the ground-state energy for
magnetic f ' as for singlet f ', and there is no Kondo
effect Fi.gure 15 of Ref. 21 shows this large f ' fcontr-i-
bution to the cohesion even when the weight of the f
state is zero, i.e., the f state is turned off.

(3) When both the f and f states are allowed to mix
with the f ' state, there is an interplay between the f f'-
and f' fcoup-ling such that the f'-f coupling does
finally have an effect on the Kondo energy, as shown in
Refs. 33 and 22. But this effect is indirect, and only un-
der very strict conditions are the f and fo contribu-
tions to the Kondo energy symmetric, as in the result ob-
tained from the Coqblin-Schrieffer transformation for
N )2. These conditions are ~Ef ~, ~ U+ef ~

))B,b„where
8 is the width of the valence band. For Ce, B-3 eV, and
these conditions are not met (see Table I).

As we pointed out from the beginning, the asymmetry
between the f and f states discussed in this appendix is
exclusively for the large-N limit. For small N, higher-
order states, i.e., states with electron-hole excitations in
the conduction band, must be included in expanding the
ground state, and in consequence the asymmetry between
the f and f states begins to disappear. For the special
case of N =2, there is electron-hole symmetry between
the f and f states, and they contribute to the ground-
state energy and the Kondo energy symmetrically. In
this case, the symmetric result of the Schrieffier-Wolff
transformation for N =2 does not require the strict con-
ditions given for the large-N limit.
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