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We determine the allowed structures for orientationally ordered icosahedral molecules on a fcc lattice
such that there are four molecules per simple-cubic unit cell. The allowed space groups are Pm3, Pn3,
and Pa3. In the latter two, an angle of rotation assumes a value not fixed by symmetry. The locations of
all 240 atoms in the unit cell as deduced from the powder x-ray data of Heiney et al. are tabulated. We
discuss a number of minima in the free energy which correspond to the observed Pa3 structure of solid
Ceo. We introduce orientational order parameters which lead to a Landau free energy, from which we
predict that the orientational transition is discontinuous.

I. INTRODUCTION

The Cg, fullerene molecule! has an interesting struc-
ture, whose symmetry is well described by a truncated
icosahedron.? An icosahedron? is a regular solid with 12
vertices, 20 equilateral-triangular faces, and 30 edges of
equal length which has twofold, threefold, and fivefold
axes of symmetry. A convenient representation of an
icosahedron inscribed in a cube is shown in Fig. 1, in
which 3 sets of parallel edges are indicated. A truncated
icosahedron is derived from the icosahedron when each
triangular face is reduced to form a central regular-
hexagonal face and five of these new edges from neigh-
boring triangles are then joined to form regular-
pentagonal faces, as shown in Fig. 2. The ideal truncated
icosahedron has 60 vertices and 32 faces (of which 12 are
regular pentagons and 20 are regular hexagons). In Cy,
the hexagons are distorted,** bonds belonging to penta-
gons being the longer single bonds and those between ad-
joining hexagons being the shorter double bonds. Re-
cently an interesting paper by Heiney et al.> describes a
study of the x-ray powder diffraction pattern from solid
Cgo Fullerite in which an orientational transition is ob-
served at a temperature T, of about 249 K. For tempera-
ture T greater than T, they find a phase in which the Cg,
molecules are orientationally disordered® and their
centers of mass form a fcc lattice.” For T < T, an orienta-
tionally ordered phase appears in which, within the reso-
lution of the x-ray data,’ the orientations of the mole-
cules order without any shift of the centers of mass away
from the fcc lattice positions. Accordingly, it is ap-
propriate to attempt to fit the lowest temperature data at
T=11 K to a model in which the molecules are com-
pletely orientationally ordered. Since the powder
diffraction peaks could be indexed according to a simple-
cubic unit cell containing four molecules, we are interest-
ed in understanding the possible orderings for icosahedral
molecules on a fcc lattice for which the diffraction peaks
retain the selection rules for cubic symmetry. That is, the
momentum transfer in the powder diffraction peak asso-
ciated with indices A, k, and / should be independent of
the signs of the indices and independent of different or-
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derings of the indices. The intensities of the various
diffraction peaks contain information about the nature of
the orientational ordering, and as we shall see, are not in-
variant under interchange of 4 and k, for instance. A re-
cent reanalysis® is accepted’ to show that the orientation-
ally ordered phase of solid Cg, is that of space group
P2,/a3. In the course of that work several amusing
structural questions arose which we will address in the
present paper. In addition, due to the brief nature of Ref.
8 (and 9), sufficient details were not actually given to
specify completely the structural parameters of the orien-
tationally ordered phase. We give these structural pa-
rameters in Table V.

The first, and most obvious, question is what orienta-
tionally ordered structures are consistent with the cubic
symmetry implied by the fact that the diffraction peaks
can be indexed according to a simple-cubic unit cell? As
mentioned above we will assume that the centers of mass
of the Cy, molecules form an fcc lattice. To see that the
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FIG. 1 Schematic representations of an (inscribed) icosahed-
ron. Here we show the icosahedron when it has mirror planes
perpendicular to the three { 100) directions. In this orientation,
six of its edges lie in planes parallel to the mirror planes, so that
when the icosahedron is circumscribed by a minimal cube, these
edges lie in the cube faces, as shown. A fivefold axis passes
through each vertex. Each (1,1,1) direction is a threefold axis.
We will refer to these two settings as setting 1 (on the left) and
setting 2 (on the right).

4944



46 ORIENTATIONAL ORDERING OF ICOSAHEDRA IN SOLID Cg

FIG. 2. Construction of a truncated icosahedron from an
icosahedron. Here we look along the fivefold axis of the
icosahedron with its equilateral-triangular faces whose edges
are indicated by solid lines. To construct the truncated
icosahedron, each triangle is partitioned into four sectors: one
hexagon (that has sides which alternately are of length d, and
d,) and three equilateral triangles of side d,. Each set of five
touching triangles of side d; is then formed into a single pentag-
onal face.

above question is not a completely trivial one, we may
note that certain orientational arrangements are not in
fact possible. For instance, suppose one aligns the five-
fold axes of the molecules along the four different (111)
directions. Then one may choose, for each molecule, an
orientation of the projection of a threefold axis in a plane
perpendicular to the (111) direction associated with the
molecule in question. It can be seen (see Appendix A)
that it is not possible to preserve the equivalence of the
three (100) directions and the equivalence of the four
(111) directions with such a structure. If such a struc-
ture did occur for solid Cqy, one would observe splittings
in the powder diffraction peaks relative to simple-cubic
indexing. Of course, if these splittings were small
enough, the resolution of an actual experiment might not
be good enough to detect them. For the purposes of this
paper, we will not consider this possibility: we will as-
sume that the experiments have infinitely good resolu-
tion, i.e., that the diffraction peaks indexed assuming a
simple-cubic unit cell show no splittings. We are thus left
with the purely mathematical question as to what orien-
tational orderings of icosahedra on a fcc lattice are con-
sistent with cubic symmetry and are thus described by
one of the cubic space groups. '°

The second question we address is how many different
structures are there which are equivalent, i.e., which can-
not be distinguished by any conceivable macroscopic ex-
periment? Perhaps a more precise formulation of this
question is as follows. Suppose the orientational struc-
ture is defined by orientational order parameters, which
we identify below. The orientational free energy is thus
considered as a functional of these position-dependent or-
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der parameters. As the temperature is lowered towards
the orientational ordering temperature, fluctuations will
occur in which ordered structures appear over some in-
tervals of time and space (which presumably become
larger as the ordering transition is approached, but need
not diverge unless the transition is a continuous one). In
the case of an Ising ferromagnet or antiferromagnet,
there will be two minima of the free energy in phase
space where fluctuations will locally be maximal. For a
g-state Potts-model ferromagnet there will be g local
minima. A slightly less trivial example of counting such
minima occurs for the herringbone ordering of molecular
dimers (N,) on a triangular substrate such as Grafoil. '"!2
Here there are three equivalent directions in the herring-
bone, but in addition, there are two choices of phase, and
so there are six equivalent minima in the free energy.
Since this model is similar'? to a Heisenberg model with
(100) easy axes, this degeneracy is understandable. Fur-
thermore, if the triple-q state of the herringbone (known
as the “pinwheel” state) is favored, then there are eight
minima, corresponding to the various choices of phase in
combining the three q vectors which span the triple-q
state. Since in this case, the model is equivalent to a
Heisenberg model with (111) easy axes, we again under-
stand the degeneracy. A final example of this counting
occurs for solid H, which has a structure’* !> which we
have identified with that of solid Cg, fullerene.®® For
solid H, the molecules, whose centers form a fcc lattice,
are oriented along different (111) lines which are the lo-
cal threefold axes of symmetry. In that case there are
four ways to identify the molecule at a given site with one
particular (111) line. Then there remain two choices for
one of the other (111) lines along which to align a neigh-
boring molecule. Having done this, all other orientations
are fixed. So for the solid H, structure there are eight
equivalent local minima in the free energy.!®!” The ques-
tion is, how many such minima are there in the orienta-
tional free energy for solid Cq,?

Beyond these structural questions, we consider how the
orientational transition can be described within a Landau
theory. For that purpose we introduce order parameters
and indicate the symmetry of the Landau expansion. We
find!® that the free energy is isomorphic to that which de-
scribes orientational ordering in solid orthohydrogen.'®
Since this free energy has a cubic term, Landau theory
predicts that the transition is a discontinuous one. Since
the observed discontinuity at the transition is small,>!’
the size of the cubic term cannot be very large. To dis-
cuss the size of the cubic term, it is necessary to analyze
the fourth-order terms, which depend12 on the details of
the orientational potential. This problem will be dis-
cussed elsewhere. 2°

Briefly, this paper is organized as follows. In Sec. II
we address the question of possible cubic structures for
ordered icosahedra. We show that there are just three
possible space-group types for such a structure, one of
which is the observed Pa3 structure. In Sec. III we dis-
cuss the parametrization of this structure and consider
some of the symmetry relations in this parameter space.
Here, in Table V, we give the structural parameters need-
ed to locate all the atoms in the observed unit cell. In
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Sec. IV we discuss the number of equivalent ground
states, or phases, which are realized for this structure. In
retrospect, it is no surprise that the number of states is
the same as for the Pa3 structure of solid hydrogen. In
Sec. V we discuss the order parameter of the ordered
phase and the symmetry of the Landau free energy which
describes the orientational ordering. Our conclusions are
summarized briefly in Sec. VI.

II. THE C4, SPACE-GROUP PROBLEM

As mentioned above, we assume solid C¢, to be a cubic
structure, so the first question can be phrased as follows:
which of the cubic space groups can describe a fcc lattice
of statically ordered icosahedra, such that there are four
molecules per simple cubic unit cell? (We only consider
periodic structures: quenched random orientational dis-
order is not allowed. Also we assume that the icosahedra
are perfectly rigid. In practice, the C¢, molecules will
suffer a distortion consistent with local site symmetry,
which is lower than icosahedral. However, this distor-
tion is probably small enough to neglect.) Since the ques-
tion we address is essentially one of symmetry, we will
consider the ordering of icosahedra rather than of trun-
cated icosahedra. In what follows we will frequently
refer to space groups by their identifying numbers, as list-
ed in International Tables for Crystallography.'® The fact
that there is a finite number (36) of cubic space groups
means that our task of enumerating all possible space
groups which satisfy our criteria is a finite one. Our pro-
cedure will be as follows. We imagine placing
infinitesimal icosahedral molecules, each consisting of 12
vertices on a fcc lattice. Note that the question we are
addressing is one of symmetry. Thus, the possible space
groups for statically ordered actual-sized truncated-
icosahedral C¢, molecules on a fcc lattice are identical to
the allowed space groups for statically ordered
infinitesimal icosahedra on a fcc lattice. For simplicity
we consider the latter problem.

In identifying the fcc lattice with points in the unit cell
of some space group, we must not, of course, assume that
the four fcc lattice points in the simple-cubic unit cell are
at points among which are (0,0,0). Rather, we must allow
for use of the points (x,y,z), (x+1ia,y+1ia,z),
(x+21a,y,z+1a), and (x,y +1a,z+1a), where x, y, and
z are arbitrary and a is the lattice constant of the sc unit
cell. Before starting the discussion we should review
briefly the symmetry of a single icosahedron. For the set-
tings shown in Fig. 1, the icosahedron has three mutually
perpendicular mirror planes which are perpendicular to
the three (100) directions. Also the icosahedron has
threefold axes along each of the {111) directions.

The fact that the unit cell is sc and not fcc or bec al-
lows us to rule out several space groups. The fifteen
remaining eligible candidates are space groups No. 195
(P23,T"), No. 198 (P2,3,T%, No. 200 (Pm3,T}), No.
201 (Pn3,T}), No. 205 (Pa3,Tf), No. 207 (P432,0"),
No. 208 (P4,32,0%), No. 212 (P4;32,0%, No. 213
(P4,32,07), No. 215 (P43m,T}), No. 218 (P43n,T3),
No. 221 (Pm3m,0}), No. 222 (Pn3n,0}), No. 223
(Pm3n,0}), and No. 224 (Pn3m,0}}).
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Now we start to rule out most of these space groups.
First of all, note that an icosahedron is invariant under
inversion (r— —r) about its center of mass. This indi-
cates that the fcc crystal has inversion symmetry about
each of its sites. So we exclude space groups which lack
inversion symmetry. We are then left with only the can-
didates Nos. 200, 201, 205, 221, 222, 223, and 224. We
first deal with space groups Nos. 222 and 223. Consider
the locations of the centers of mass of the four icosahe-
dra. These must form a fcc lattice. In space group No.
223, for instance, the centers of the icosahedra cannot oc-
cupy b,c,d, ... etc. sites, because such sites have too
high a multiplicity. The a sites form a bcc lattice. So
space group No. 223 is ruled out. By similar reasoning
group No. 222 is also excluded. Thus space groups No.
200, 201, 205, 221, and 224 are the only space-group
types which can describe ordering of inversion symmetric
molecules on a fcc lattice with four molecules in a sc unit
cell. We now consider the special case when the mole-
cules have icosahedral symmetry.

Consider group No. 224 (with the second choice of ori-
gin in Ref. 6). We see that the centers of mass of the
icosahedra can occupy either the four b sites or the four ¢
sites. We consider the first case. (The second case is
similar.) Consider an icosahedron centered about the ori-
gin. The space group symmetry of this crystal structure
includes mirror planes perpendicular to [110], to [011],
and to [101]. The angle between these vectors is 60°. The
icosahedron does not have mirror planes whose normals
subtend an angle of 60°. So space group No. 224 is ex-
cluded.

Next consider space group No. 221. We place the
centers of mass of the icosahedra on one a site and three ¢
sites (or equivalently on one b site and three d sites).
Consider the atoms in the icosahedron at the a site at
(0,0,0). These 12 atoms cannot come from the eight g
sites: there would be four left over which could not be
placed on available sites. The only vague possibility is to
use the 12 i sites. But these sites have a fourfold axis of
local symmetry which the icosahedron does not possess.
Thus space group No. 221 is excluded.

Now we consider space group No. 200, which is
P2/m3 (or Pm3, for short). Here we put the centers of
the icosahedra on the one a site and the three c sites (or
equivalently on the one b site and the three d sites). The
local site symmetry of these sites is significant. At the a
site one has three mirror planes, each perpendicular to a
respective {100) direction. Also there are four threefold
axes, one each along a respective (111) direction. To be
consistent with this symmetry, the icosahedron at the ori-
gin must be in one of the settings shown in Fig. 1. The
symmetry of the c sites is lower, but they have mirror
planes perpendicular to each of the (100) directions. So
the icosahedron at (a /2,a /2,0) can be put in one of the
settings shown in Fig. 1. But then, the settings of the
icosahedra on the two other c sites are completely deter-
mined by the fact that a threefold axis passes through the
origin. (Notice that we had to use the fact that the mole-
cule being oriented has high enough symmetry so that ro-
tation through 120° about any of the four threefold axes
yields the same result.) So we can arbitrarily assign ei-
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TABLE 1. Positions of atoms in oriented icosahedra (not truncated icosahedra) on a fcc lattice for
space group P2,/a3. This is structure 4. The positions of atoms in column I are for atoms in
icosahedron I. To make up the complete structure of 48 atoms (for four truncated icosahedra in the
unit cell) take two sets of points as listed below, one set of 24 points for the structural parameters x, y,
and z, and another set of 24 points for the structural parameters x’, y’, and z’ given in Egs. (3.1) or (3.2).
The actual structural parameters for solid Cg, are given in Table V. Here fi; is the positive direction of
the local threefold axis for icosahedron I and a is the simple-cubic lattice constant.

I=1 I=2 I=3 =4

X, 9,2 (Ja+x,5,1a+z2) (x,ta+y,a+2) (Ja+x,ta+7,2
z,%,y (Ja+z,x,3a+y) (z,3a+x,7a+5) (Ja+zla+x,y)
V,Z,x (+a+y,z,37a+x) (7, ta+z,3a+Xx) (Ja+y,3a+z,%)
X,9,Z (%a+x,y,%a+2) (x,%a-i—i,%a-&-z) (%a+f,%a+y,z)
Z,X,7 ($a +z,x,ta+y) (z,fa+x,2a+y) (ya+Z,7a+x,y)
y.Z,X (4a+y,z,3a+x) (y,2a+Z,7a +x) (Ja+y,3a+z,x)

f, fi, fi,

[111] (111]

(T11] (1T1]

ther of the settings of Fig. 1 to the a site and to the c
sites. However, if these two settings are the same, then
all molecules are equivalent and we have a fcc Bravais
lattice with one molecule per unit cell. So the allowed
structure for this space group is obtained by arbitrarily
choosing one of the settings from Fig. 1 for the icosahed-
ron at the origin and then putting the other three
icosahedra on the c sites in the other setting of Fig. 1. In
this space group there is no further freedom of rotation of
the icosahedra.

Now we are left with only space group types 201
(P2/n3) and 205 (P2,/a3) to consider. These are the
space groups (in short notation) Pn3 and Pa 3, respective-
ly. The former was used in the initial fit to the structure
of solid Cg, fullerite by Heiney et al.® and the latter was
later® shown to be the correct structure. So we now look
in detail at these two allowed space groups, Pn3 and Pa3.
For Pa3 we have sites at positions given in Tables I and
II. There are two distinct realizations of this space group
which we label 4 and B. As explained in Sec. 8 of Ref.
10, two different structures are attributed to the same
space-group type if two conditions are fulfilled. The first
is that their space groups are isomorphic. In this isomor-
phism, any element G of the first space group and the
corresponding element G’ of the second space group are
related by G'=P !GP, where P is an operation which
takes one structure into the other. The second condition

is that it is possible to choose the operation P so that it is
a “proper” rotation, i.e., a pure rotation with or without
an accompanying translation. (In other words, two
groups which differ only in their handedness would not
satisfy this condition to belong to the same space-group
type. As explained in Ref. 10, such a pair of space groups
which differ only in their handedness are enantiomorphic
pairs and are considered to be distinct space-group
types.) An operation P which takes the structure in
Table I into that in Table II is a reflection through a
{110} plane. However, this transformation is not a prop-
er one. We identify the proper operation P to be an in-
version followed by a reflection through a {110} plane.
This is equivalent to a rotation of 180° about ( 110). This
transformation takes a point with coordinates (u,v,w)
into one with coordinates (7,%,w). Thus the point
r=(ja+x,y,fa+z) is transformed into Pr,=r,
=(y,3a +x,3a+2). Since this operation P is not one of
the symmetry operations of this structure, when it
operates on the set of points listed in Table I, it will
indeed produce a structure which cannot be realized by
the set of points in Table I. To get the points in the form
listed in Table II, one should apply P to all the points in
Table I and then interchange the parameters x and y, so
that the point r, above becomes (x,+a +y,+a +2), which
is listed in Table II. For space group Pn3 we have sites
at the positions given in Table III.

TABLE II. Posiﬁions of atoms in oriented icosahedra (not truncated icosahedra) on a fcc lattice for
space group P2,/a3. This is structure B. For notation and explanation, see Table I.

I=3

I=4

I= I1=2

X, 9,2 (3a+x,y,1a+2)

z,x,y (ya+z,x,la+y)

»zx (fa+y,z,3a+x)

x,7,2 (ya+x,7,4a+7)

7,%,7 (Ja+z,%,1a+y)

¥,2,% (ya+y,z,7a+X)
f, i,

[111] [111]

(x,7a+y,3a+Z2)
(z,a+x,la+y)
(y,3a+z,7a+X)
(X,2a+y,3a+z)
(z,ta+x,fa+y)
(7, 4a+z,fa+x)

a

(T11]

(ya+x,2a+7,2)
(1a +z,%a+f,y)
(ya+y,ta+z,x)
(3a+x,la+y,n
(a+z,la+x,»
(+a+y,ta+z,%)

| 4

4

11]

—

[
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TABLE III. Positions of atoms in oriented icosahedra (not truncated icosahedra) on a fcc lattice for
space group P2/n3. The notation and explanation is the same as in Table I.
I= I1=2 I1=3 I1=4
X0,z (Ja+x,ta+7,2) (fa+x,y,1a+2) (x,4a+y,2a+2
z,%,y (+a+z,la+x,y (ya+z,x,2a +p) (z,1a+x,1a+p
V,2,x (;a+y,2a+7,x) (a+y,z,3a+x) (y,2a+z,ta+x)
%7,z (fa+x,ta+y,z) (Ja+x,y,La+2) (X,3a+y,ta+z)
zZ,X,y (%a+z,%a+x,)7) (%a+z,x%a+y) (Z,%a+x,%a+y)
V,2,%X (a+y,3a+z,X) (4a+y,z,3a+x) (y,4a+z,3a+x)
i, 1, f, n,
[111] [11T] [111] [111]
In summary, mathematically, there are only three pos- T T T 1]
sible space-group types for orientationally ordered
icosahedra centered on fcc lattice points such that the gwo N —
simple-cubic unit cell contains four molecules: Pm 3, Pn3, 5
and Pa3. In Pm3, the orientation of the molecules is o |
completely determined (apart from a degeneracy with = 8o
respect to interchange of settings 1 and 2 of Fig. 1). In [«
Fig. 3 we show comparisons between the experimental 2 60 N
powder intensity data versus scattering angle and the cor- uli" .
responding theoretical intensities calculated assuming the = a0k | l T é o E__
appropriate atomic form factors for carbon atoms located S AL e bty
at their positions in the C¢, molecule. For the Pn3 and h
Pa3 structures the theoretical curves were optimized 20
with respect to the setting angle ¢, which in both cases \
0

was 24.0°. These fits were supplied to us by Dr. D. Cox.
Apart from the overall fit, one should notice that there is
predicted intensity in a (6,1,0) reflection in the experi-
mental and Pa3 theoretical curves which is lacking in the
Pm3 and Pn3 structures. One can see that the fits given
by the Pm 3 and Pn 3 structures are nowhere near as good
as that for the Pa3 structure.

III. PARAMETRIZATION OF THE
Pa3 STRUCTURE

Since it is now accepted®® that the space-group type of
solid Cq, fullerite is Pa3, we will confine our attention to
this space-group type. First of all, we wish to understand
how the points listed in Table I, for instance, represent an
icosahedron. For simplicity we will first carry out the
discussion as if C¢, were an icosahedron with 12 vertices.
The modification needed to discuss Cgyy, which is a trun-
cated icosahedron with two bond lengths, is given later in
this section.

We start by considering an icosahedron in the ‘‘stan-
dard” orientation, i.e., in an orientation when its three
mirror planes are perpendicular to the three (111) direc-
tions. There are two such “‘standard” orientations, 1 and
2, which are shown in Fig. 1. Orientation 2 can be ob-
tained from orientation 1 by a 90° rotation about a { 100)
direction. But more interestingly, orientation 2 can be
obtained from orientation 1 by a rotation through an
angle—@, about the <(111) direction, where?!
¢0=cos_1(%)z75.52°. This rotation is equivalent to one
through an angle of 120°—¢,. (The rotation angle ¢ cor-
responds to a right-handed rotation through an angle ¢

30 35 40 45 50
SCATTERING ANGLE ( Degrees)

1001~

rmmmm—————
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1]
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r
!
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FIG. 3 Comparison of experimental and theoretical powder
x-ray diffraction vs scattering angle. Top: comparison with
Pa3. Bottom: comparison with Pm3 and Pn3. For clarity the
experimental intensity below a baseline of about 6 (arbitrary
units vertical scale) is not shown. The (6,1,0) peak in the experi-
mental data is indicated by an arrow. In the comparison with
the Pm3 and Pn3 structures, the experimental peaks labeled 1
and 2 are truncated, but can be seen on the other panel. The
setting angle ¢ was optimized for the Pa3 structure to be 21.5°
and for the Pn3 structure to be 21.6°. The calculations were
done by D. M. Cox and the data is from P. A. Heiney et al.
(unpublished).
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FIG. 4. Definition of the local symmetry axes about which
molecules are rotated away from their initial settings as in Fig.
1. A positive rotation angle indicates a right-handed rotation
relative to the positive direction. For each (111) direction, the
positive direction is the direction from the center of the cube to
the vertex indicated by a dot. When specifying a rotation axis,
as in the tables, we always give the positive direction of the axis.

about the positive direction of the local [111] axis as
shown in Fig. 4 and as listed in Tables I and II.) For ei-
ther of these “standard” orientations the {111) direction
is an axis of threefold symmetry. Therefore, for either
orientation, the 12 points of the icosahedron can be ob-
tained as two sets of six points, each set being obtained
from the basis points (x,y,z), etc. listed in column 1 of
Table I. Since two sets of points are needed, the vertices
of an icosahedron will be specified by the structural pa-
rameters X, y, z, x', y’, and z', i.e.,, by the two seeds
r=(x,y,z) and r'=(x',y’,z"). However, it is clear that
rotating the icosahedron about [111] merely involves a
modified choice of these structural parameters. Of
course, as the icosahedron at (0,0,0) is rotated about [111]
and these structural parameters are correspondingly
modified, the other icosahedra in the unit cell, whose
points are given in columns 2, 3, and 4, are rotated about
their respective threefold axes. This is equally true for
both structures 4 and B. If we start from standard
orientation 1, we can rotate icosahedron 1 about its local
threefold axis through an angle ¢. In this case the
structural parameters assume the values

x;=[(1+2cos¢)+(1+2cosp, )b , (3.1a)
y1=[(1+2cos¢_)+(1+2cosp)ylb , (3.1b)
z,=[(1+2cos¢, )+ (1+2cosp_)nlb , (3.1¢)
x1=[(1+2cos¢)—(1+2cos¢)n)b , (3.1d)
yi=[(1+2cos¢_)—(1+2cosd)n]b , (3.1e)
z1=[(1+2cosd ) —(1+2cosp_)nlb , (3.1

where ¢, =¢+120°, n=(V'5—1)/2, and the subscript 1
indicates that these parameters are based on the initial
“standard” orientation 1. Each atom in this icosahedron
is at a distance d from the center of the icosahedron with
d*=9b%5—V'5)/2. These parameters apply to both
structures 4 and B. If the initial state is the ‘“standard”
orientation 2, then we have

x,=[(1+2cos¢ )+ (1+2cosd)nlb , (3.2a)
y2=[(1+2cos¢)+(1+2cosp_)nlb , (3.2b)
z,=[(1+2cos¢_)+(1+2cosd,)nlb , (3.2¢)
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x5=[(14+2cos¢,)—(1+2cosp)n]b , (3.2d)
y3=[(1+2cos¢)—(1+2cos¢_)n]b , (3.2e)
z3=[(1+2cos¢_)—(1+2cosp )nlb . (3.20)

We now parametrize the orientations of actual Cg,
molecules. We need to give ten sets of positions (x;,y;,z;)
for i=1,10, from which, using Table I (or II), we can
generate the positions of all 240 atoms in the unit cell.
These ten positions are obtained as follows. We start by
specifying three seed vectors:

rl:%(dbo’a) ’ (333)
n=Ha—dnd,+d,d, /), (3.3b)
r3=%[a_—(d1+d2)77:d1,(d1+d2)/77] , (3.3¢)

where a=(2d,+d,)/n and n=(V'5—1)/2. Here d, is
the bond length of the side of a pentagonal face, d, is the
length of an edge between two hexagons, and the distance
R from the center of the molecule to any atom is given by
R =%[d§ +a?]'/2. We use values of the bond lengoths d,
and d, as determined from NMR:* d,=1.45 A and
d,=1.40 A. To obtain the positions of the atoms in the
unit cell from the three seed vectors of Eq. (3.3) we
proceed as follows. Using the operations which take
(x,y,z) into (x,y,z), (—x,y,z), (x,—y,z), and
(—x,—y,z), the three seeds of Eq. (3.3) generate distinct
points r,r,, ..., When acted on by the 24 elements
of the Pa3 space group, as indicated in Tables I and II, it
is easy to see that these ten points generate four identical-
ly oriented molecules, the jth column in Tables I and II
giving the six image points in the molecule j associated
with each one of the ten r;’s.

The above prescription gives the coordinates of all the
atoms in the unit cell when each molecule has mirror
planes perpendicular to the (100) directions in orienta-
tion 1 of Fig. 1. Accordingly, to obtain the actual struc-
ture of Cqy, we need to rotate the molecules through an
angle ¢ about their local threefold axis. This we do by
setting

’

x; 1+2cos¢ 1+2cos¢p, 1+2cosdp_ | |x;

vi =% 1+2cos¢_ 1+2cos¢p 1+4+2cosd, | |y;

z] 1+2cos¢p, 1+2cos¢_ 1+2cosd | |z;
(3.4)

Now the ten vectors r; =(x;,y;,z;) are the structural pa-
rameters which, when input into Table I, give the correct
structure. The best fit to the x-ray diffraction data gives®
¢=26°, and the vectors r; for this case are given in Table
V. In the next section we will discuss how other symme-
try related structures (which thus must have the same
free energy) can be constructed.

Now we make some comments on the structure factor
for the Pa3 crystal. If we denote the structure factor for
a single sc unit cell by F(k), then, if k is a sc reciprocal
lattice vector, we have for structure A4
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F k)=f(k)+o,0:f,(k)t0,0:f3(k)+0,0,f4(k),
(3.5)

where f;(k) is the structure factor of molecule I (for
structure A) calculated taking the origin at the center of
mass of molecule /, and o;=cos(1ak;), where k, is the
uth Cartesian component of k. Note that o, is real
(o;==1), since k is a sc reciprocal lattice vector. From
Table I, we see that for a structure of type A4 we have the
relations

fZ(kx7ky7kz)=fl(kx’ky7—kz) s (3~6a)
f3(kx7ky7kz):fl(kx7_kysz) ’ (3~6b)
Salky ky k) =f (=K, k. k,) . (3.6¢)

Thus for structure 4
F (K)=f ke, k, k)t o05f (koK —k,)
t0,03f 4k, —ky k) Fo10,f 4 ( =k ky k)
(3.7)

where the subscript 4 emphasizes that f is the structure
factor of the molecule at the origin in the A structure.
Because the [111] direction is a threefold axis, it satisfies

Falkyky k) =f gy k) =f 4Ky k) (3.8)

It is clear that if we displace the crystal so that the mole-
cule previously at the origin now occupies another site in
the unit cell, the structure factor suffers only a phase
change, involving a product of ¢’s, which will not affect
the observable quantity |F ,(k)|%.

Similarly for structure B, we have the structure factor

Fp(k)=fpg(k,,ky,k,)to0:3fp(—k,,k,,k,)
to,03fplky,k,, —k,)+0o0,fplk,,—k),k,) .

vtz
(3.9)

It should be obvious that if structure A is realized in one
experiment, then structure B will be realized in some oth-
er experiment. The relation between these structures im-
plies that

Folke ky k) =1 4(ky ky k) (3.10)
Substituting this into Eq. (3.9) we see that
Fylky,ky k,)=F 4(k,,k,,k,) . (3.11)

If a monodomain sample is obtained, a diffraction ex-
periment will determine whether the sample in question
happens to be structure A4 or structure B. The Bragg
peaks will come at the same locations, of course, but their
intensities will differ for the two structures. That is, if the
reflections are indexed by h, k, and [ as usual for a
simple-cubic Bravais lattice, then the intensities associat-
ed with these indices obey I(h,k,[)=1I(k,l,h)=1(1,h,k),
but in general I(h,k,l)7I(k,h,l). Thus although this
system is cubic, it may be surprising, but it is true that
for a monodomain sample 1(3,2,1)5#1(2,3,1). [The in-
tensities from one structure or domain can be obtained
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from those of the other one by reflection, as in Eq. (3.11).]
However, if the sample is a powder, then the angular
deflection depends only on h2+k2+12. From Eq. (3.11)
it is then clear that the two structures will have the same
powder pattern of diffraction intensities.

Finally we mention briefly several very recent experi-
mental results. Copley et al.?> have used neutron
diffraction at 7=14 K to study the orientationally or-
dered phase in a sample which has’® fewer stacking faults
than that used in the original work.® Their data is well
fitted by a model in which the ordered phase has Pa3
structure, but also allows for the presence of a non-
negligible amount of disorder (as did previous fits>®).
From these measurements they deduce the value ¢ =24".
We did not redo our calculations with this value of ¢,
since our qualitative results depend on the symmetry of
the Pa3 structure. We should also point out that further
confirmation of the Pa3 structure comes from a pulsed
neutron study of the pair-correlation function.?* This
data is best modeled by the Pa3 structure taking ¢ =26".
So experimental evidence seems to be clearly in favor of
the Pa3 structure, although some details concerning dis-
order remain to be resolved.

We also note an experiment on a single crystal sam-
ple,24 where a result consistent with the simultaneous ex-
istence of domains of both structures was observed.
Since the orientational ordering transition is expected to
be a first-order one,!® it may be difficult to prevent nu-
cleation of the ordered phase at different locations with
the concomitant creation of a multidomain sample.
Perhaps an inhomogeneous cooling process could be used
to create a monodomain from a single “seed” location
whose temperature is colder than that of the crystal as a
whole.

IV. NUMBER OF EQUIVALENT STATES

In this section we count the number of symmetry-
related minima in the free energy for the Pa3 structure.
First of all, as in solid H,, there are eight ways to assign
the local (111) directions to the four sites in the unit
cell.'®!7 To see this, note that there are four ways to as-
sign a given molecule to the origin with a threefold axis
along (111). The additional factor of 2 in the degenera-
cy comes from the fact that there are two independent
ways one can choose the threefold axis for one of the oth-
er sites in the unit cell. This choice corresponds to
choosing either the structure of Table I or the structure
of Table II. After this choice the orientations of the
threefold axes for the other molecules in the unit cell are
fixed by the threefold axis of symmetry which passes
through the origin. Here we have to see whether or not
the fact that there are two ‘standard” initial
configurations of the icosahedra and the possibility of ro-
tating either through an angle ¢ or —¢ leads to further
degeneracy.

We now discuss the symmetry operations in terms of
these structural parameters. Let |¢,X,n) denote the
crystal one obtains when one starts with the icosahedron
at the origin in “standard” orientation n (n =1 or 2) and
rotates through an angle ¢ about the local axes posi-
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tioned as in structure X, where X is either 4 or B as in
Tables I and II.

First consider the effect of a rotation about the three-
fold axis through the angle ¢o=cos™'(1)~75.52°, men-
tioned above, which takes orientation 2 of Fig. 1 into
orientation 1, or equivalently rotation through an angle
120° —¢,=44.5° which takes setting 1 into setting 2.
Thus

|¢, 4,1)=|d+dg, 4,2) ,
|¢1B,1>=|¢+¢0)B,2) ’

as can be verified by checking that x,(¢)=x,(d+d,),
etc. Thus any structure obtained from one ‘“‘standard”
orientation can equally well be obtained from the other
one.

We see that Eq. (4.1) relates standard orientations 1
and 2. We can also get a relation between structures A
and B by considering the effect of o,,, a reflection
through the plane x =y. Accordingly, we now identify
0,,|$,4,1). The atomic positions in the structure
|¢, A,1) are given by the entries in Table I with x,, y;,
z,, etc. given as in Eq. (3.1). Applying the operation o,
interchanges the first and third components of the posi-
tion vectors. Thus this operation takes the list of points
in Table I into that of Table II providing one inter-
changes the parameters x; and z;. Thus o,|¢,4,1) isa
structure of type B with structural parameters X, =z,(¢),
P1=y.(8),2,=x,(¢), etc. But

(4.1a)
(4.1b)

x(d)=z,(—¢), (4.2a)
yi(@)=y,(—¢), (4.2b)
z)(¢)=x,(—¢) . (4.2¢)

So o,,|¢,4,1) is a structure of type B with structural
parameters X =x,(—¢), 9, =y,(—¢) £,=2z,(—¢). This
means that

o,.l¢,4,1)=|—¢,B,2) (4.32)

or
Ux,z|¢7A,1>=|_¢’B,2>=l_¢_¢0,B’1> .

Now we address the question of how two structures
with opposite signs of ¢ differ, it at all. Intuitively, it
might seem that changing the sign of ¢ leads to an
equivalent structure. This is not so. The simplest proof
of this is as follows. First consider the rotation of a single
icosahedron starting from setting 1 of Fig. 1. A rotation
through the angle — @, about the positive sense of the lo-
cal body diagonal, as indicated in Fig. 2, takes standard
orientation 1 into standard orientation 2 in which the
mirror planes are again perpendicular to the (1,0,0) direc-
tions. Rotation through ¢, leads to an orientation in
which the mirror planes are not perpendicular to the
(1,0,0) directions. (If this were not so, then rotation
through 2¢, would be a symmetry operation of the
icosahedron, which it is not.) Now consider the relation
between structure (a) in which all molecules in the unit
cell are rotated through an angle ¢, and structure (b) in

(4.3b)
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FIG. 5. The three smallest separations 7}, r,, and r; between
an atom on one molecule and an atom on a nearest-neighboring
molecule vs the structural parameter ¢. The angle ¢ is that for
structure 4 when measured relative to orientation 1 of Fig. 1.
Orientation 2 of Fig. 1 corresponds to ¢=120°"—¢,=~44.5° and
has the same set of r;’s as orientation 1 (¢=0°). Note that there
is no symmetry about ¢ =0°" or about ¢=¢* = %( 120°— ¢y) = 22°.

which they are all rotated through an angle —¢. Argu-
ing as before, we see that these two structures cannot in
general be equivalent because they are not equivalent
when ¢ =¢,.

We know from Eq. (4.1a) that
|120°— ¢, 4,1) =0, 4,2). Since the free energies of
|0, 4,2) and |0, 4,1) must be the same, we can say that
the free energies of the structures |0, 4,1) and
|120°— @, 4,2) are the same. This relation suggests that
possibly there is symmetry about the value

*=60"—1¢,~23". (This value is rather close to that,
26°, determined?® for solid Cg,.) Accordingly, one might
ask whether or not |¢*+8,4,1) and [¢*—85, 4,1) are
symmetry-related structures. But in general, this is not
true. To see this note that |¢*—8, 4,1)=|¢*+85,B,2).
But since |¢*+8, 4,1) is not in general equivalent to
|¢*+8,B,2) for an arbitrary value of 8, there is no such
symmetry about ¢*.

This last point leads to a very important observation.
The value of ¢ can not be constrained by symmetry (un-
less ¢ is zero or its equivalent). Thus, in the observed
structure ¢ must be a function of temperature which de-
pends in detail on the orientational interaction potential.
To further emphasize this point, and also to elucidate the
way two neighboring C¢, molecules arrange themselves,
we show in Fig. 5 the three smallest distances between
atoms on nearest-neighboring molecules as a function of
the structural parameter ¢ for the |$, 4,1) structure.?
In particular, note that there is no symmetry about either
¢=0° or about p=¢*.

V. LANDAU THEORY

Now we make some observations about the form of
Landau theory to describe the orientational ordering into
the Pa3 structure. Basically, the discussion!’ is an exten-
sion of that given by Cullen et al.'® for the orientational
ordering in solid hydrogen. First we have to decide how
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to describe the ordering of a rigid body. This can be done
using Euler angles, but that is clearly not convenient.
Rather we introduce the order parameter o")(I) for mol-
ecule I via

"D 3 riYr0:,6,)) 1 (5.1a)
iel
=Co{ X Y§(6,,6:)) 7 , (5.1b)
iel

where C, is a normalization constant, the sum is over all
atoms / in molecule I, r; is the displacement of atom i rel-
ative to the center of gravity of the molecule, 6; and ¢,
are the polar and azimuthal angles of the ith atom, and
( )7 indicates a thermal average at temperature 7. Since
r; is the same for all atoms in the molecule, we incorpo-
rate a factor r{ into the constant C,, whose value will be

fixed later. Observe that
o™ ]*=(—1)"o'""™(1) . (5.2)

This tensor order parameter is a logical one, because mul-

o'™(=C,
ierl

where @; =(6;,¢;). Now for notational convenience we

write symbolically

1 .
Tr=] —Wz—fda,smB,dBId‘y, (5.5)
1

The virtue of introducing a normalized trace (e.g.,
Tr1=1) is that one usually does not have to specify the
molecules over which the average is taken. To evaluate
the integral in Eq. (5.4) we note that the only rotational
invariant to survive the average over Euler angles gives

o"()=CyCioc'"™(NTr 3, YZ (@) YF(@))]*  (5.6a)
LjEI
v LjEI
(5.6b)
So
= UEE]PG cosb;;)
_ 15
=—C, 3, Ps(cost;) (5.7a)
T el
=Bcz, (5.7b)
T

where cosf;; =r;'r;/(r;r;). Using the structural parame-
ters given in Table V, we evaluated the constant
Z=0.10567.

Now we develop mean-field theory as a functional of
the order parameters by writing

05, zfda,smB,dB,dy, S YR@,) [1+C, 3 o™ 3 [Yi@)]* ),

n jEI

A. B. HARRIS AND RAVI SACHIDANANDAM 46

tipoles of nonzero order lower than 6 vanish independent
of the orientation of the molecule.

We now construct a density matrix p which gives the
probability distribution P for the Euler angles a,, B;, and
y,; of the Ith molecule [with P=p/(87%)]. Within
mean-field theory p is taken to be a product of single-
molecule density matrices:

p{a,B,y=T1lpila;.Bry) (5.3a)
I
Here
a,By)=1+C, z o™ 3 [YP(6;,6,)]*, (5.3b)
m=-—6 iel

where C, is a constant fixed by requiring that Eq. (5.3)
reproduce Eq. (5.1b). The right-hand side of Eq. (5.3) is
indeed a function of the Euler angles since the spherical
angles 6; and ¢; implicitly depend on the Euler angles.
We determine C,. Equation (5.1b) is

2 TeVipr+ 3 TeVigpps +KT 2 Trp/lnp, ,
I1<J

(5.8)

where ¥V, the crystal field, is the orientational potential
of molecule I when its neighbors are disordered and Vi,
is the orientational potential energy of interaction be-
tween molecules I and J. Up to quadratic order the free
energy is of the form

F=F,+1 3 3 [¢c"™)

m,m'I,I'

)*e'™I)y "m' . I';m,I),

(5.9

where Y ! is the inverse susceptibility, which we regard
as a matrix in the scripts m and I. In Eq. (5.9) the term
F, includes ‘“noncritical” contributions, including the
non-symmetry-breaking crystal-field term similar to that
found in the orientational ordering of monolayers. '?

By expanding Eq. (5.8) up to order o2, one can show
that Eq. (5.9) is of the form

X m' I'sm,I)=s0,kT8 8 +V(m'Iim,I),

(5.10)

where V is essentially the orientational potential between
molecules, the form of which, unfortunately, is not well
known; we used Eq. (5.7) to determine s, as

5o=CiTr Y Y7 (5.11)

i,j

(@) YZ(@,)]*=C, /Cq .
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TABLE IV. Order parameters Cy ' o'™(I) for the molecules in the unit cell for structure 4, calcu-
lated from the structural parameters given in Table V. These structural parameters are based on the
NMR work (Ref. 4) for bond lengths, and the x-ray diffraction work (Ref. 8) for the angle ¢ specifying
the orientation of the molecules in the unit cell.

m r;=(0,0,0) r;=(a/2,a/2,0) r;=(a/2,0,a/2) r;=(0,a/2,a/2)
—6 (0.135, 0.766) (0.135, —0.766) (0.135, 0.766) (0.135, —0.766)
-5 (0.330, —0.405) (—0.330, —0.405) (—0.330, 0.405) (0.330, 0.405)
—4 (0.666, 0.064) (0.666, —0.064) (0.666, 0.064) (0.666, —0.064)
-3 (0.714, 0.626) (—0.714, 0.626) (—0.714, —0.626) (0.714, —0.626)
-2 (—0.200, —0.561) (—0.200, 0.561) (—0.200, —0.561) (—0.200, 0.561)
—1 (—0.535, 0.590) (0.535, 0.590) (0.535, —0.590) (— 0.535, —0.590)
0 (—0.356, 0.000) (—0.356, 0.000) (—0.356, 0.000) (—0.356, 0.000)
1 (0.535, 0.590) (—0.535, 0.590) (—0.535, —0.590) (0.535, —0.590)
2 (—0.200, 0.561) (—0.200, —0.561) (—0.200, 0.561) (—0.200, —0.561)
3 (—0.714, 0.626) (0.714, 0.626) (0.714, —0.626) (—0.714, —0.626)
4 (0.666 —0.064) (0.666, 0.064) (0.666, —0.064) (0.666, 0.064)
5 (—0.330, —0.405) (0.330, —0.405) (0.330, 0.405) (—0.330, 0.405)
6 (0.135, —0.766) (0.135, 0.766) (0.135, —0.766) (0.135, 0.766)

After Eq. (5.14) below we fix the value of Cy: C,=0.743,
so that by Eq. (5.7b), C;=2.666, from which we get
50=3.586. Although the orientational potential is not
well known, we can nevertheless construct the order pa-
rameter tensor from the known® orientation of the mole-
cules. This information is given in Table IV. In fact, one
can see that this four-sublattice structure involves spatial

Q.=2n/a¥, Q=2w/a)j,
Q0,=2w/a)k , Q,=0. (5.12)

We are mainly interested in the amplitudes at the
nonzero wave vectors: they are the quasicritical ones.
(We do not have true criticality because in fact the orien-
tational transition will be seen to be discontinuous.)

Fourier components at wave vectors Then one has

o 4(0,)=C,(0,0.330,0,0.714,0, —0.535,0,0.535,0, —0.714,0, —0.330,0) , (5.13)
where we define the wave-vector-dependent order parameter as

o(@™=N"1S o™(De" ", (5.14)
I

where N is the total number of C¢, molecules in the system. We fix C;=0.743 by requiring the order-parameter vector
in Eq. (5.13) (which is essentially its value at zero temperature) to have unit norm, in which case

o ,4(0,)=(0,0.245,0,0.531,0, —0.398,0,0.398,0, —0.531,0, —0.245,0) . (5.15a)
Also

o 4(Q,)=i(0.568,0,0.048,0, —0.4170,0,0,0.417,0, —0.048,0, —0.569) , (5.15b)

o 4(Q,)=i(0,—0.301,0,0.466,0,0.438,0,0.438,0,0.466,0, —0.301,0) , (5.15¢)

where the subscript A indicates that it is for structure A. Here we list the components o ,(Q,)"™ in the order
o798 (73 ., o'®. Since reflection about (1,1,0) takes structure A into structure B, we can write down the analo-
gous order parameters for structure B:

o05(Q,)=i(0.569,0,—0.048,0,—0.417 0,0,0,0.417,0,0.048,0, —0.569) , (5.16a)
o(Q,)=i(0,—0.245,0,0.531,0,0.398,0,0.398,0.0.531,0, —0.245,0) , (5.16b)
o05(Q,)=(0,0.301,0,0.466,0, —0.438,0,0.438,0, —0.466,0, —0.301,0) . (5.16¢)

Using rotation matrices we checked that successive rotations through 120° about (1,1,1) takes the 13-component eigen-
vector o ,(Q,) into o ,(Q,) into 0 ,(Q,).

Now we truncate the Landau free energy to keep only these quasicritical Fourier components. Furthermore, we will
only keep fluctuations associated with the eigenvectors listed in Egs. (5.15) and (5.16). In other words the density ma-
trix of molecule I is of the form
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Pr=1+C 3 3 Ex(Q)e % R ox(Q )M 3 [Y@)]*

X=A4,Ba=x,y,z m el
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(5.17)

where o x(Q,)'™ are the coefficients given in Egs. (5.15) and (5.16) and £,(Q,,) are the amplitudes associated with those
“normal modes.” Three of these normal modes are associated with structure 4 and three with structure B. So to quad-

ratic order we have

NTIF=1sok(T—Ty) S Ex(Q,) .

X,a

(5.18)

Next we consider the term F; in the free energy of order £°. It comes exclusively from expanding the entropy contri-
bution Trp Inp up to third order in ¢. Summing this contribution over all molecules will enforce the condition that the
sum of the wave vectors should be a vector of the fcc reciprocal lattice. This can only happen if we combine fluctua-

tions at different wave vectors. Thus

NTFy=—3kTC} 3 £x(Q.)Ev(Q,)62(Q,) 3 0x(Q) o y(Q,) o 7(Q,)"

X, Y,z Lm,n

X 3 Tr{[YL@)] [ Yr@)]*[YEH@)]*) .

) (5.19)

LjkEI

To simplify this result note that the trace vanishes unless / +m +n =0. As a consequence, we only obtain a nonzero
contribution if we combine one even-parity (in m) mode with two odd-parity modes. Since only two of the modes in
Egs. (5.15) and (5.16) are even, there are only four possible combinations of the labels X, Y, and Z in Eq. (5.19). Of these
combinations, only two can actually satisfy [ +m +n =0. As a result, we have

So

F
2

X=A4,Ba=x,y,z X=A,B

The expression and numerical value for w are obtained in
Appendix B. The form of Eq. (5.20) is equivalent to that
given in Ref. 16 for solid hydrogen.

It is easy to see that this type of Landau free energy
does describe the eight realizations of the observed®® Pa3
structure. We see that for a given value of the quadratic
part of the free energy, we should minimize the term of
order &° to determine the actual phase. To do this we can
either have an A4 phase or a B phase. To see this set

x=E,4(Q.)+E4(Q,)+E4(Q,) (5.21a)
and
y=8&p(Q, )2+§B(Qy P+Ep(Q,)7 .

Fixing the value of x2+y? defines a surface on which the
quadratic term is fixed. On this surface it is easy to see
that the cubic term (when minimized) is proportional to
—|w|(x3+y3) and is therefore largest in magnitude (i.e.,
minimal) when x =0 or y =0. Q.E.D. Now assume we
condense into the A structure. Then one sees that a
minimum in F occurs when all the £ ,’s are equal in mag-
nitude and their product has the same sign as w, which
we find to be positive in Appendix B. If we take all the
& 4’s to be positive, we obtain the structure as listed in
Table I. Changing the signs to any two of the £ ,’s leads
to an equivalent minimum free energy and amounts to a
relabeling of the sublattices. Changing the signs of all
the §,’s is not a symmetry operation and leads to a
higher free energy. Since the above discussion applies
equally to either A4 or B variables, there are eight minima
in the free energy, as expected from structural considera-
tions.

It is clear from the fact that the cubic term is nonzero,

(5.21b)

(T=Ty) 3 3 Ex(Q) 0 kTw I £x(Q,)Ex(Q,)Ex(Q,)+O(E).

(5.20)

that the orientational transition is a first-order one. The
data in Ref. 5 suggest a first-order transition with a small
jump in the order parameter at the phase transition.
Reference 19 suggests that possibly this jump is very
small, if not zero. In the above free energy one sees that
w =0 is a multi critical point where the transition is con-
tinuous. However, to reach such a point it would be, in
general, necessary to adjust two parameters, not only the
temperature, say, but also another variable, perhaps the
pressure. Then one would observe a first-order transition
whose associated discontinuity would vanish as the pres-
sure was adjusted to its critical value on the p(7T) line. It

TABLE V. Values of the structural parameters (in
angstroms) for the orientationally ordered phase. We used the
x-ray data (Ref. 8) to set ¢ in Eq. (3.4) to be 26° (for setting 1 of
structure A) and the NMR data (Ref. 4) to set d,=1.45 A and
d,=1.40 Ain Eq. (3.3). Atlow temperature the lattice constant
of the sc Bravais lattice is (Ref. 5) 14.04. (This set of structural
parameters is not unique. Any vector r; can be replaced by Gr;,
where G is an element of the space group.)

i x; (A) v (A) z (A)
1 1.595 —0.540 3.123
2 0.279 —0.917 3.417
3 2.866 1.910 0.852
4 2.912 0.899 1.819
5 3.463 —0.769 0.084
6 3215 —0.464 1.428
7 —2.831 0.277 2.121
8 —1.973 —0.510 2.907
9 —2234 —2.402 1.353
10 —1.669 —1.864 2.516
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should also be pointed out, in this connection, that pass-
ing to the other sign of w would lead to a different phase
altogether. If we were dealing with liquid crystals,
characterized by a Y7'-type order parameter, then chang-
ing the sign of the order parameter would correspond to
going from ordinary liquid crystals to discotic liquid crys-
tals. Here, perhaps such a transformation would be to a
phase in which the molecules were rotating about a fixed
axis, and thus would be partially ordered in a different
way than the one envisaged here. It will thus be interest-
ing to see experimentally if w can be tuned. Until a real-
istic orientational potential is available, it will not be pos-
sible to have a theoretical prediction of the magnitude of
the discontinuity in the order parameter at the phase
transition, because this quantity depends on terms in the
Landau expansion up to order £* and the &* terms have
contributions from the noncritical modes'? which depend
on the details of the orientational potential.

VI. CONCLUSIONS

We may summarize our conclusions as follows.

(i) The only possible cubic space groups which describe
orientationally ordered icosahedra on a fcc lattice such
that the simple-cubic unit cell contains four molecules are
Pm3, Pn3, and Pa3. Of these, the first has the molecular
orientations constrained so that each molecule has mirror
planes perpendicular to the (100) directions. For the
other space groups, the molecules can be rotated, each
about a local symmetry axis, through an angle ¢ whose
value must be nonzero but which is otherwise not fixed
by symmetry.

(i) We emphasize the unusual symmetry corresponding
to the existence of two distinct space groups associated
with the same space-group fype. This degeneracy mani-
fests itself in the two possible distinct (but, symmetry-
related) choices for the local threefold axes. It would be
possible to distinguish these two structures by a
diffraction experiment if one had a monodomain speci-
men. (As mentioned, to do this may require inhomogene-
ous cooling to avoid nucleation of a multidomain sam-
ple.)

(iii) A convenient representation of the order parame-
ter of the Ith molecule is through the quantity

o™M(D=Co{ 3 YI(6;,6)) 1 »

iel

(6.1)

where the sum is over atoms i/ in molecule I. Actual
values of this order parameter as obtained from experi-
mentally determined orientations of the molecules are
given in Table IV for one of the two choices of the local
threefold axes. Values for the other choice can be ob-
tained by a suitable reflection of coordinates.

(iv) A Landau expansion is derived in terms of a simple
mean-field density matrix incorporating the order param-
eters o'™(I). In this expansion, the most critical fluctua-
tions are described by a six-component theory, which de-
scribes two three-state Potts variables. The eight realiza-
tions of the orientationally ordered phase are obtained
from the minima of this Landau free energy, which is of
the same form as that for the orientational ordering of
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solid orthohydrogen, which forms a very similar Pa3
structure.

(v) We call attention to the experimental possibility of
adjusting the Landau parameter w which regulates the
magnitude of the jump in the order parameter at the
transition. If it were possible to change the sign of w, a
rather novel type of ordering would result. Also investi-
gation of the multi critical point w =0 would, of course
be interesting.

(vi) It is desirable (and we are currently studying this
problem) to construct an orientational potential which
would explain this observed structure. In the language of
the present paper, a correct potential will give a global
minimum in the eigenvalues of ¥ ~!(q) at the wave vec-
tors Q,, Q,, and Q,, and will minimize the energy of the
structure for the observed low-temperature value® of the
rotation angle ¢.
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APPENDIX A: AN IMPOSSIBLE STRUCTURE

In this appendix we give the argument that one cannot
retain cubic symmetry with the icosahedral fivefold axes
aligned along the (111) directions. This conclusion fol-
lows, of course, from the arguments of Sec. II. However,
these arguments only provide an indirect answer to the
question of can the fivefold axes be aligned along {111)
directions? Those arguments certainly do not indicate
why this is impossible. Here we provide a more direct
answer to that question. Specifically, the question we ad-
dress is the following. We consider the simple-cubic unit
cell to have truncated icosahedra centered at the points
(0,0,0), (4,1,0), (4,0,4), and (0,1,1) oriented so that
each molecule has one of its fivefold axes along a [111]
axis. (The fact that the actual Cg, molecule has different
single- and double-bond lengths does not change the ar-
gument.) Is it possible to have such a structure but retain
indexing of all diffraction peaks relative to a simple-cubic
lattice containing the above four molecules? Such index-
ing implies that all the eight (111) directions are
equivalent and that all the six {(100) directions are
equivalent. Two directions are equivalent if there is a
symmetry operation of the crystal which takes one into
the other.

Clearly, if all four of the (111) axes are to be
equivalent, each of the four molecules in the unit cell will
have to have one of its fivefold axes along a different one
of the (111) axes. The particular [111] axis along which
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FIG. 6. Projection onto the plane P, of the six (100) direc-
tions forming a regular hexagon and of the decagon described in
the text. Here the decagon is represented by two pentagons, the
one in solid lines nearer the observer, the one in dashed lines
further from the observer. We indicate the angle a, between
the nth (100) direction and the closest radial spoke of the de-
cagon.

a given molecule has one of its fivefold axis aligned will
be referred to as the local [111] axis. For each molecule,
the plane perpendicular to its local [111] axis will be
called the plane P, .

Now consider one of the molecules in the unit cell.
The local [111] axis passing through the center of the
molecule passes perpendicularly through the center of
two opposite pentagonal faces. When these two pentago-
nal faces are projected onto the plane P, their vertices
define a regular decagon. Similarly, when the six points
*(a,0,0), =(0,a,0), and £=(0,0,a) are projected onto the
plane P, they define a regular hexagon. This situation is
shown in Fig. 6. If we make the same construction for
the other three molecules in the unit cell, the relative
orientations of the hexagon and the decagon must be the
same, up to a reflection, if all the (111) axes are to be
equivalent.

Now number the radial spokes of the hexagon
1,2,...,61in order and let the minimum magnitude angle
between the nth radial spoke of the hexagon (which
represents one of the { 100) directions) and a radial spoke
of the decagon be a,. Different molecules have the same
set of @, although their ordering may not be the same for
different molecules. By symmetry a,=a, ,; for n=1, 2,
or 3. It can easily be established that a;,=a,=a; is not
possible. So for each molecule we can uniquely pick out
a radial spoke (i.e., a particular [100] direction) by saying
it is the one with the minimum value of «a, or if this
minimum is twofold degenerate (e.g., a;=a, <as) it is
the one with the maximum value of a. So we have for-
mulated a rule to uniquely select, for each molecule in the
unit cell, an associated {100) axis. In this way we get
four choices of { 100) axes from the four molecules in the
unit cell. These four choices cannot possibly leave the
three (100) axes equivalent: each axis cannot be chosen
4 times. So a cubic structure of the type desired with the
fivefold axes of the icosahedra oriented along the {111)
directions is impossible.

APPENDIX B: MEAN-FIELD EVALUATION OF w

In this appendix we evaluate w. According to Eq.
(5.17) we need to evaluate
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wXYZE%C? E 0 x(Qy )(I)UY(Qy )(M)Uz(Qz )W T(I,m,n) ,

Lm,n
(B1)
where
T(,mn)= 3, Tr{[Yé(&‘)i)]:[Yg"(c’bj)]Z[Yg(c?)k)]Z‘},
ij,k€I
(B2)

where the subscript ¢ indicates that the quantization axis
is fixed in the crystal. To carry out the trace, as defined
in Eq. (5.5), we proceed as follows. We write?®

[Yg‘l(f‘\)i)]c= 2 [Dgl,,u(Xcamol)]*[Yg(fbi)]mol ’ (B3)
7

where the subscript mol means with respect to axes fixed
in the molecule and X, _, , indicates the triad of Euler
angles which take the crystal coordinate system into that
fixed in the molecule. The trace involves an average over
all values of these Euler angles. So

T(,mm=-15 [ dasingdBdy

X 3 [Dfu(a,B,7)1* Dy (@,By)]*
H,v,p

X[D$ (a,B,¥)]*SiS3S)
(B4)

where the S’s are sums over atoms in a single molecule,

S, =3 Y, , (BS)

iel

and the D’s are rotation matrices.?® The integration over
Euler angles is done using Egs. (4.22) and (4.62) of Ref.
26:

T(l’m’n )=1l_38!+m +n,0

X 3 8,4v4p0C(6,6,6,1,m)C(6,6,6;1,v)

wv,p
+
X(—=1)""PS;SISS (B6)
where the C’s are Clebsch-Gordan coefficients. Thus
Wyyz = %C? 2. C(6,6,6;,m)o x(Q, )@
ILm
X UY(Qy )(m)O,Z(QZ )(H—m )*
X ¥ C(6,6,6;u,v)S;S3S (B7a)
", v
=Kk, , (B7b)
where K, is the last summation over u and v and
K,=LC} 3 C(6,6,6;1,m)ox(Q,)"
I,m
Xo.y(Qy)(m)o.Z(Qz)(H-m)* i (B7c)

We evaluate K ; using Egs. (5.14) and (5.15), and setting
C,=2.666. Thereby we see that K, is only nonzero for
X=Y=Z and its value is independent of X:
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K,=—0.00903. As for K, note that it is an invariant: it
can be evaluated in any coordinate system. Accordingly
we work in a coordinate system in which the quantization
axis coincides with a fivefold axis. In that case, S,, van-
ishes unless m is a multiple of 5, and

Sse =5 _e M=/, 9

where ¢ is the angle between the x axis and one of the
mirror planes containing the z axis. Thus there is only
one independent sum, S,. For an undistorted truncated
icosahedron we find that

4957

S,=2.11778 . (B9a)

For the bond lengths taken from the NMR work*
(d,=1.45 A andd,=1.40 A), we find

So=1.69882 . (B9b)
To evaluate K, we use C(6,6,6;0,0)=20/V/(11)(17)(19)
and C(6,6,6;—5,5)=27.5/V/(11)(17)(19), so that

K,=—10.2814. Thus the constant w in Eq. (5.20) is
w=0.928 54.
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