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One of the long-lasting objectives of the theory of tunneling is to express the transmission prob-
ability in terms of the wave functions of infinitely separated electrodes. This can be achieved by
the application of a perturbative approach to tunneling; in this context the transfer Hamiltonian
method has been developed and used. In cases such as scanning tunneling microscopy operating at
small tip-sample separation, however, it becomes necessary to go beyond the original transfer Hamil-
tonian method. In this study we examine the modified forms of the transfer Hamiltonian method
using exactly solvable one-dimensional tunneling systems. We find that it is possible to calculate the
transmission probability approximately by choosing appropriate boundary conditions for the wave
functions used in the transition matrix element expression. However, for low and thin barriers these
modified methods still fail to give the correct results. On the other hand, Green’s-function tech-
niques which extend the perturbation to all orders yield exact results irrespective of the boundary

condition chosen at the interface.

I. INTRODUCTION

The quest for a generally valid theoretical explana-
tion of tunneling started with the study of field-induced
ionization of hydrogen atoms by Oppenheimer.! His ap-
proach, in fact, formed the basis of the transfer Hamilto-
nian (TH) method. The commonly referred formulation
of the TH method is due to Bardeen.? The essential idea
of the TH method is the separation of space into two half
spaces, each including one of the electrodes. Finding the
solutions for the wave functions in these two half spaces,
the transmission probability for the original problem can
be calculated by using the first-order time-dependent per-
turbation theory.2® The Golden-rule-like expression for
the transmission rate is given by
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with the matrix element M, defined as
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where ¢, and ¥, (E, and E,) are the wave functions
(eigenenergies) of the infinitely separated left and right
electrode, respectively. The integration is carried out
over surface Sp, which lies in the tunneling barrier, and is
arbitrary otherwise. Despite its drawbacks discussed in
the literature, the TH method is being widely used due
to its simplicity and comprehensive transparency. For
example, the theory of scanning tunneling microscopy
(STM) as formulated by Tersoff and Hamann* makes use
of the TH method and yields a simple expression for tun-
neling current (for an s-wave tip state) in terms of the
local density of states of the sample surface. The tun-
neling current, on the other hand, cannot be calculated
using ab initio methods due to immense computational
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requirements®. Consequently, the attention has been fo-
cused on modifying the original TH method in order to
eliminate its shortcomings.

The perturbative nature of the TH method brings
about certain restrictions on its applicability; it can only
be used for high and thick barriers. However, there are
two serious problems that the TH method faces in the
context of STM. First, it is well established that the dis-
tance between the tip and the sample for the usual STM
operation is small,® and is in the range of 1-5 A. For this
situation, the first-order perturbation may not be suffi-
cient to find the transmission probability, and multiple
reflections from the boundaries of the tip and sample be-
come important. Second, as a result of small separation,
tip-sample interaction becomes important. Especially,
the potential barrier in the vacuum gap is lowered due to
the overlap of the charge densities of the two electrodes”
and the electronic structure of the electrodes is modified
leading to the formation of tip-induced states.® Conse-
quently the wave functions for the infinitely separated
electrodes 1, , are not appropriate to characterize the
interacting tip-sample system.

In the following we examine whether the TH method
can be modified in such a way as to eliminate the above-
mentioned problems. In Sec. II we study the effects of
the boundary conditions for the wave functions and the
position of the separation surface Sy by using exactly
solvable tunneling systems.® We find that although it is
possible to overcome some drawbacks of the original TH
method, it is not possible to find a generally valid ap-
proximation. On the other hand, in Sec. III we show
that by using Green’s-function techniques, which include
perturbations of all orders, it is possible to find the trans-
mission probability exactly even in the presence of strong
interelectrode interaction. An interesting result of the
present work is that the position of the separation sur-
face and boundary condition for the Green’s function do
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not play any role as long as the transmission probability
is concerned.

II. THE MODIFIED TH METHOD

Recently Chen!'® proposed that the original TH
method can be modified to calculate the transmission
probability for low and thin barriers as well, even for
cases for which the potential barrier is totally collapsed.
Chen claimed that this can be achieved by using the
wave functions 9,, and 1, (instead of 9, and ¢, ) for the
infinitely separated electrodes, which takes the lowering
of the barrier into account. To visualize the conjecture
of Chen, the corresponding one-dimensional (1D) square
barrier problem is depicted in Fig. 1. The height of the
surface barrier for the infinitely separated electrodes is
Vo (the work function), and as a result of interelectrode
interaction it is reduced to V for the barrier thickness d.
In the original TH method, v, , are found by using the
potential profiles shown in Fig. 1(b). Chen proposed that
in the semi-infinite vacuum the potential has to be taken
to be equal to Vj, and not to V, as in Fig. 1(c), to find
¥u,v- He calculated the matrix element M), in terms of
these wave functions as in Eq. (2). He also showed that
the second-order perturbation correction to Eq. (1) van-
ishes for this choice of potentials for the left and right
half spaces.

First we derive the TH expression for the transmission
probability of the 1D square barrier. To do so, one has
to calculate the wave functions for the left and right half
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FIG. 1. Potential profile for (a) the 1D square barrier

problem, and left and right half-spaces in (b) the original
TH method and (c) Chen’s conjecture.

spaces for the potentials shown in Figs. 1(b) and 1(c),
and calculate the matrix element by using Eq. (2). The
transmission rate calculated from Eq. (1) is normalized
per unit incident flux to find the transmission probabil-
ity. The final expression for the transmission probability
according to Chen’s conjecture is'?

with the wave vector k = (2mE)'/2/h, inverse decay
lengths k = 2m(V — E)]Y2/h, ko = [2m(Vo — E)]*/?/h,
and the separation point is taken to be midway between
the electrodes at zo = d/2. The result for the original
TH method can be retrieved by taking k, = k. On the
other hand, the transmission probability can be calcu-
lated exactly for the potential shown in Fig. 1(a) and is
given by

4K2K?
T= —
4K%k? + (K2 + k2)2 sinh® kd

In Fig. 2 the exact transmission probability is compared
with those calculated by using the TH method. The orig-
inal TH method yields a vanishing T as k — 0, since the
derivative of the wave functions 1,, vanishes. Thus,
the original TH method cannot be used for low barrier
heights. On the other hand, Chen’s expression has a
nonsingular behavior for kK = 0 due to proper behavior
of 9, .. For large barrier heights one observes that the
transmission probability found by using the TH method
is approximately equal to the exact result. However, for
low barrier heights (i.e., V' < 0) the mismatch between
the exact result and that of the TH method as modified
by Chen is more than 10 %. More importantly, for further
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FIG. 2. Transmission probability for the 1D square bar-
rier shown in Fig. 1. The full line is the exact result [Eq. (4)],
and the dotted and dashed lines are the results of the origi-
nal TH method and Chen’s conjecture [Eq. (3)], respectively.
The parameters are d =2 A, E =12 €V, and Vp =4 eV.
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lowering of the barrier (in our example shown in Fig. 2
for V.S —3 eV) transmission probability found by using
Chen’s conjecture exceeds unity, which is clearly unphys-
ical. That is, although the singularity that T attains for
V =0 in the original TH method can be removed by us-
ing Chen’s conjecture, the modified TH method still fails
to give approximate results for vanishing and negative
barrier heights.

Next we question the choice of Chen for the semi-
infinite vacuum potential. Although for STM the po-
tential outside the electrodes approaches Vy away from
the apex of the tip, for other tunneling systems (e.g., for
semiconductor heterostructures) the vacuum level may
not have the same physical significance. From this point
of view this particular choice of boundary condition for
the wave functions v, , cannot be justified. Therefore,
we use Ko in Eq. (3) [or Vp in Fig 1(c)] as a variable
and calculate the corresponding transmission probability.
The results are shown in Fig. 3(a) for different choices of
k. As can be observed in Eq. (3), T — 0 as ko — 0 or oo.
For finite values of xg, T has a broad maximum. For high
barrier heights the value of this maximum is very close
to the exact T', thus any change in V; does not affect the
transmission probability appreciably in accordance with
the original TH method. On the other hand, for V <0
the maximum becomes narrower and the boundary con-
ditions specified for v, at £ = o may lead to major
variations in T values.

Another crucial point in the TH method is the choice
for the separation surface. In the original TH method,?
the transmission probability turns out to be independent
of zo for high and thick barriers since the Wronskian
of the wave functions is constant. This is also true for
the 1D square barrier, which can be seen from Eq. (3)
with kg = x. However, Chen’s conjecture yields an xo-
dependent T as a result of changes in 1), , for different
boundary conditions. The dependence of the transmis-
sion probability on the position of the separation surface
is shown in Fig. 3(b). Similar to Fig. 3(a), the transmis-
sion probability for high barrier heights is almost inde-
pendent of ¢ as in the original TH method. For V <0,
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FIG. 3. Transmission probability calculated according to
Chen’s conjecture by varying (a) Vo and (b) xo in Fig. 1(c).
The curves are for V = —2, —1, 0.01, 2, and 4 €V in the order
of decreasing T'. The arrows indicate the exact values of T'.
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FIG. 4. Transmission probability for the bimetallic jel-
lium potential. The curves are the same as in Fig. 2. Inset
shows the variation of the maximum of the barrier height as
a function of distance between the jellium edges. The jellium
parameters are chosen to represent Al

however, T rapidly increases as the separation surface
gets closer to one of the electrodes. Note that the choice
of the boundary conditions and separation surface may
be important especially for asymmetrical barrier poten-
tials, for which it is not possible (but necessary) to de-
termine the separation surface and boundary conditions
a priori. However, the TH method does not seem to be
reliable from this respect.

We also use a bimetallic junction potential in order
to test the validity of the above results for more real-
istic tunneling systems (see Ref. 9). To do so we use
the local-density-overlapping charge-densities approxi-
mation of Smith and co-workers!l. The solution for
the transmission probability and wave functions 1, .
and 1, , is obtained by approximating the potential by
a histogram profile and employing the transfer-matrix
method.1? Ciraci and co-workers!® showed that this ap-
proximation gives reliable results for STM at small dis-
tances with blunt tips. Our results for transmission prob-
ability T as a function of the interelectrode separation d
are shown in Fig. 4. The results are similar to those
presented in Fig. 2, i.e., the original TH method leads to
vanishing T for V' = 0 and Chen’s conjecture removes this
singularity. An important observation is that for nega-
tive barrier heights (i.e., V' < 0) the original TH method,
albeit qualitatively incorrect, gives a better quantitative
approximation as compared to Chen’s conjecture. This
results from the unphysical behavior of the latter de-
scribed above. Therefore, we find that for 1D problems
under consideration the modified TH method as proposed
by Chen'® (in terms of wave functions of the infinitely
separated electrodes) is not better than the original TH
method, and it does not yield admissible results for van-
ishing barrier heights.

III. GREEN’S-FUNCTION TECHNIQUES

In this section we focus our attention on Green’s-
function techniques proposed for the tunneling problem
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in conjunction with the TH method. In fact the meth-
ods described below are nonperturbative in nature since
perturbation is extended to all orders. However, the un-
derlying motivation is the same as that of the original TH
method. Thus, we examine them in terms of their TH
character. The Green’s-function technique was applied
to the tunneling problem by Caroli and co-workers.14
They started with two uncoupled electrodes at thermal
equilibrium with different chemical potentials and intro-
duced tunneling between them by using the Green’s-
function technique for nonequilibrium processes as for-
mulated by Keldysh.!® They initially considered discrete
systems, and later proposed a method to find the cor-
responding continuum limit. Feuchtwang'® formulated
an alternative method starting from the boundary con-
dition satisfied by the Green’s functions at the separation
surface and using the Keldysh method. Furthermore, he
showed that the result of Caroli et al. can be obtained
by using Green’s functions vanishing at the interface in
the framework of his method. He claimed, however, that
the physically correct solution is found by using Green’s
functions with vanishing derivative at the interface. Re-
cently Nogueral” questioned the physical significance of
the boundary conditions used by both Caroli et al.l4
and Feuchtwang.!® Using the matching procedure for the
Green’s functions at the separation surface,'® she found
that the relevant quantity is the logarithmic derivative
of the Green’s function at the boundary. She expressed
the transmission probability in terms of the logarithmic
derivative of the Green’s functions and showed that this
expression reduces to those found by the others!4:1¢ when
specific boundary conditions are set. The tunneling cur-
rent for STM has been calculated for specific geometries
by using the original TH method,® the method of Caroli
et al.,?° that of Noguera,?! and also by direct solution of
the Schrédinger equation.?? Thus, a critical evaluation
of Green’s-function methods is important for making a
comparison between different approaches. In what fol-
lows we show that the boundary condition specified at
the separation surface for the Green’s functions of the
infinitely separated electrodes does not affect the trans-
mission probability and all the above-cited approaches
give the same result.

The Green’s-function approach (in the TH context)
relies on the determination of two Green’s functions G,
and Gpg for the left and right half spaces, respectively.
The behavior of these Green’s functions in the other half
space is immaterial and only the boundary condition at
the separation surface is relevant. For 1D systems the
boundary condition used by Caroli et al.l* reads

GS(x0,z < 1) =0 ()

and that of Feuchtwang!6 reads

o '
—GE(z,2 < 0)|z=zo =0 (6)
ox

for the left half space, with similar expressions for the
right half space. Clearly, the Green’s function satisfying
the boundary condition
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' a '
a Gr(zo,z <o) +b %GL(z,x Nz=zo =0 (7

can be written as
GL(z,z') = a(a,b) GS(z,z) + B(a,b) GE(z,z).  (8)

Note that the logarithmic derivatives of G, and Gg at
o are defined as

2 Gy (x, o)
Xy = — 82 ZL\%70) , 9a
ey | (92)
8 Gr(z,xo)
Xp= 02 R\770) , ob
R’ " Gr(z,20) (%b)
.‘C=1}o+
respectively. For b # 0, X1 can be written as

X a %Gg(xax0)|$=xo_ 2m 1 (10)

L=73 - AF

b £G¢(2,%0)lz=z0, h*> GI(zo,0)

As the numerator of the first term on the right-hand
side vanishes,?® one obtains X; = 2m/h%G% (xo, 2o).
Consequently, the transmission probability expressions
of Nogueral” (i.e., a,b # 0, arbitrary otherwise),

| XL + Xrl
and that of Feuchtwang'® (i.e., a = 0),
T — 4Im{Gf(x09 xo)}Im{Gﬁ (x01 :EO)} (12)

|Gf(:l:0,:l:o) + G}Fz(mo,xo)IZ '

are identical. The limit b — 0 for Eq. (7) leads to an
indeterminate logarithmic derivative X, since both the
numerator and denominator in Eq. (9a) vanish. Applying
the L’Hospital rule (differentiating the numerator and
denominator with respect to zo and then taking the limit
x — zo from the left) one finds (using Ref. 23)

2 82
XL,r

"= 3 5z oz LR T)

, (13)

’
T,z =To

which gives the transmission probability as found by Car-
oli et al.* (ie., b =0),

1 o (e ) (i )

2
fokd a2
9z 9z Gg(:L‘,.’E’) + 9z oz Gg(x’ xl)( z,z’ =z0

(14)

This completes the derivation of the equivalence of
Egs. (11), (12) and (14). That is, we find that the TH
methods making use of the Green’s functions yield ex-
actly the same result for T irrespective of the boundary
condition satisfied by G, g on the separation surface |i.e.,
independent of a and b in Eq. (7)]. Rephrasing, we find
that the only relevant boundary conditions for Xy and
Xr are the ones which are satisfied at £ — o0, that is,
outgoing wave boundary conditions. Thus, G g may be
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chosen as the Green’s function for the complete system
with appropriate scattered waves. This way it is possible
to use Green’s functions Gy r which are well defined at
all points in space.

The transmission probability expression Eq. (11) can
be modified to have the form

T = W[GZ’GL] W[GR’GFQ]
WIGL,Gr]>

with W denoting the Wronskian. In Eq. (15) the coor-
dinates of the Green’s functions are taken to be z = zq
and z = zo_ (zo,) for GL (Gr). In fact, since both
Green’s functions satisfy the same second-order differen-
tial equation (the Schrédinger equation), the Wronskians
in Eq. (15) are independent of the point at which they are
calculated provided that z < «' (z > z') for GL (GR).
Thus, the transmission probability as calculated by using
the Green’s-function method is independent of the posi-
tion zg of the separation point. Exploiting this fact and
using the asymptotic forms of these Green’s functions far
away from the barrier (where we assume the potential
is essentially constant) one finds that the transmission
probability as given in Eq. (11) [or equivalently Eq. (15)]
is exact. This, in fact, is the demonstration of the non-
perturbative nature of the Green’s-function method.

To exemplify the validity of the above results, we cal-
culate the transmission probability for the 1D square bar-
rier shown in Fig. 1(a) using the Green’s-function tech-

nique. The logarithmic derivatives Xy g can be found
for zo = d/2 as*

Xy o _K/csinh kd/2 — ik cosh kd/2
LR = " cosh kd/2 — iksinh rd/2’

(15)

(16)

which when substituted in Eq. (11) yields the exact trans-
mission probability Eq. (4). This result is independent
of the position of the separation point z¢ as can easily be
shown. On the other hand, the Wronskians in Eq. (15)
can be found as

WG} Grl = % |f(zo)l%, (17a)

WIGR Gl = 2 lg(z0)?, (17b)

2

sinh xd/2

52
WIGL, Grl = | 5

—i—ﬁ- cosh nd/2] f(zo)g(zo), (17c)

where f and g are functions of =, but clearly cancel out
when substituted in Eq. (15) and one obtains the exact
transmission probability Eq. (4), as expected. Calcula-
tions using the bimetallic jellium potential show that the
Green’s-function result for the transmission probability
Eq. (11) gives the exact result, independent of both the
position of the separation surface and the boundary con-
dition satisfied by the Green’s function.
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Up to this point we have avoided addressing the ques-
tion of the relation between the tunneling probability and
the local density of states (LDOS) of the surfaces. This
relation has been an issue of controversy in the former
studies.'416:17 Expressing the tunneling current in terms
of the LDOS is important especially for STM applica-
tions, since the LDOS can be calculated by using ab initio
methods. As mentioned above, however, only for large
tip-sample separations may it be possible to find the tun-
neling current in terms of the LDOS. It has been well es-
tablished that!416:17 the LDOS depends on the boundary
condition chosen at the separation surface. That is, the
LDOS can be defined for the electrode in contact with
a certain vacuum potential (e.g., the surface potential or
the infinite wall potential). On the other hand, the trans-
mission probability is a property of the complete system,
that is, two electrodes interacting with each other. As
a result, writing the transmission probability in terms of
the LDOS of electrodes in contact with a certain vacuum
potential, albeit formally feasible, is not conceptually ap-
pealing for strongly interacting systems. Therefore, we
do not interpret the above results in terms of the LDOS
of the electrodes and refer only to the Green'’s functions.

To conclude, we verified that the Green’s-function ap-
proach, which takes into account perturbations of all
orders, can be used to find the transmission probabil-
ity exactly. This procedure, on the other hand, re-
quires complete information on the states of the respec-
tive electrodes in the presence of interelectrode interac-
tions. Therefore, from a computational point of view, it
does not yield any simplifications over the solution of the
complete system. It has also been proposed!” to use two
separation surfaces instead of one, which yields a factor-
ization of the transmission probability in terms of quan-
tities depending on the bulk properties of the electrodes
and another one representing transmission through the
vacuum barrier. In such a formulation, however, the cen-
tral entity is still the vacuum transmission term which
depends on the properties of the electrodes as well. That
is, in all Green’s-function approaches the difficulty arises
from the inclusion of interelectrode interactions to the ef-
fective one-electron potentials, independent of the details
of the calculation scheme. Some other Green’s-function
techniques?®26 making use of the full Green’s function
of the complete system also give the exact result for the
transmission probability. However, these cannot be clas-
sified within the TH methods and thus we did not con-
sider them in the present study.
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