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We present an exact solution of a one-dimensional (1D) model: a particle of incident energy E collid-
ing with a target which is a 1D harmonic "solid slab" with N atoms in its ground state; the Hilbert space
of the target is restricted to the (N + 1) states with zero or one phonon present. For the case of a short-
range interaction V(z) between the particle and the surface atom supporting a bound state, an explicit
nonperturbative solution of the collision problem is obtained. For finite and large N, there is no true
sticking but only so-called Feshbach resonances. A finite sticking coefficient s(E) is obtained by intro-
ducing a small phonon decay rate g and letting N~ 00. Our main interest is in the behavior of s (E) as
E~O. For a short-range V(z), we find s(E)-E' ', regardless of the strength of the particle-phonon
coupling. However, if V(z) has a Coulomb z tail, we find s (E)~a, where 0 & a & 1. [A fully classical
calculation gives s(E)~1 in both cases. ] We conclude that the same threshold laws apply to 3D sys-
tems of neutral and charged particles, respectively. In an appendix we elucidate the nature of sticking by
the behavior of a wave packet incident on a finite N target.

I. INTRODUCTION

Recent experiments' on the sticking probability s(E)
of particles on surfaces have rekindled interest in its
threshold behavior as the incident energy E tends to zero.
It is known that in classical mechanics limE os(E)=1.
A low-energy quantum incident particle, however, be-
cause of its wave nature is expected to have a sharply re-
duced probability density near the reflecting surface
where its "effective" wave function is expected to become
zero. This effect is named quantum reflection" in the
literature. In the quantum regime, different authors
have reached different theoretical conclusions about s (E)
near E =0.

A general discussion of inelastic particle-surface
scattering is due to Cabrera et al. , which, however,
does not deal explicitly with the threshold behavior of
s(E).

The formal theory of s(E) was developed by Brenig
who shows that the effects of particle-phonon interac-
tions on the reflection and sticking of the particle can be
incorporated in a nonlocal, energy-dependent, complex
potential U,tt(r, r';E). Assuming that U,tt is short range
in r and r' and has a well-defined finite limit as E~O, he
shows that s (0)=0. He illustrates this conclusion for
two models: one is a reflection from a static potential (no
particle-phonon coupling); the other uses a phenomeno-
logical resonance.

In a sequel, Boheim et al. consider the physically in-
teresting case of a neutral particle where the particle-
surface interaction behaves as z for large particle-
surface separation z. They conclude that s(0) vanishes
also in this case. They remark, however, that for this
"long-range" potential, s(E) is accurately given by its
semiclassical value (%0), except for extremely low ener-
gies.

Polarization effects associated with virtual phonon ex-

citations and particle continuum states are neglected in
Refs. 5 and 9. Knowles and Suhl' have shown that sur-
face polarization effects increase s (E) at low energies. As
a result of the polarization, the penetration of the
particle's effective wave function into the surface region
is increased. This effect is in competition with quantum
reflection in the determination of s(E) as E~O

Martin, Bruinsma, and Platzman" calculated s(E) us-
ing perturbation theory for the case of a charged particle
and concluded (mistakenly) that s (E)ccE'~ for small E,
so that s(0)=0. Their subsequent numerical calcula-
tions' using the time-dependent Hartree approximation
indicated to them that s(0)%0 if the particle-phonon
coupling A, exceeded a critical value A, They concluded
that for the case A, & A,„polarization effects would dom-
inate the quantum reflection.

In our work we use first a one-dimensional model, ex-
actly solvable for all coupling strengths, and obtain a
closed-form expression for s (E); polarization and quan-
tum reflection effects are included and identified. The
model consists of a one-dimensional harmonic "solid
slab" which interacts with the impinging particle via a
potential which supports one bound state (Fig. 1). While
true sticking is not possible for a finite solid without dissi-
pation, metastable, resonant many-body states which be-
come longer lived as the thickness of the solid grows are
identified as precursors to the adsorbed state. The stick-
ing coefficient s (E) can be found from the limiting behav-
ior of the reflection coefficient as the thickness of the
solid tends toward infinity. Adsorption resulting from
particle-phonon coupling has some analogy with forma-
tion of a "compound nucleus"' in nucleon-nucleon col-
lisions. We find that for an interaction potential of finite
range or a z tail, regardless of its strength, s(E) ~E'
for small E. However, for potentials with attractive
Coulomb tails, we find, unlike Ref. 11 that, for small E,
s (E)~a where 0 & a & 1.
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FIG. 1. (a) Schematic view of a particle with mass m imping-

ing upon a one-dimensional solid consisting of atoms with mass
M. Lattice atoms are coupled to nearest neighbors and to fixed
lattice sites. (b) Particle interacts with the end atom via a
finite-range surface potential.

N is the number of atoms in the solid, M is the mass of a
lattice atom, and a is the equilibrium lattice spacing. '

The phonon Hamiltonian describes a chain of N atoms
coupled harmonically to their nearest neighbors and to
fixed sites as illustrated in Fig. l. (The coupling to fixed
sites is needed in this one-dimensional model to prevent a
well-known infrared divergence of u' ' which does not
exist in higher dimensions. ) The interaction potential V
is suSciently deep so as to support a bound state.

We next restrict the Hilbert space to states with zero
or one phonons present. ' However, we allow an arbi-
trarily strong particle-lattice interaction. This is in the
spirit of the Tamm-Dancoff approximation. '

We expand the wave function using zero- and one-
phonon eigenstates, fp and Iij'j, I,

%(zl, z2, . . . , zN, z)=Op(z) Pp(zl, z2, . . . , zN)

N

+ y 0 (zW'(z1 Z2 ZN )

II. THE MODEL

The model is sketched in Fig. 1(a). It has an external
particle interacting with a one-dimensional solid slab.
All motions are constrained to one dimension. The sur-
face atom and the particle interact by a short-range' po-
tential whose generic form is sketched in Fig. 1(b). We
take for the Hamiltonian of the system'

where (z„z2, . . . , zN) are the positions of the chain
atoms, i labels the modes, and z is the position of the par-
ticle. The following coupled system of equations results:

N

(% E)gp(z)+ —g Vp;(z)P;(z) =0,
(6)

(A~+iriQ; E)(();(z)+V—;p(z)gp(z) =0,

ff=&p), +& +&q,

where

(1) where

1
V p(z) = Vp. (z) =

MQ;

1/2

V'(z)cos

gf „=giriQ ata
q

p2 + V(z),
2m

I=u' 'V'(z) . '

AQ; is the excitation energy, q; is the wave number of the
ith mode, and E is the total energy of the system. Thus
the matrix V; has the simple form of a bordered matrix.

III. TWO-STATE SYSTEM

u' ' is the displacement of the surface atom, and % is
the Hamiltonian for the particle moving in the static po-
tential V(z). & h is the Hamiltonian for the phonons in
the solid; %1 contains the particle-phonon coupling; m is
the particle mass; 0 is the frequency of the phonon with
wave number q; and a and a are phonon creation and
annihilation operators, respectively.

The displacement of the surface atom can be expanded
in normal modes leading to

&I= g u (a +a ) V'(z),
q

In this section we deal with the case N =1 where the
target is a simple harmonic oscillator and —in our
model —the target Hilbert space consists of two states,
the oscillator's lowest and first excited state. This case
contains many features of the general N-atom chain.

We assume that the energy E of the particle is below
the excitation energy fiQ of the oscillator, and we shall
find purely elastic reflection with a sticking resonance
which occurs when E=AQ Eb, where Eb is th—e (posi-

tive) binding energy in the potential V(z).
For this two-state problem, the coupled system of Eq.

(6) becomes
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d2
+k —U(z} $p(z) = Upi(z)P, (z),

dz2

d2
2
+k' —co —U(z} P&(z) = Up&(z)gp(z),dz2

(8a}

(8b)

Substitution of Eq. (14) into Eq. (8a) gives a linear,
homogeneous integro-difFerential equation for Pp, the
elastic channel,

d2
+k —U(z) Pp(z)+ fdz'U~i(z, z', k)Qp(z')

dz2

where k =(2m/fi )E, co=(2m/fi )AQ,
U(z)=(2m/ft )V(z), and Up&(z)=(2m/fi )Vp&(z).

Equation (8b) can be solved for P, in terms of Pp,

P&(z)= f dz G](z z )Upi(z }Pp(z'), (9)

where G&(z, z') is the (real} Green's function which
satisfies the differential equation

r

d2 +k —co —U(z) G i (z,z') =5(z —z')
dz2

(10)

, e(z, k')e(z, k )G, (z,z')= + dk'
b
—co+ k —a) +k —k

where eb:2mEbll—; the bound-state eigenfunction 4b
is normalized such that

f dz @b(z}c,b(z) =1, (12}

while the continuum eigenfunctions are normalized such
that

and the conditions that G&( —oo,z'}=0 and G&(z,z'}~0
as z ~~ ~ Here and below, spatial integrals run from

to + ~ unless otherwise noted.
G&(z, z'} can be expanded in eigenfunctions of

[d /dz —U(z}] vanishing at z = —oo,

describing virtual excitations of the particle-phonon sys-
tem, exclusive of virtual particle binding.

To solve Eq. (16} in terms of the as yet unknown A
and subject to the boundary conditions

Pp(
—oo )=0

Pp(z) =e '"'—R (k)e'"', z~ oo

(18a)

(18b)

we introduce a second complex Green's function
9'(z, z', k) which is the solution to

d2
+k —U(z) Q(z, z', k)

z2

+fdz" U i(z, z",k)Q(z", z', k)=5(z —z') (19)

with the boundary conditions

0( —oo,z'; k ) =0,
Q(z, z', k ) —e'", z~ oo

Thus

(20)

=A Up, (z)@b(z), (16)

where we have introduced a real "polarization potential, "
Up, (z)4(z, k' }4(z',k') Up, (z')

U~,&(z,z', k )—: dk'
p co —k +k

(17}

f dz@(z,p)4(z, q) =5(p —q) . (13) Pp(z) = 2ie' i"—'yp(z;k)

P, ( )=A(k)4 ( )—fd 'f dk'

X Up&(z )Pp(z ) (14)

where A is the "bound-state amplitude" linear in Pp and
given by

A(k)= fdz'
4b(z')

Upi(z )Pp(z )
Eb co+k

(15)

Since the incident energy is taken to be below the in-
elastic threshold (k2&co), the integrand in Eq. (11) has
no singularity, and P& is localized, corresponding to a
closed channel.

Substituting the above form of the Green's function
into the formal solution of P, gives

+A fdz'Q(z, z', k)Up, (z'}4b(z') . (21)

Here gp(z; k) is the real solution to Eq. (16) with A set to
zero

d2
+k —U(z) yp(z;k)

dz2

+ fdz'U „(z,z'; k)yp(z', k) =0, (22)

which satisfies the boundary conditions that
yp(

—oo;k)=0 and yp(z;k)~sin(kz+5) as z~oo, and
the phase shift 5(k) is due to the two potentials U and
U

9 can be expressed in terms of yp and a second real
solution g, of Eq. (22}, which has the asymptotic form
y, (z;k)~cos(kz+5) as z~ oo,

gp(z k}gi(z 'k)+imp(z;k)gp(z', k), z +z'
Q(z, z';k) =——

gp(z 'k}y&(z;k)+imp(z;k)gp(z', k), z ~z' .

Substituting Eq. (21) into Eq. (15) gives a closed expression for A,

(23}
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2—ie' '"'f dz'@b(z')Up, (z')yp(z', k)
A(k)=

eb —('o+k —f dz'dz "C(b(z') Up, (z'}Q(z',z";k)Up, (z")4b(z")
(24)

Using Eq. (23},we separate the denominator of Eq. (24)
into its real and imaginary parts and write

A(k) = —le'R"' 2ky(k}
(25}

k co+—eb be—(k)+ i
. y(k)

where

I

of k above the inelastic threshold is treated in Appendix
C.

Equation (29b) can be formally solved by introducing a
Green's function 6; such that

P;(z)= f dz'G;(z, z')Uo;(z')P (z'), (30)

where

be(k) = f dz'dz "4b(z') Up, (z')Re I Q(z', z";k ) )

X Upi (Z" )4 b(Z" ) (26)

d +k —co, —U (z) G, (z,z') =5(z —z')z' (31)

and

2y(k)= —fdz'@b(z')Up, (z )gp(z;k) (27)

and satisfies the appropriate boundary conditions.
The Green's function 6; can be expanded. In analogy

with Eqs. (11)and (14), we write

When this value of A is substituted in Eq. (21) and we
define Z(k) =(o—eb+ be(k), we obtain the closed solution
for Pp which has the asymptotic form of Eq. (18b), where

C'b(z)c'b(z },e(z, k'}e(z', k')
G;(z,z') = + dk'

6b Q) +k 0 k2 —co; —k

(32)

2(s(k)
k2-~(k)-( y'"''

2

k' z(k)+( y—'"''
2

(28)

and

(t;(z)=A;(k)@b(z)+ f dz' f dk'
1

We note that ~R (k)
~

=1 for all k, refiecting the absence
of sticking in this two-state model. For small coupling
U01 and consequent small y, the expression for R is
characteristic of a resonance at incident energy given by
k„=(o—eb+be(k„) and of width y(k„). The phase of
R (k) rapidly passes through 2m. This resonance is be-
tween the initial state, with the particle having energy k„
and the target in its ground state, and the final state, with
the particle bound and the target in its excited state. '

IV. THE (@+1)-STATESYSTEM

where

X Up (z')(t'p(z') (33)

A;(k) = fdz'@b(z')Up;(z')Pp(z') .
1

Eb+k CO;

(34)

2

+k —U(z) Pp(z)+ fdz'U, i(z, z';k)gp(z')
dz2

A single self-consistent equation for Pp can be found by
substituting Eq. (33) into Eq. (29a),

For a chain of N atoms, there is a single lattice ground
state and N one-phonon states. We rewrite the coupled
equations (6) for the (N+1) particle functions
Pp, P„.. . , P~ in the form where

N= g A, (k)Up, (z)(pb(z), (35)

d N

2
+k —U(z) pp(z) = g Up;(z)$;(z),dz2 i=1

(29a)
Up;(z)4(z, k')4(z', k') Up;(z')

U „(z,z';k):— dk' gi=l co, —k +k

(36}
+k —co, —U(z) P,.(z)

dz2

=Up;(z)(I}p(z), i =1,2, . . . , N. (29b)

co, =(2m/A' )fiQ, , and

and A; is defined in Eq. (34).
The Green's function Q(z, z', k }, which was defined in

Eq. (19},can again be used to solve Eq. (35}for Pp,

Pp(z) = —2ie' ("'yp(z; k)
1/2

2m 2m g-a
Up, (z):— Vp, (z) = U'(z)cos

N

+f dz'Q(z, z', k) g A;(k)U;(z')(p (z') (37)

For k ~~, , the ith channel is closed. We will again re-
strict our attention to incident energies below the inelas-
tic threshold so that k —co,- is negative for all i. The case

in terms of the A;. The (N+ 1)-state solution is thus a
simple generalization of Eq. (21).

Substituting Eq. (37) into the definition of A, given in
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Eq. (34} yields the following coupled equations for the l(E, N )

N

g [(eb —n),. +k )5;J —W;. ]A.=P, ,
j=l

here

(38)

E, E2 )E E~ Eq

q;a
Cos

W; =—W(k)
1

CO;

where

qja
Cos

Q c)i.
(39) FIG. 2. Sketch of I(E,N) for N =5. [The last singularity at

E =8, is suppressed by the factor cos(q;a /2) in Eq. (7), corre-
sponding to the reduction of particle coupling to phonons near
the zone edge. ]

W(k}=2 f dz'dz "C)&(z')U'(z')Q(z', z",k)

and

X U'(z")4 b(z")

dent of i. Hence A;(k) has the form

P; = 2ie—' '"'f dz'4&(z')U();(z')yo(z', k)

=—P(k}1

N

q;a
COS

where

P(k)= 2ie' —'"'&2m/M f dz'4&(z')U'(z')yo(z', k) .

(41)

(42)

A;(k) =
q;a

B(k)cos

(k +es c)( }~co(

(k) P(k)
~N [1—W(k)I(k, N)]

where W(k } is given by Eq. (40) and

(45)

B(k) can be determined by substitution of Eq. (44) into
Eq. (43},yielding

The matrix equation for the channel amplitudes can be
solved by noting that 8'; has a product form. Thus Eq.
(38}can be rewritten in the form

q;a
COS

N

I(k,N)=
, =, (k'+eh , ), — (46)

(eb —ro;+k2)A; =
q;a

Cos

W(k)
1

N

qa
Cos

N

I(k,N) is a nearly periodic function of k~ with slowly
varying period and alternating poles and zeros along the
real axis for any finit N (see Fig. 2).

Equation (44} now gives the explicit expression for the
channel amplitudes

q;a
cos

q;a
Cos

Nco;

' P(k) . (43)

A;(k)=
(k +eb —c0;}~co;

')/I /NP (k)
1 —W(k)I(k, N)

(47}

After multiplying Eq. (43) by Qc);/cos(q;a/2), it
should be noted that the right-hand side is now indepen-

As in the two-channel case, the asymptotic form of Pc
from Eq. (37) gives an expression for the reflection
coeScient R

R (k N)= 's'"' 1 —4i m I(k,N)
W(k)I (k N)

dz @s(z') U'(z')yo(z'&k)
2

2is(k) 1 —W*(k)I(k, N) 2;(s(k)+s(k)}
1 —W(k)I(k, N) (48)
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p(co) = dn dco

dq dq

=2 CO

(( 2 2)( 2 2)]1/2
(53)

E, E2 E E4 E

FIG. 3. Sketch of g(E) for N =5.

where

5(k) =tan I(k,N}ImW(k)
1 —Re W(k)I (k, N)

(49)

Again the elastic reflection coefficient has a magnitude of
unity for finite N, and thus s(E)—=0. The typical behav-
ior of 5 is given in Fig. 3. The implications of this rapid
variation of 8 with k for the reflection of a wave packet
(showing "Poincare cycles" ) are developed in Appendix
E.

V. STICKING IN CONTINUUM LIMIT

CO~ ~COJ. l 'g (50)

where g
' represents the lifetime of the phonon. With

the addition of this small imaginary part, the poles of
I(k, N) are pushed off the real k axis by small but N-

independent distances.
As N becomes large, the discrete lattice modes become

increasingly dense. When their spacing becomes small
compared to g, the summation in the definition of I (k, N)
can be replaced by a Riemann integral

2(k)= lim I(k, N)
g —+ oo

Real phonons have a finite lifetime (e.g., due to anhar-
monic coupling} which adds a small, negative imaginary
part, independent of N, to the phonon excitation energies,

2 2 '1/2
CO 1 COm CO

XP dN
c (k +Ebco') co co~

co —(k +eb)

(co —co, ) (k +as) —co,
(54)

P denotes the principal part.
Since S(k) now has a finite imaginary part, the magni-

tude of the reflection coefficient differs from unity even
for energies below the inelastic threshold. We identify
the deviation of R

~
from unity as the sticking

coefficient. Thus the sticking coefficient is given by

s(k)=1 —lim ~R (k, N)g~ oo

1 W (k)S(k)
1 —W(k)S(k)

41mW(k)imÃk)
1 —2 Re[ W(k) S(k) ]+

~
W(k)

~ ~
S(k)

~

In the limit of low energy (k —+0), go and y& can be ex-

pressed in the form

yo(z; k) =kgp(z), k ~0
yt(z;k) =g)(z}, k ~0

(56)

where go and g, are independent of k. From Eq. (40), in

the low-energy limit 8'is given by

Imm

where co =(coD+co, )'~ and n is the number of modes

per atom.
There is a simple pole in the integrand of Eq. (51) just

above the real co axis. The integration can be performed
by using the integration contour illustrated in Fig. 4. The
contribution of the integral in the vicinity of the pole
gives a negative imaginary part,

2(k) =—2 1

~ ~m c

2 q (co)a
p(co)cos

2~m
d co

(k +eb co+i')co—
(51}

where p(co) is the density of vibrational states per atom. '

The dispersion for the solid, schematically shown in

Fig. 1, is of the form
1/2

2
c cb+k

qa
co(q) = coDsin +co, (52)

where coD =4m /AQ~O/M and co, =2m/A'Qic, /M. The
density of vibrational states per atom is then

FIG. 4. Integration contour in the complex co plane for
evaluating 2.
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ReW(k}= —wo,

ImW(k}= —k@0,
(57)

1 i (kz+50) —i (kz+50)4(z; k)~ —&.2in(e . ' —e ' ),
2L

(65)

where
where 50 is the phase shift from the potential V(z). Thus

w0=2 fdz'dz"@b(z')U'(z')g(z', z")
M

X U'(z")4b(z"), (57')

haik

27Tm

The sticking coefficient s in the DWBA is then

s(k)=
k

I(@IU'IC'b&l'llm&( )I .

(66)

(67)

and

g(z, z')= .
go(z)g&(z'), z ~z'

go(z'}g)(z), z ~z' (58) For small k, the distorted wave 4(z;k) has the form

4(z;k) =kg2(z), k ~0 .

Substitution of Eq. (68) into Eq. (67) yields

(68)

yo=2 fdz'4b(z') U'(z')go(z') (59)
2

s(k)=k S2 fdz'4 (bz'}U'(z')g (2z')
M

2 approaches a constant as k ~0; namely,

2 2
' 1/2

2 1 ~m 1 COm CO

0=
z 2

P dt0
'tt ~ —~ ~~ (eb Cil+tVJ)

~I

2 2
' 1/2

2 COm ~b

2 2 2 2
COm CO~ 6b CO~

(60)

k ~0 (69}

which is identical with the weak-coupling limit of Eq.
(61}.

So far we have limited the discussion to a single bound
state. When there are several bound states, Nb, the total
sticking coefficient in the DWBA is, of course, the sum of
contributions from each bound state,

Substituting Eqs. (57) and (60) into the expression for s in
Eq. (55) gives

s(k)= g s„(k) .
n=1

(70)

f dcoNp(co)I(QOIV„I@b)l 5(to eb —k )—

I(WOI U'l@b & I'llm&(k}l, (62)

where V„ is given by the continuum form of Eq. (7)
1/2

V'(z)cos q (co }a
2

V (z)= 1 2m

Mco
(63)

and p is the density of states per atom.
Within the DWBA the transition rate is found by sub-

stituting the approximate distorted wave 4(z;k}, the
elastic scattering state in the presence of only the static
potential U(z), for the true elastic wave function $0(z;k)

l(4IU'lob) I'lime(k}l . (64)

The sticking probability is the transition rate per in-
coming particle flux. The incoming flux 9' is found from
the asymptotic behavior of the distorted wave @

s(k}=k 4ro&z
(61)

(1+COO~1) +W0~2

We see that s(E)-E', regardless of the strength of
the particle-phonon coupling. We shall now verify that
for weak coupling, Eq. (61}reduces to the result obtained
in the distorted-wave Born approximation (DWBA}. The
exact transition rate A from the elastic channel to the
bound state is given by

g M„„,(k)B„.(k)=Q„(k) .
n'=1

(71)

VI. LONG-RANGE PARTICLE-TARGET
INTERACTIONS

So far we have considered sticking of one-dimensional
(1D) particles interacting with the surface atoms of the
target by a "short-range" potential which supports a sin-
gle bound state. The real situation for three-dimensional
(3D) systems is quite diff'erent. To first order in the dis-
placements of the target atoms I, the interaction potential
can be written in the form

U(r)+ $ u, .w, (r) .
I

(72)

Where r and ui are, respectively, the position of the par-
ticle and the displacement of the target atom I; U(r) is
the particle's interaction with the target atoms in their
equilibrium positions; and the next term describes its in-
teractions with the lattice vibrations.

If the particle is neutral, U(r} has the form

C3
U(r) = — + U"(r),

Z3
(73)

The generalization of our one-phonon model, which is
not limited to weak interactions, leads —instead of the
single equation [Eq. (45)] for 8 (k)—to Nb coupled linear
equations for Nb coefficients, 8„(k),of the form

Nb
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where the first term is the image potential and again the
second term is relatively short range.

The coefficients wt(r) have various forms of asymptotic
behavior, depending on whether the particle is charged or
neutral and whether the target is ionic or not. But for
purposes of calculating matrix elements between the
eigenstates of the uncoupled Hamiltonians of the particle
[including U(r)] and of the lattice vibrations, the w, (r)
are in all cases effectively short range.

In view of the foregoing, we now consider in some de-
tail the unperturbed 1D particle wave functions in the
potential U(z) in the two cases. In the first case,

C3
U(z) = U "(z)—

z3 ' (75)

where U" is short range. Depending on the strength of
the attractive part of this potential, it may support 0, 1,
2, or a larger but finite number of bound states. Tradi-
tional effective range theory for low-energy scattering
states [k cot5(k)= —Ila, + —,'rok + ] does not hold,
and so in this sense z is not a short-range potential.
However, as far as quantum reflection is concerned, this
potential does behave like a short-range potential such as
a square well. The relevant ratio is

near k =0, where z' is any axed point near the surface.
For both the square well and the potential (75}, one ob-
tains

Q (k)~const Xk, k ~0 (77)

where the constant [of dimension (length) ] depends on
the particulars of the potential. Thus the 1D case of a
z tail is covered by our earlier calculation and leads to
s(E)-E'~ . We have convinced ourselves that this be-
havior also persists for physical 3D systems, with any
number of surface-bound states provided only that the in-
cident particle is neutral. The details are tedious and are
not presented here.

The second case, corresponding to a charged incident
particle,

Ci
U(z) = U"'(z)— (78}

is radically different from the previously considered
cases. First of all this Coulombic potential, as is well
known, supports an infinite number of bound states.
Second, as we shall see, the low-energy behavior of Q(k)
is different,

Q (k) =const X k, k ~0 (79)

where the first term is a van der Waals type polarization
potential and U" is relatively short range, i.e., decreas-
ing more rapidly than z; if the particle is charged, U(r)
has the form

C,
U(r) = — + U"(r), The essential features of sticking in a Coulomb poten-

tial appear already in the DWBA. In the DWBA, the
sticking coefficient associated with the nth bound state is
given by

s„(k)= I(k V'ln &I'
A k

X J dQp(Q) cos

X5(E(k)+Eb „—hQ}, (81)

where k and n denote, respectively, the continuum and
bound-state wave functions satisfying the normalization
conditions Eqs. (13) and (12).

Clearly the integral in Eq. (82) goes to a finite limit Z
as k~0. The k dependence of the matrix element
{k V'~ n ) can be determined by realizing that in the case
of a potential with a Coulombic tail, the WKB approxi-
mation is valid for the continuum wave functions 4(z, k)
beyond a minimum z (z ~z") (see Appendix F). The
inner portion of 4(z, k) is obtained by solving the
Schrodinger equation for k =0 with the boundary condi-
tion 4( —~,0)=0 and determining the amplitude by
matching at z" to the outside WKB solution. The result
for small k is that for any fixed z

4(z k)=k' h(z), k~0 (82)

where h (z) is independent of k. Therefore, by Eq. (81),

lims„(k) = J dz h(z) V'(z)4s „(z) Z-E
k —+0 $ 0

(83)

for AQc —Eb, n —~~rn
In our model the infrared phonon cutoff artificially

eliminates the sticking contribution from bound states
which are close to the continuum edge. However, for
real surfaces without an infrared phonon cutoff where
there are nonzero contributions to the total sticking from
high-lying bound states, we must concern ourselves with
the convergence of the infinite summation of the terms
from Eq. (83). The amplitude of high-lying bound states
near the surface behaves as n as for pure Coulomb
wave functions. Thus the square of the matrix elements
decrease as n, ensuring convergence of the summation.
In fact, most sticking will be in the lowest bound state.
Again, we have convinced ourselves that the threshold
behavior Eq. (80) of s(E) applies equally to sticking of
charged particles on 3D surfaces.

VII. CONCLUDING REMARKS

The sticking on T =0 surfaces of low-energy incident
particles is a challenging problem, both experimentally
and theoretically. The main experimental problem is that
to measure the threshold behavior of the sticking

where the constant [of dimension (length)] again depends
on the particulars of the potential. This leads to a granite
sticking coefficient at E =0,

s (E)-E
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coefficient s (E), one needs to work at extremely low tem-
peratures and energies, much lower than one would at
first expect. ' ' However, suitable particle beams are
becoming available and one may expect valuable new
data in the next few years.

The theoretical challenge is immediately signaled by
the "paradox" that in a classical treatment of the
particle-target system limz os(E)=1, while quantum
mechanically in perturbation theory limE os(E)=0 for
neutral particles and a (where 0 & a & 1) for charged par-
ticles. (The latter result is pointed out in this paper. ) A
second paradox is the fact that one can easily show that
true quantum sticking is impossible on a finite target, i.e.,
s (E)=—0, so that one needs to carefully examine the
effects of increasing target dimensions and of thermal
coupling of the target to a heat bath (at T =0). Finally
there are very interesting temperature effects, to which
we plan to return in a subsequent paper.

There are important analogies to the famous problem
of compound nucleus formation. But there is an essential
difference: the number of atoms N of the target is larger
than any other parameter of the system, i.e., the target is
effectively semi-infinite.

In this paper we have aimed at clarifying the nature of
the threshold sticking both analytically and conceptually
by means of an exactly solvable one-dimensional model,
shown in Fig. 1. The essential approximation is the trun-
cation of the Hilbert space, admitting only states with
zero phonons or with one phonon in any one of the target
normal modes. There is no limitation on the strength of
the particle-phonon coupling. We believe that for T =0,
our model contains all the essential elements of physical
sticking of particles on surfaces.

For a finite number of target atoms N we find no true
sticking but only very particular dense resonances, whose
spacing and widths both scale as N '. Their physical
meaning becomes clear in the time domain when one con-
siders the evolution of an incident particle wave packet
(see Appendix E). One finds a finite probability for
prompt particle reflection, which, as N —+ ~, becomes
[1—s(E)]. This is followed by finite particle ejection
probabilities at times n~t, (n=-1, 2, . .. ), where rp a-
kind of Poincare recursion time —is the time it takes for
a phonon, originally created on first impact, to traverse
the sample once to the back and once again from the
back to the front, when it can eject the temporarily
trapped particle with a certain probability, or be reflected
back once more. v p =2L /vg, where L is the target thick-
ness and v the phonon group velocity. n =2,3, . .. corre-
sponds to multiple double traversals of the sample fol-
lowed by particle ejections. As N and L ~ 00, the sum of
these more and more delayed ejection probabilities be-
come the sticking probability s (E).

In relating quantum sticking to classical sticking we
want to point out t~o quite distinct quantum effects.

(l) A Debye Wailer typ-e effect -In quantum .mechanics
there is a finite probability (even as N~ oo) that no lat-
tice vibrations are excited and hence the particle is
reflected. Thus under all circumstances s(E) &1. By
contrast, classically, in the case of an attractive particle-

target interaction, a finite amount of impact energy is
delivered to the target, even when E~0, because of the
particle's acceleration by the interaction potential. When
N~ao, some of this energy disappears to z= —00. Thus
for E sufficiently small, E &E;„,the particle cannot es-
cape and s (E)= 1.

(2) Quantum reflection. We consider first the particle
striking a rigid target in the classical regime. The parti-
cle coming in with a low velocity, —v „,spends a time of
the order t„,-2z 0/u in the interaction region, where zo
is the range of interaction and v is a mean speed in the in-
teraction region. As v„~0, v approaches a finite limit
and the ratio of the time spent by the particle in the in-
teraction region to the time spent in a spatial interval zp
outside the interaction region is

' 1/2t..s E
E

P;

P„ (84)
Zp

where E—
—,'mv is a typical kinetic energy in the interac-

tion region, when v„—+0.
Now we consider the problem quantum mechanically

for small incident energy. In the rigid target potential,
assumed sufficiently short range, the particle is described
by a standing wave 4(z, k), with the properties

4(z, k) =JV&2/n sin( kz +5'), z ~~ .

4(z, k )-JV( kzo )f(z), z —+0
(85)

where A is an (irrelevant) normalization factor, 5' is a
phase shift, and f (z) becomes independent of k for small
k and is of order 1. (This is well known from so-called
effective range theory and can easily be checked for a
square-well interaction potential backed by an infinite
wall. ) Thus the ratio of the probability of finding the par-
ticle in the interaction region to the probability of finding
it in an asymptotic interval of length zp is

zo
p. I [(kzo)f (z)] dz 2mzo2

A 'z2= EP„ p (86)
ZQ

1 Z

exp +i k(z')dz' z zok' (z)
(87)

Note the power of E' compared to the classical resultE': as E~0 the quantum particle spends less time in
the interaction region than the classical particle, by a
power E' . This is the so-called quantum reflection. We
can also note that for unit incident current, the probabili-
ty of a quantum particle being in the interaction region is-E' . This is the physical origin of the sticking thresh-
old behavior, s (E)-E'~ .

In the foregoing, we have assumed a "sufficiently short
range" interaction potential. Suppose now that asymp-
totically the interaction potential U(z)- —C, /z. Then
one finds that for all E~O, there is a point zp 1/C&,
beyond which the essential characteristics of the wave
functions are correctly given by the WKB solutions,
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where

$ 2

k (z)=E-
2m

Thus

C1
(88}

through by P;(z) and integrating from z = —oo to zo, we
obtain

f dz $,*(z) P;(z)= —(k —co;)f dz~P, (z)i
dz oo

Iq(z, ) I'

~
ql( a& ) ~' k (z )

(89)

For small k, one matches to zero-energy solutions for
z (zp and finds

+ f dz U(z)~y;(z)~

Z

+ f dz P,*(z)U;(z)Q (z) .

(A4)

P;

P„

' 1/2

(90)
The right-hand side can be simplified by an integration by
parts

as in the classical case. However, due to the Debye-
Waller factor, the sticking coefficient for E~0 is not 1

but a, where 0 & a & 1.
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since P,.(
—oo ) =0. Taking the imaginary part of Eq. (A4)

and multiplying through by A/m, we obtain an expres-
sion for the net current density in each inelastic channel,
namely

APPENDIX A: CONSERVATION OF CURRENT

Zo

j;=—Im f dz P;(z) Uo;(z)$0(z) (A6)

We shall now explicitly verify total particle current
conservation for a finite "solid, " in which there is no true
sticking but only sticking resonances. In the case of a po-
tential with a finite range zo where U(z) =0 for z ~ zo, the
wave function in the elastic channel has the asymptotic
form given by Eq. (18b). The net particle current density
in this channel is found from the expression

jo =—Im Po(z) ((}0(z)
d

Z =Z
0

where zp is in the asymptotic region. Substituting Eq.
(18b) into Eq. (Al), we find that the particle current den-

sity in the elastic channel is

(A2)

The summation of net current densities over all inelastic
channels is

N zo N

g j;=—Im f dz $0(z) g P;(z)UO;(z)
i=1

(A7)

From the complex conjugate of Eq. (29a),

y y;(z) U„(z)=,y'(z)+k'yo'(z) U(z)y'(z) .—
dz

N

g j;=0.
i=0

(A9)

(A8)

Combining Eq. (A7) with Eq. (A8) and integrating by
parts gives the desired result that

The net current density for the ith channel can be
found similarly from

j;=—Im P;(z) Q, (z)
d

m ' dz Z =Z0

(A3}

j,- vanishes for closed channels and may be nonzero for
open ones.

We shall now verify that the sum of the net current
densities over all channels is zero. Multiplying Eq. (29b)

I

APPENDIX B: INELASTIC AND ADSORPTION
CURRENT DENSITIES

From the effective single-particle equation for the elas-

tic channel given in Eq. (35), the total inelastic current
can be written in terms of U „. We multiply Eq. (35)
through by $0(z), and we integrate over z from z = —co

to zo, giving

Z 2 Z Z Z

f dz $0 (z), Po(z) = k' f dz—~Po(z) ~'+ f dz U(z) ~$0(z) ~' —f dz' f dz Po(z)U„, (z,z')Po(z')

z

+ g f dzA, . U, (z)P*(z)4„(z) .
i=1

(Bl)

&f we perform an integration by parts of the right-hand side and take the imaginary part, we identify the right-hand side
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as being proportional to jo, since $0( —oo ) =0. By conservation of current density, jo= —g;,j;. Hence,

N g zo N zo

g j;=—f dz'f dz 1m[go(z)U &(z,z')&0(z')] ——Im g f dzA Uo;(z)&0(z)@b{z) .
m i=1

(B2)

Since U and U' are zero for z & zo, we can extend the in-
tegration range to infinity. Equation (B2) can thus be
rewritten as

I

satisfied by the addition of an infinitesimal positive imagi-
nary part i', (ri, ~0). The Green's function is thus writ-
ten generally

N

g Jl =J inel +Ja

where

(B3)
@b(z)@b(z},4(z, k')4(z', k')

G;(z,z') =
z

+ dk'
+k2 0 k2 —. —k 2+~~1

(Cl)

fi 00 1
j;„,~ =——g dk'Im

k —k +co; —iri&

X f dz $0(z;k) Uo;(z)4(z, k')

and

(B4)

The solution now proceeds exactly as in the case below
inelastic threshold. A single equation of the entrance
channel wave function is found to be of the same form as
Eq. (35), where U „is given by

U»&(z, z', k)= U»i(z, z', k)+ U', &(z,z', k), (C2)

U901 (z,z; k )

ja=
k ~e

Im
k co;+eb

Uo;(z }4(z,k')4(z', k') Uo;(z')
dk'

t

00 2
X f dz $0(z) Uo;(z)4b(z) (B5)

U 1(z,z';k )

(C3)

j, is zero for finite N as the bracketed term in Eq. (B5) is
purely real. However, in the continuum limit, Eq. (85) is
replaced by

Uo;(z)4(z, k')4(z', k') Uo;(z')
dk'

k —k +co,k & co,.

p(c0)cos q (co)a
2

X f" dz P (z)U'(z)4 (z)

2R
dco Im

M (k +eb co+iri—2)a)
The channel amplitudes are defined by

fdz'4b(z'}Uo;(z')$0(z') .
Eb +k —

COi

(C4)

M I &&OIU'l@b & I'llm&(k)l, (B6)

where the insertion of g2 follows from the arguments
preceding Eq. (51) and is used in the sense that riz —+0.
We now recognize that j, is equal in magnitude to the
transition rate R to the bound state 4b resulting from
Eq. (62). Thus j, in Eq. (B6) is interpreted as the adsorp-
tion current density resulting from transitions to the
bound state, while j;„,1 is interpreted as the inelastic
current density.

Po(z) =f(k, z) —So(k)f( —k, z)
N

+f dz'Q(z, z';k) g A;Uo, (z')4»(z') . (C6)

Upp1 is an "optical potential" which now has an imagi-
nary part.

The single-particle equation (35} and appropriate
boundary conditions can be replaced by the integral
equation

APPENDIX C: INCLUSION OF INELASTIC PROCESSES

We can generalize the (N+1}-state solution to situa-
tions where the incident energy is above the inelastic
threshold (k )co, ). The formal expression for the open
inelastic channel wave functions is identical to that found
in Eq. (29); however, the Green's function for open inelas-
tic channels differs from that found for the closed chan-
nels in Eq. (32). The boundary condition of asymptotical-
ly outgoing waves for the open inelastic channels is

0 is the Green's function satisfying

2
+k —U(z) Q(z, z';k)

dz

+fdz" U „(z,z",'k}Q(z",z', k}=5(z—z') (C7)

with the boundary conditions that 0( —ce,z') =0 and 9 is
asymptotically outgoing only. f (+k, z) are Jost func-
tions which are linearly independent solutions of Eq.
(22)
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d2
+k —U(z} f(+k, z)

dz2

+f dz' Up, &(z,z', k)f (+k,z') =0, (C8)

thatsubject to the asymptotic
f (+k,z)~e+'"'as z~ ao.

The Green's function 0 can also be written in terms of
Jost functions

f (
—k, z)f (k,z') —So(k)f ( —k, z)f (

—k, z'}, z ~z'
Q(z, z'; k) = f ( —k, z')f(k, z) —So(k)f ( —k,z)f (

—k, z'), z ~z'

where So is defined

So(k) = lim f (k, z)
z-o —k, z

The asymptotic form of $0(z) is

$0(z)—+e '"'—Re'"',

where, by Eq. (C6), R is given by

N

R =So — . g A, J dz'4z(z')Uo;(z')[f (k, z') Sof( ——k, z')] .
2ik

(C9)

(C10)

(Cl 1)

(C12)

Substituting the expression of $0 in Eq. (C6) into Eq. (C5) gives a matrix equation for A of the same form as Eq. (38),
where P is now

P(k)=&2m jM Idz'4b(z') U'(z')[f (k, z') —Sof( k, z')] . — (C13)

The solution of this matrix equation is given in Eq. (47). Substituting this result into Eq. (C12) yields a simple expres-
sion for the reflection coefficient R,

where

1 —J(k)I(k, N)
1 —W(k)I(k, N)

(C14)

J(k)=2 f dz'dz "4b(z') U'(z')h (z', z";k)U'(z" )4b(z") (C15)

and

(C16)
f (k,z)f (

—k, z') —Sc '(k)f (k,z)f (k,z'), z &z'
h 'k=—

2ik f (k, z')f ( —k, z) —So '(k)f (k,z)f (k, z'), z z' .

For a finite N, and below threshold (k & co, ), both factors in Eq. (C14) have magnitude unity, leading to complete
elastic reflection. Above threshold (k & co, ), we shall show that the first factor ~SO~ becomes less than unity due to in-

elastic scattering and the second factor also is no longer of unit magnitude as the numerator di6'ers from the complex
conjugate of the denominator.

We define the combination y(z, k)

g( kz) =f (k, z}—Sof ( —k, z)

which occurs in Eq. (C12) for R and

yg (z, k ) =— 2i v'm/2e —'4(z, .k ) .

This y(z, k) satisfies the boundary conditions

g( —~,k)=0,
y(z, k)=e '"'—Soe'"', z~ oo .

p also satisfies Eq. (C8) which can be placed in Lippmann-Schwinger form

g(z, k) =yz (z, k)+ J dz'dz "Go(z,z', k ) U,&(z',z";k )g(z",k),

where

(C17}

(C18}

(C19)

(C20)
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b z b z
+ y ~dk, 4(z, k')4(z', k')

k'+
b o k' —k'+ig,

Equation (C20) requires that So satisfy the self-consistent relation

(C21)

So=e ' 1+ v'—n l2e ' Jdz'dz"4(z', k}U &(z', z";k}[f(k,z"}—Sof ( —k,z")] (C22)

where 50 is the phase shift associated with U, and the following asymptotic form of Go was used:

1 i50
Go(z, z')= ——v'n/2e 4(z', k)e'"', z~ao . (C23)

This results in

2i 50So=e
I+—v m/2e 'f dz'dz "4(z', k)U~)(z', z";k)f (k,z")

1+ v—m/2e 'f dz'dz"4(z', k)U, t(z', z",k)f( —k,z"}

(C24)

Below threshold (k & co, ), U „is a real potential, and
from Eq. (CS) we see that f'(k, z)=f( —k, z) for real k.
The numerator of the bracketed term in Eq. (C24) is the
complex conjugate of the denominator so that ~SO~=I.
From Eqs. (23) and (C16}, h (z,z')=9'(z, z'); and from
Eqs. (40) and (C15), W'(k) =J(k). Hence the second fac-
tor in Eq. (C14) also has magnitude unity. Thus ~R ~

= 1.
Above the inelastic threshold (k & co, ), because of the

imaginary part of U „,we can see from Eq. (C24) that
the denominator is no longer the complex conjugate of
the numerator, so that ~SO~%1. Furthermore, since
ImU~, &0 [Eq. (C3)], describing loss of particles from
the elastic channel, ~SO~ & 1. Also in this case, from Eqs.
(23) and (C16), h (z,z')AQ'(z, z') so that from Eqs. (40)
and (C15), W'(k)AJ(k). Thus the previous argument
for k & co„ leading to complete elastic scattering
(~R~ =1), no longer applies. In fact, we know from uni-
tarity that when there is inelastic scattering, ~R

~
& l.

For finite N, R(k) is a rapidly varying, real, nearly
periodic function of k, with slowly varying period due to
the singularities of I(k,N) [Eq. (46)]. No real adsorption
is possible. When we introduce a finite but small phonon
lifetime and pass to the continuum limit, N~ oo, S(k)
becomes a smooth but complex function of k, reflecting
adsorption processes.

P„(z)~Qk/k„Sc„e ", z~ ~ (Dl)

, 4(z, k')4(z', k')
G„z,z' —+

k„—k +i'
(D2)

The eigenfunctions 4(z, k) are real for real k, behaving as
4(z, k)~v'2/n. sin(kz+50) as z~ ~. We can rewrite 4
as a sum of two linearly dependent eigenfunctions
H"-'(z, k),

d +k —U(z) H'*'(z, k) =0,
dz2

(D3)

which behaves asymptotically
ki (kz +50)~&2/m e ', as z ~~. Hence

as H'*'(z, k)

where k„=k —co„. This will serve as the definition of
So„. Using the exact expressions for the open-channel
wave functions, the asymptotic limits can be taken and
the elements of the S matrix can be identified.

The asymptotic form of the Green's function for the
nth channel can be obtained from Eq. (Cl). Since 4b de-

cays as exp( —Qebz), the first term can be neglected
asymptotically, leaving

APPENDIX D: STICKING IN THE PRESENCE
OF OTHER INELASTIC PROCESSES

e(z, k)= —[H'+'(z, k) —H' '(z, k)] .
2l

(D4)

The asymptotic form of the open-channel wave func-
tions is given by

The asymptotic form of G„can be expressed in terms
of H'*'

, H'+'(z, k'}H'+'(z', k') —H' '(z, k'}H'+'(z', k')
G„(z,z') ~—

—,
' dk'

oo k2 —k 2+i'
H'+ '(z, k ')H' '(z'—, k')+ H' '(z, k')H' '(z', k')

oo k„—k +ig
The above integration can be performed in the complex plane using contour integration. Thus,

(D5)
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G„(z,z') ~ I
H'+'(z, k„)[H'+'(z', k„) H—' '(z', k„)]+H' '(z, —k„)[H' '(z', —k„) H—'+ '(z', —k„)]]

n

]. i 50 ikz—+ —v'm/2 e 'e "4(z',k„) .
n

(D6)

We see that 6„ is asymptotically outgoing.
Substituting the above form for 6„ into Eq. (30) yields

the asymptotic form for the open-channel wave functions

p„(z) — v'm/2e (4k IU „Ipp)e ", z
n

(D7)

A comparison of this asymptotic expression with Eq.
(Dl) gives an expression for the S-matrix elements for
open channels

(, )
M 1 IP(k)l
2m k ll —W(k)S(k)'

Substituting Eq. (D15) into Eq. (D13) yields

1 II (k)l'lime(k)l

For kz (tp„ the above result reduces to Eq. (55).

(D15)

(D16)

Using Eqs. (D14) and (C13), the matrix element
I (/pl U'l@b ) I can be simplified to

S „= 7r/2 (4„ IU „IP )e'
kk„

(D8) APPENDIX E: TIME ANALYSIS
OF A SCATTERED WAVE PACKET

We will define r such that

No

r= g Is,„l',
n=1

(D9)

where No is the number of open channels. With the
above form for So„,we find that

In this appendix we consider how the rapid variation
of R with k for finite N affects an incident wave packet.
This incident wave packet is written in the standard way
as a superposition of plane waves,

(z t)= f de A (e)e (El)

No

n=1 n

0

f dk'Imk„, 0

1

kn
—k +~g

where we take A (e) to be a broad envelope function
peaked at ep with a width of b,ep [Energ. y is scaled as be-
fore with e=(2m/fi )E, and time is scaled as
t=(A'/2m)T, where Tis time. ]

The reflected wave is given by

it)+(z, t)= f de A (e)R(e)e' (E2)

I Jine) I

Ak

x I & e„ I U,„Iy, ) I'

(D10)

where (z I@k ) denotes 4(z, k„); r is the total probability
n

of inelastic scattering. Additionally it is seen from Eqs.
(B6) and (62) that

P+(z, t) =it), (z, t)+it), (z, t), (E3)

where R (e) is the reflection coefficient whose exact form
is given in Eq. (48).

We choose b,ep((ep, b„where b, is the width of the
phonon spectrum; but also b,eo))b/N, the spacing of
phonon modes at to =ep+ et, . We can rewrite the Eq. (E2)
as the sum of two terms

Ij.I

s = lim
~ trtk/m

(D 1 I)
where

fd A( )
ls( )ei( eez —e ) (E4)

and thus in the continuum limit

r+F+s =1, (D12)
itp2(z, t)= f de A(e)e ' 'iR)( e)e"

where r = IR I is the elastic reflection coefficient.
Combining Eqs. (B6) and (Dll) we derive an expres-

sion for s for k & co„

and

2iI (e,N)lm W(e)R e)=
1 —W(e)I (e,N)

(E6)

s(k)= l&yplU'IC, ) I'llmS(k)l .
M

From Eq. (C6) we see that Pp can be written as

(D13)
The width A co of the envelope is taken to be

sufficiently narrow such that 5(e) ( —v e for small e)
changes little over b, ep In this case, 5(e) m. ay be approxi-
mated as 5(ep), and Eq. (E4) becomes

P, (z, t)= f de A(e)e' (E7)

X f" dz'Q(z, z', k) U'(z')4&(z') .

(D14)

where

Zil( eo)A(e)—:A(e)e
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P2 differs from P, by the additional factor in the in-

tegrand of R (e), which for large N is a rapidly oscillating,
nearly periodic function of e. R(e) depends upon two
functions: W(e) and I(e,N). Since 5(e} changes little
over b,eo W( e), defined in Eq. (40), is also approximately
constant over the interval hap,

I(e,N)=Ii(e, N)+I2(e, N),

where

(E10)

oscillations in R (e), due to the poles at @=co; —
eb

We can separate I into a term with simple poles in e,
and a smooth function of e,

W(e) = W(eo)

= 8'1 —i 8'2, (E9)

q(E+Eb )a
cos

1Ii(e, N) =— (El 1}

where 8'1 and 8'2 are real.
I(e,N) [Eq. (46)], however, is responsible for the rapid

I

and

q„a
cos

N

I2(e, N) =—g
n=1 COn

q(e+eh)a
cos

6+E'b E'+6b COn

(E12)

q(@0+eh }a
cos

1I)(e,N) =— N

n =1 ~+&b

(E13)

Over the narrow energy interval hap of the wave pack-
et, I1 can be simplified to

0 1
S,(e,N}=-

" e+s — a) +(n n)——
b no N

The smooth function I2(e,N) tends to a well-defined lirn-

it, I2(e},as N~ ~.
For e in the interval heo, the sum in Eq. (E13) can be

written as

00

=—XN„,
6'+ 6b con +n

0

N

S(e,N) =—g 6+Eh N

=—cot
Nm(e+eb —co„}

(E17)

where

=S&(e,N)+Sz(e, N), (E14)
where

2M m

N s A' Na
(E18}

and

0

S)(e,N)—=-
n=n —n b n

E'+ E' co
0

(E15)

and v~ is the phonon group velocity ' at co„.
0

For s limited to b, so, the summand in Eq. (16} is a
smooth function of co„', furthermore, the excluded inter-
val is symmetric about n =n p for @=gap, and the e depen-
dence of Sz is negligible in hE'p. Thus we can write

S2(e,N ) =Sz(so, N)

S2(e,N)=-
N „,@+gab

—co„
=Pf dc' p(co)

~c 6'P+ 6'b CO

(E19)

N
+ 1 1

N —e+eb co
0

(E16) where p(co) is the phonon density of states per atom [Eq.
(53)].

We call

where np labels the frequency, co„,nearest to ep+eb, and
0

n is chosen such that co +
—m &&Amp, the width ofno+ n no —n

the wave packet and 5&p((co co the width of the
phonon spectrum. The choice of
n =N [Ecol(co —co, ) ]' satisfies these conditions.

Since the sum in Eq. (E15}is limited to a small fraction
of the width of the phonon spectrum, we can write

q (e+Eb ) =q (Ep+Eb ) q(co )—:qo

Then we can write I(e,N) in the compact form

Nm ( e+ eb
—co„)

I(e,N) =Iocot +C,

where

(E20)

(E21)
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and

Ip—=

qpa
7T COS

Nn
0

q„a
cos

n=1

1

E'p+ 6b —N

g(co+eh )0
Cos

2

6'P+ Eb

(E22)

e+ eb —
Nn = tan

WpIp

1 —8"pC
(E25)

We then write them in the form

With the above form for I (e,N) and Eq. (E9), R (e) is a
periodic function of e over the interval hap. We Fourier
analyze R

R(r)= f deR(e)e (E24)

R(e) has N poles in the complex e plane. The poles are
determined by the equation

qpa
cos

1 . Ie„=@+—n 6—i—
N 2

(E26)

Nn
0

Pf dc' p(co)
Nn N

(E23) The integral of Eq. (E24) can be done by contour integra-
tion, giving

4miIo I';-„.rh(N + 1)
2 exp ~ e expR(r)= (1—WoC)2 2N 2N

0, «0

2~N
5~ r n—

00 (E27)

where

2nN b 2
N

sin

(E28)

and approaches a train of normalized 5 functions,

2mN

n = —oo

asN —+~ .

Pz can be subsequently rewritten

4W2I p
Pz(z, t)= — de A(e)e'

(1—WQC) 0

2 0 inn[(~/g)e —(~+ ] ) l
—n~ p/g) — i [ ez —e(t —

~p ) lg e'" ' e " de A(e)e
(1—WoC)

(E29)

The time dependence of Pz is seen in Eq. (E29). Pz is
an infinite sum of wave packets; each successive wave
packet is delayed by a time rp (a "Poincare recursion
time") corresponding to the time it takes a phonon to
travel the length of the chain and return, with velocity vg,

tion for large z. WKB's validity condition is

dk(z) «k (z),
dz

where

(F1)

2Na
7

vg

(E30) Cp
k (z)—:k +U(z)=k +, P=l or 3. (F2)

The amplitude of the nth delayed wave packet is dimin-
ished by a factor e This leads to

APPENDIX F: WKB ANALYSIS
OF LONG-RANGE INTERACTIONS

The difference between the z and z ' cases can be
understood from consideration of the WKB approxima-

p
t 3/2

p+1 k 2+ Cp

zp

(F3)
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Clearly, for fixed k this will be satisfied for suf6ciently
large z. To find out where the inequality breaks down, re-
place it by an equality and solve for z =z (k) for small k.

This gives, for P= 1

solution for z &z** for all k, no matter how small, corre-
sponds to the absence of quantum reflection beyond z**.

On the other hand, for p=3, the condition (F4} is re-
placed by

Ci
3/2 =1

Ci2[z*(k)]' k2+

so that

(F4)
3C3

2[z'(k)] k + C3

[z'(k)]

(F6)

and

z (0)= 1

1

z'(k) &z'(0) . (F5)

giving

z'(k)=
1/4

3C3 3/4

2
k (F7)

Thus the WKB approximation is valid for all k for
z &z*', where z **is a k-independent value much greater
than z'(0). The low-energy wave functions can then be
obtained by matching the WKB solution for z &z** to
the k =0 exact solution for z ~z'*. This leads to the re-
sult of Eq. (82}. The validity of the semiclassical WKB

Therefore, as k~0, z'(k)~ ac, and quantum reflection
takes place at + ac. (A little reflection shows that for a
square well, quantum reflection occurs for z'*-yk
with y «1.) It is easily verified that for long-range po-
tentials of the form U"(z)—Ctt/z~, quantum reflection
occurs3 as soon as P & 2.
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