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Fracture in one dimension
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The position- and time-dependent statistical probability for fracture of a one-dimensional string of
Lennard-Jones atoms has been evaluated as a function of the temperature, tension, and length. A
surprising exponential dependence of the fracture-site probability with distance from a string end is ob-
served.

We will conjecture that a one-dimensional string with a
sufficient number of atoms, N, linked by any typical inter-
molecular force, is dynamically unstable when subjected
to a tension at finite temperature. It is simply a matter of
time until a configuration of the atoms arises (in the 2N-
dimensional phase space in which the system dynamics
evolves) that permits "nucleation" and growth of a state
involving two separated sections (the broken string seg-
ments), which then accelerate in opposite directions (un-
der the action of the force, applied to the end atoms,
which was the original source of the string tension).

In spite of a long history, fracture is still a rather poor-
ly understood phenomenon. Admittedly, the most in-
teresting fracture problems involve three-dimensional
(3D) solids. Since accurate molecular-dynamics simula-
tions (the technique we use) of 3D materials are costly
and the range of structures, environments, and
intermolecular-force forms rather vast, we feel it is useful
to begin to develop a database of "simple" 1D cases. We
are well aware that, if the history of thermodynamic
phase transitions (and its dependence on system dimen-
sionality) provides any hint regarding the inherently
nonequilibrium character associated with fracture, the
one-dimensional case may not generate information
which carriers over in a simple way to higher dimensions.
The 1D system nonetheless falls in the general class of
fracture problems and so we proceed with no further apo-
logies.

In the molecular-dynamics method, one integrates
Newton's laws for an ensemble of atoms moving under
prescribed intermolecular (and any external) forces. In
our work the coupled set of differential equations was in-
tegrated using a fourth-order Runge-Kutta algorithm.
Once the initial configuration is defined, the time evolu-
tion of the system is deterministic. The intermolecular
force we chose is the so-called Lennard-Jones form. All
interior atoms are subjected to this potential from their
neighbors to the left and right (i.e., we include nearest-

neighbor forces only). The two end atoms (j= 1 and N),
in addition to sensing the adjacent (interior) atoms, are
subjected to a force F (to the left and right for atoms 1

and N, respectively); this results in a string tension.
For actual calculations we used the potential (written

in dimensionless form)

V(q) = 1 2 1

(1+q) (1+q)'

this potential has a minimum for q =0. Newton's laws
take the form (for a mass of unity)

q,
= V'(q, +i q, ) V'(q,—q,

— —

for all interior atoms, and

(2a)

and

'qN V (qN 'qN —1)+F (2b)

q 1
= V'(q2 —q, ) F, — (2c)

for the first and last atoms, respectively.
It is nontrivial to define a sensible set of initial condi-

tions. Since we are assuming our string will ultimately
break, it makes no sense to speak of an equilibrium
stretched string at finite temperature. ' In fact, even in
the absence of a tension, a finite-temperature string with
free ends can "evaporate" atoms (or groups of atoms) off
an end. We might think of subjecting an (initially) un-
stretched, finite-temperature string to a tension at t =0
and track its subsequent time evolution. However, the
tension causes the string to stretch and the sudden appli-
cation of the tension generates perturbations which prop-
agate to the interior and damp very slowly; the intersec-
tion of traveling perturbations (after single or multiple
reflections form the ends of the string) may result in
"premature" fracture. '

We have found that the following start-up procedure
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leads to an acceptable time evolution: (i) the atoms were
assigned an equilibrium spacing which is obtained from
the actual length of strings, which, in earlier runs (at the
same temperature and tension), survived for a relative
long time without fracture (this is clearly a bootstraplike
process); (ii) a set of initial velocities and displacements
was generated which corresponds to exponential kinetic-
and potential-energy distributions equivalent to some
"temperature" T, . If we track the time dependence of
the system following such a start-up procedure, we find
that any imbalance between the kinetic and potential en-
ergies (outside that expected on the basis of fiuctuations)
decays in an oscillatory fashion (involving an Einstein-
like frequency) with a relaxation time constant rz, which
is generally much less than the characteristics break
times ~R. The equilibrated average kinetic energy is used
as a string temperature.

The break time and break point depend (somewhat in-
sensitively as we shall see) on the initial distribution
(whose mean alone is fixed). A large number of indepen-
dent runs were performed to develop an accurate time-
and position-dependent breaking probability. New sets
of such runs were performed for each tension F, tempera-
ture T, and atom number N studied.

The break time must be defined in some manner. We
declared our string to be broken when the spacing be-
tween any two pairs of atoms exceeded ten lattice spac-
ings. However, the time at which this occurs involves the
time required to accelerate the two string segments to
this spacing and is not a reasonable choice for the break
time. The actual break was defined as follows. On each
Runge-Kutta iteration, the instantaneous separations of
all atoms in the lattice were computed and the position of
the pair having the largest spacing was stored along with
the time. The break time was defined as that prior time
at which the spacing of the pair that ultimately broke
first achieved the largest-spacing status. The average
break time is defined as
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FIG. 2. Plot of the break time tz as a function of the temper-
ature; here F =0.08 and 1V =51.

In the presence of an external string tension, the sys-
tem is no longer closed; i.e., its energy is no longer con-
stant. An extreme example is the behavior after fracture:
The tension is then resolved into two forces, which ac-
celerate the two string segments, and the kinetic energy is
then unbounded. We have studied the time dependence
of the total energy prior to fracture; we find that it slowly
fluctuates both above and below the initial energy, but
generally stays within 10% of that value.

We now present some representative results. Figure 1

shows the break time as a function of the string tension,
while Fig. 2 shows the break time vs temperature ( T) (the
values of the remaining state parameters are listed in the
captions). As would be expected, the break time is longer
for smaller tensions and temperatures.

Perhaps the most interesting behavior involves the po-
sition at which the string breaks. Rather than averaging
the break time irrespective of the break site, we accumu-
late the number of breaks at a given site irrespective of
the fracture time. The fracture-site statistics are shown
for three diFerent values of the temperature in Figs.
3(a) —3(c). Clearly, the probability of fracture is strongly
site dependent. To analyze these data we introduce a

where t„ is the break time in any given run and R is the
total number of runs (for a given T, F, and N). 0.4 +
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FIG. 1. Plot of the break time t~ as a function of the string
tension F; here the temperature ( T) is 0.008 76 and N =51.

FIG. 3. Fracture-site statistics for temperatures of (a) 0.0038,
(b) 0.0088, and (c) 0.050; here F =0.08 and N =51.
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breaking probability function to P(j, t), which depends
on the discrete site index j and the continuous time vari-
able t. The data shown in Fig. 3 then involve the form

The solid lines in Fig. 3 show a least-squares fit to the
form

p&(j )=f "P„(~,t)dt . (4) p&(j) = 2 cosh[a(j —N/2)], (6a)

The function P (j ) must be symmetrical about the center
of the string; i.e.,

pN(J ) =pN(N J)

where

' = g cosh[a(j —N /2) ] (6b)
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is a normalization factor. It will be observed that this
form provides a rather good representation of the data.
This expression says that the probability for fracture de-
creases exponentially as one proceeds in from either end
of the string. We have found that Eq. (6a) provides a
good description for a wide range of state parameters.
Figures 4(a) —4(c) show the behavior of the decay con-
stant a as function of F, T, and N (for the values listed of
the remaining state parameters).

We performed a number of experiments to test the sta-
bility of the fracture site as a function of a change in the
initial conditions (velocities only). The initial velocity
distribution may be regarded as a point P on the surface
of an N-dimensional sphere S (with its origin at 0), whose
equation is

1.5

( b )

N '2=X i, =&k;.
j=1
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where Ek;„ is the starting kinetic energy.
Our perturbation consisted of choosing a nearby point

P' on the same sphere at a distance d (=dp p) from P.
The fracture experiments were repeated with the initial
velocity vector altered from P to P'. The P' were chosen
at random for various values of d. The striking feature
was that in a large fraction of the cases, the break site did
not change, even for d/dop as large as 0.1. This relative
insensitivity to the initial conditions shows that the
phenomenon of one-dimensional fracture is not determjn-
istically chaotic.

In conclusion, we have examined what is perhaps the
simplest example of fracture: a stretched 1D lattice.
Apart from the rather obvious result that fracture is
enhanced by higher temperatures and tensions, an unusu-
al exponential dependence of the probability for fracture
at a given site with distance from a string end has been
discovered. Clearly, conditions which would lead to frac-
ture when they occur close to an end have an opportunity
to mend if they occur further into the lattice. The pro-
cedures we have developed for obtaining a set of starting
conditions should be useful in studying 2D and 3D frac-
ture.

FIG. 4. Plot of the constant a (a measure of the site decay
probability) as a function of (a) F, (b) T, and (c) N; the remaining
state parameters F, T, and N have the values 0.08, 0.008 76, and
51, respectively, and where relevant.
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'The question of whether all starting configurations having
some minimal energy will actually lead to breaking is a subtle
one. One can imagine that certain configurations might be
stable and not redistribute their energy so as to make a "hot
spot" or other nucleation center for fracture. An example of
a coherent motion is very-long-lived solitonlike structures,
which are relatively easy to generate.

~The study of the decay of some initial perturbation in a 1D
string has a long history. The early work of E. Fermi, J. Pas-
ta, and S. Ulam, in Nonlinear 8'ave Motion, Vol. 15 of Lec-
tures in Applied Mathematics, edited by A. C. Newell (Ameri-
can Mathematical Society, Providence, RI, 1974), p. 143, set
the stage for the later identification of the soliton by N. J. Za-
busky and M. D. Kruskal, Phys. Rev. Lett. 15, 240 (1965).

J. Ford and J. Waters, J. Math. Phys. 4, 1293 (1963).
4This is accomplished using the so-called Box Meuller algo-

rithm, which takes pairs of numbers from 0 to 1 at random

and converts them into a set of random numbers that have a
preassigned standard deviation.

5We have been unable to find any systematic studies of 1D frac-
ture in the literature. A study of two cross-linked chains
moving in 2D was performed by A. I. Melker and A. V.
Ivanov, Phys. Status Solidi A 84, 417 (1984); the phenomena
reported here were not discussed.

In adopting this normalization condition, we are implicitly as-

suming that any non-fracture-inducing initial conditions are
of measure zero.

7Several dynamical studies of 2D fracture have been performed.

As an example, A. Paskin and O. K. Som, Acta Metall. 31,
1253 (1983), have studied the propagation of cracks in 2D
Leonard-Jones lattices.


