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Absorbing boundary conditions for the Schrodinger equation on finite intervals
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The absorbing boundary conditions for the one- and two-dimensional Schrodinger equation on a
finite interval are considered by using a rational-function approximation for the dispersion relation.
The approximation gives good results over a wide range of input parameters. A finite-difference
approximation is used to solve the Schrodinger equation and the resulting boundary conditions.

I. INTRODUCTION

The pure numerical solution of the time-dependent
Schrodinger equation in low-dimensional systems was
used first by Goldberg, Schey, and Schwartzi to generate
motion pictures of a one-dimensional quantum particle.
Traditionally the treatment of quantum scattering events
is to expand the wave function into a set of traveling
waves. The traveling waves obey the boundary condi-
tions implicitly. With the growing interest of transport
properties of low-dimensional quantum devices, pure nu-
merical techniques for solving the Schrodinger equation
have become more important.

The one-dimensional Schrodinger equation

N (x, t) =—,(x, t)+V(x)@(x,t)
8$ 5 82$

describes the motion of a particle with the mass m in the
interval x 6 (—oo, oo) under the influence of the potential
V. The boundary conditions on the infinite interval are
implied by the normalization condition

solution of (1) or (2) inside the interval. One way is to
choose Q = 0 at the boundary. This condition works well
for the case that the particle is far from the boundaries.
For long times and close to the boundaries, reflections
occur. To avoid these reflections several techniques were
supposed; for a review see Frensley. s Shibata4 made an
approach to design absorbing boundary conditions for
the one-dimensional case. The present work will give
a better approximation for the boundary conditions in
one dimension and present boundary conditions for the
two-dimensional case in Sec. II and show some numerical
results in Sec. III.

II. HIGHLY ABSORBING BOUNDARY
CONDITIONS

A. One-dimensional case

This section follows the ideas developed in Refs. 5
and 4. To construct absorbing boundary conditions, the
boundary should be almost transparent for a plane wave
of the form

Q'(x, t)@(x,t) dx = 1, Q(x, t) = exp[ —i(~t —kx)]. (3)

l' 82$ 82$
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+V(x, y) @(x,y, t),

ih (x, y, t) =—. 8$

In the two-dimensional case, one has the similar expres-
sions

Due to this assumption the expressions are only valid for
scattering states. The idea is to construct an algebraic
equation for the wave vector k and the frequency ur and
then to use the correspondence between the x tspace-
and the k-to space to construct a diflerential equation on
the boundaries which is transparent for the plane waves.
It is clear that it is impossible to design fully absorb-
ing boundary conditions. From (1) and (3) one gets the
dispersion relation for the wave vector k,

h k = 2rn[hu) —V(x)].

This relation can be solved for k and yields

(4)

with x, y c [
—oo, oo]. The pure numerical solution of

Eq. (2) was given by Galbraith, Ching, and Abraham in
Ref. 2. The numerical solution of (1) or (2) by finite-
difference or finite-element techniques can only be per-
formed on a finite interval. The problem there is to
choose appropriate boundary conditions in a way that
the finiteness of the interval has a minor influence to the

hk = +/2m[M —V(x)],

where the plus sign describes waves moving to x = oo and
the minus sign means waves moving to x = —oo. The
left boundary has to be transparent for left-going waves
and the right boundary must be transparent for right-
going waves. To transform (5) back into the x tspace-
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one needs an approximation for the square root which
can be easily transformed into a difFerential equation at
the boundaries.

In Ref. 4 a linear approximation of the square root
function is used. The linear approximation introduces
two unphysical parameters into the calculation and it is
difficult to choose the right values. In the present paper
the rational function approximation

h z 2

2m ) Bx BtBx

= +hkp
~

' —3V
~
g(x, t) +3ih k, (x, t).

fh kpz

(2m ) Bt

gz —zp - ~zp(1+ 3z/zp)/(3+ z/zp) (6)
B. Two-dimensional case

is llsed.
With the approximation (6) for the square root in the

dispersion relation (5) one gets

2m(Fuu —V)
h kz

1+3z
3+z

with z = 2m(h~ —V)/h kp2. kp plays the role of the
expansion point in the rational function approximation
(5). The mean wave vector of the localized wave function
is still unknown when it arrives at the boundary. One has
to choose a value for kp in such a way that the boundary
is transparent for the incoming wave packet. By using
the correspondence between k -::- i 8/Bx, u—r -. .'- i 8/Bt
one gets the partial difFerential equation

The two-dimensional case in Eq. (2) can be treated
in a similar way. Only the derivation in the x direction
will be given. The expressions for the y direction can be
obtained by exchanging x with y.

The two-dimensional plane wave can be expressed by

hk, = khkp ([2m(hu) —V) —h kz]/h k2p, )'~2. (10)

Using again the approximation (6) for the argument of
the square root function yields the boundary conditions

Q(x, y, t) = exp[—i((ut —k,x —k„y)],

where k is the wave vector in the x direction and k„ is
the wave vector in the y direction. The expansion point
of the dispersion relation may be kp = (kp, kp„).
dispersion relation yields

( hkz &t 8$ 8tP h
-&h~ 3 '* -V

~
(x, y, t)+h' (x, y,t)-i, (x, y, t)

= +hkp, i

* —3V
i @(x,y, t) +3ih kp, (x, y, t) +3 *

(x, y, t). (11)
(h kpz ) . z 8@ h kp, Bz@

0.2

0.1

At x = 0 the minus sign should be used and at x = I
the plus sign.

III. NUMERICAL RESULTS
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For the numerical solution of Eq. (1) with the bound-
ary conditions (8) and Eq. (2) with the boundary condi-
tions (11), h = 1, rn = zi, and I = 10 A are chosen. The
potential V was set to V = 0.
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FIG. 1. The reflection coefficient r vs the energy (eV) of
the particle for difFerent time steps b and grid sizes J. The
solid hne refers to b = 1.0 x 10 and J = 512, the dotted-
dashed-dotted line refers to 6 = 0.5 x 10 and J = 512, the
dashed line was obtained with 6 = 1.0 x 10 and J = 1024,
and the dashed-dotted line with b = 0.5 x 10 and J = 1024.

A. One-dimensional case

As initial wave function a wave packet

g(x, 0) oc exp[—(x —()z/20p] exp (iqx)

wss chosen. Equations (1) and (8) were approximated
by a finite-difFerence approximation. For the details
of the approximation of the Schrodinger equation on
the inner points, see Ref's. 1 and 2. The abbreviations
x~ =je with j = O, . . . , J, t„= nb with n = O, . . . , N
and @(x~,t„) = Q" are used in the notation of the
finite-difference equations. On the boundaries the finite-
difFerence approximations at x = 0 (j = 0) and x = I
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are used. This yields the usual tridia(onal system of
equations for the calculation of the Q"+ .

To prove the quality of the absorbing boundary con-
ditions for various energies of the moving particle, the
reBection coeKcient

Q'(x, t~)g(x, t~) dx g'(x, 0)g(x, 0) dz

was calculated. The particle was located around ( =
3L/4 at f = 0 moving in a positive x direction. The
width of the wave function oe was set to 5% of L. The
expansion point ke of the approximation (6) was set to
ke = q. The value t~ ) 0 was determined by the relation

ap/L

FIG. 2. The reflection coefBcient r vs the initial width
oo/L of the wave packet with an energy of 650 eV. The solid
line shows the results for 6 = 0.5 x 10 and J = 512 and
the dashed line shows the dependence for b = 0.5 x 10 and
J = 1024.

x@'(x,t~)Q(z, tpg) dx Q'(z, 0)Q(x, 0) dz ((.
The results of this calculation are shown in Fig. 1. As is
seen from Fig. 1 a reflection coefficient less than 1% or
better is easily obtained for a wide range of energies. The
variation of the step size of time integration has a small
influence on the quality of the boundary conditions. A
larger number of mesh points gives significantly better
results. For low energies of the particle the diifusionlike
motion dominates the particle flux out of the interval.
The boundary condition is not designed for that case and
yields bad results.

In Fig. 2 the dependence of the reflection coefficient r
on the width of the wave packet is shown. Narrow wave
packets (small ere) correspond to relatively wide wave
packets in the k space and give relatively bad results
(even less than 5%). For op ) 0.13L the wave packet
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FIG. 3. Two-dimensional motion of a particle on a 128 x 128 grid with energy of 400 eV and q = qy = q (0(&&9~ &) I » drawn

fpr ~ = 8p (a), tp n = 4pp (i). Between the pictures are always 40 time steps of width b = 1.0 x 10 '. ko* = ko& = ko = 3 lq
were taken as parameters for the boundary conditions.
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will not fit in the interval any longer and the results also
become bad.

~+

0.5

B.Two-dimensional case

For the two-dimensional case an initial wave packet of
the form

C(,o) ~ (-[( -4)'+( -(,)'li .)
x exp[i(q, z+ q„y)]

was used. The inner points of (2) were treated as sug-
gested in Ref. 2. To transform Eq. (11) into a finite-
difference expression the approximations

0(»y t) = 4(&jp&,/+0jpi, /+&j, / +&j,/)
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FIG. 4. Two-dimensional reflection coefficient r for the
scattering event shown in Fig. 3 on a 64 x 64 grid with
6 = 0.5 x 10,ko was varied in terms of q to change the trans-
parence of the boundary. The solid line shows the r(kpiq) de-

pendence for a 200-eV particle, the dashed line for a particle
with 300 eV energy, and the dashed-dotted line corresponds
to a 400-eV particle.
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z, y, t)

2 2( 4j+1,/+1
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'+ @j,/-/)

1

y z (»y t) = 3 [ (~j+1,/+1 2@j+1,/+ ~j+&., / 1)—
—(0,"/+1 —20,"& '+ &j,/-i)l

are used with the abbreviations zj ——j e, y/ = te, t„= r/b

and Q(zj, y/, t„) = Q"
/

where j = 0, J —1, I = 0, . . . , J
and n = 0, . . . , N. Similar expressions are used for the
boundaries at y = 0 and y = I This yields . again a large
linear system for the Q". +/ . To solve the resulting equa-
tions the alternating direction implicit (ADI) method of
Ref. 2 is used. Due to the fact that ADI is not an implicit
solution method the time step b must be chosen so that
the following stability condition,

a = (&/e)(»'ko'/2m —&), b = &'/«,
c= hkp(h kp/2m —3V), d = 3h kp/6,

e = (1/e )(FP/2m), f = (3hkp/e )(5 /2m)

is fulfilled for kp = kp and kp„.
Figure 3 shows the motion of a quantum particle with

400 eV energy. The particle starts at (~ = 3L/4 and
(„=L/4 and hits the boundary at z = L/2 and y = 0.
To make the small reflected part of the wave function
visible ~@(z,y, t)~ is drawn. In the usual pictures of
~Q(z, y, t)is reflections would not be visible. Figure 4
shows the dependence of the two-dimensional reflection
coefflcient r on the expansion point of the approxima-
tion (6). As is seen from Fig. 4 a reflection coefflcient
less than 170 is easily obtained "ven for that relatively
small grid. Only a small dependence on the particle en-

ergy is observed.
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