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Mechanism of electron-spin resonance studied with use of scanning tunneling microscopy
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The observation of the precession frequencies of individual paramagnetic spins with use of scanning
tunneling microscopy is explained here by a spin-orbit-coupling mechanism. Excitation of the paramag-
netic dangling bond into a superposition of states will lead to charge-density oscillations, which add a
time-dependent term to the tunneling barrier. The nonlinear dependence of the tunneling current on the
barrier shape will give rise to a Larmor frequency component in the tunneling current. It is shown how
the signal should be affected by different parameters, such as the relative orientations between the tun-

neling electrons and the dangling bond or the initial spin excitation. Possibilities that will be opened
with this technique, as well as the questions that will have to be resolved, are discussed.

I. INTRODUCTION

The field of surface science has experienced a revolu-
tion in the past ten years with the invention of the scan-
ning tunneling microscope (STM).' The STM is capable
of imaging conducting surfaces, either semiconductors
or metals. It was found to be very useful in exploring a
wide variety of systems. Examples are determination of
the surface structure, observation of vacancies and
steps, ' determination of the structure of molecules ad-
sorbed on surfaces, observation of local changes in both
geometric and electronic structure as a result of a chemi-
cal reaction, study of nucleation and growth processes,
and real-time imagine of dynamical processes such as rni-
gration of steps. While most of the STM experiments are
carried out under UHV (ultrahigh vacuum) conditions,
atomic resolution was observed also in air' and under
various liquids. " The technique was successfully operat-
ed in a wide temperature range: from liquid-helium tem-
perature' to 900'C.

While most of the earlier studies have concentrated on
topographic imaging of surfaces, it was realized later that
the STM can be very useful in studying local physical
phenomena. Such physical phenomena can either be
used as a local probe to control the position of the tip (in-
stead of the tunneling current) or can be measured simul-
taneously with it. Examples are photon emission, ' po-
tentiometry, ' conductivity, ' atomic forces, ' capaci-
tance, ' and temperature. ' An example which is
relevant to this publication is the observation of the pre-
cession frequencies of individual paramagnetic spins-
with the STM. '

Because of its local character, the STM should be sen-
sitive to any local perturbation which is close enough to
the tunneling region to affect the tunneling probability.
As will be explained here, such a perturbation could be
caused by an electron spin at a surface, when an external
static magnetic field is present. Our work showed that
indeed a paramagnetic spin is capable of modulating the
tunneling current by inducing a time-dependent periodic
perturbation on the tunneling electrons, resulting in a lo-
cal rf signal at the Larmor frequency, when the tunneling

region was close to the spin center. The magnetic field
was chosen to be small enough such that the observed
signals were still in the rf regime. The rf signal was
amplified by a rf amplifier and was detected at a frequen-
cy which is (within experimental error) the Larmor fre-
quency. The frequency was proportional to the magnetic
field and the observed signals were correlated with a la-
teral position of the tip above the surface and were re-
stricted to regions of approximately 15 A in diameter. A
similar rf signal was observed also in our laboratory in Is-
rael in preliminary measurements on the same system.

Recently, rf tunneling current was observed from spin
centers which are large free radical molecules. [a,y-
bis(diphenylene)-P-phenylally (BDPA)]. The rf current
intensity observed in this experiment was much weaker
than in the first one. As a result, magnetic-field modula-
tions and lock-in detection techniques were employed in
order to make the rf signal detectable.

The first experiment was carried out on a SI(111)7X7
surface which was thermally oxidizing. Such a treatment
gives a Si-Si02 interface which has a large number of spin
centers. These spin centers are present (in smaller num-
bers) in the Si-SiOz interface of native silicon oxide layers,
and give rise to several localized states within the silicon
band gap. These interface states are a source of many
problems in the metal-oxide-semiconductor (MOS) tech-
nology. One of the most important spin centers in this
group is the Pb center, which was investigated by conven-
tional ESR spectroscopy. ' The first ESR-STM experi-
ment was done on these spin centers, since they show a
detectable ESR signal at room temperature and since sil-
icon surfaces are convenient to study with the STM.

According to macroscopic ESR studies, the Pb spin
center exhibits C3, symmetry, where the symmetry axis is
perpendicular to the (111)Si-Si02 interface. Using very
sensitive ESR techniques, it was possible to observe the
hyperfine spectrum associated with spin centers in which
the central silicon atom was a low natural abundant Si
isotope. The size of the hyperfine coupling constant indi-
cated that 80% of the unpaired spin density is localized
on the central-trivalent bonded silicon atom, and that the
hybrid orbital on this silicon atom is 12% s-like and 88%
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p(111)-like. As a result it was concluded that the spin
center is a trivalent silicon atom located at the Si-Si02 in-

terface and that the unpaired electrons are localized in a
~
SP )-like hybrid orbitals (Fig. 1)

II. MODEL OF THE SPIN CENTER 8x
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In modeling the spin center we make the crude approx-
imation of looking at a defect "molecule" and ignoring
the overlap with the bulk solid. We start by writing the
Hamiltonian of the system: electronic plus spin and di-
agonalizing it. The model spin center is an isolated sil-
icon atom in the Si-Si02 interface. In a bulk silicon crys-
tal the symmetry of the atom is tetrahedral. As a result
the eigenfunctions which describe the system are the four
hybridized lSP ) orbitals that will be denoted by lSP, ),
i =0, 1,2, 3. The coordinate system is chosen such that
the lSPO) orbitals is in the [111]direction. In these or-
bitals seven electrons are filled. The singly occupied or-
bital of the spin center is higher in energy than the dou-
bly occupied orbitals pointing to the bulk. The energy
difference is h. The ground-state configuration of the
radical "molecule" is such that one electron is in the

lSPO) orbital and six in the others. This state is doubly
degenerate (Kramers degeneracy). The excited-state
configuration will be sixfold degenerate (Fig. 2). This sys-
tem is entirely equivalent to having one electron in the
lSPO) orbital. Therefore a single-electron problem can
be solved.

The tetrahedral symmetry of the spin center is broken;
therefore, a more accurate treatment of the orbital eigen-
functions has to take into consideration some mixing be-
tween the ~SP ) orbitals. The result will be that the or-
bital of the paramagnetic electron will have a larger lP, )
component. This is supported, as was mentioned before,
by ESR spectroscopy. This correction, however, will not
change the basic predictions of the model and will not be
included.

Since the system can be treated as a single-electron
problem, the functions lSPoa), ~SPOP), . . . , ~SP3P) are
chosen as a basis for the Hamiltonian. Without any mix-

ing interactions these are the eigenfunctions of the sys-
tern. This is no longer the case after the spin-orbit cou-
pling introduces off-diagonal elements between these
states. The matrix elements of the Hamiltonian were cal-
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Q silicon
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FIG. 1. The Pb center —the unpaired electron is localized in

a dangling hybrid bond on a silicon atom which is covalently
bonded to the three lower silicon atoms. This center exists
where an oxygen atom is not bonded to the surface crystalline
silicon atom.
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FIG. 2. A scheme of the electronic energy levels as split by
the molecular interactions {6),the spin-orbit coupling, and the
magnetic field.

culated by applying the operator gL S on the lSP3) or-
bitals (Appendix Aj. g is the spin-orbit coupling con-
stant. L and S are the orbital and the spin angular mo-
menta. The spin-orbit coupling splits the sixfold degen-
erate level into threefold degenerate levels with splittings
given by 5, , i =1,2, 3 giving four doubly degenerate Kra-
mers doublets (Fig. 2).

Applying an external magnetic field will add an addi-
tional term to the Hamiltonian. This Zeeman term will
act as a small perturbation which will remove the degen-
eracy between all the Kramers doublets. The matrix ele-
ments of the Zeeman term &z„,„=ps(L+g,S) H (ps
is the Bohr magneton and H is the magnetic field) in the
basis lSPoa), . . . , ~SP3P) were calculated (Appendix
A).

The Zeeman splittings which were introduced by the
magnetic field will be denoted by gap&H, g & p&H, g2p&H,
and g3p&H (Fig. 2). goIJsH is the ground-state Zeeman
transition which is normally observed with ESR spectros-
copy.

In order to calculate the eigenenergies of this system,
perturbation theory can be applied. The advantage of the
perturbative solution is that analytical expressions can be
developed and give a better physical insight to the result.
Here, the perturbation treatment can be applied twice:
first, since g «b, and second since g@AH «g (Appendix
B). In addition, numerical diagonalization of the Hamil-
tonian gives a more accurate (but numerical) solution.
The elements of this Hamiltonian are given in Appendix
A. The numerical solution is used in the calculations
which are reported here.

The splittings of the ground-state Zeernan transition
(E2 —E, ) is found as expected to be dependent on the
orientation of the magnetic field. The perturbative solu-

tion shows that when the magnetic field is parallel to the
dangling bond (H =H =H, =H/&3), g=g, . When

the field is parallel to the x, y, or z axes, g=g, +g/b, .
When the field is parallel to the other ~SP3) orbitals,

go =g, +4('/3b, . As usual, the anisotropy of the g tensor
reflects the symmetry of the spin center. Since the size of
the g anisotropy can be estimated from experimental
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measurements of the ESR spectra, g/b could be evalu-
ated to be 0.01. '

The splittings of the excited Kramers doublets
(E4 E—3, E6 E—5, and Es E—7) are much more aniso-
tropic than the ground-state one. This is a manifestation
of the interplay between the spin-orbit coupling and the
electrostatic or chemical interactions which causes the re-
moval of the degeneracy (b). Removal of the degeneracy
between states which have the same quantum number of
the orbital angular momentum results in quenching of
the orbital angular momentum. The spin-orbit coupling
restores some of the quenched momentum. The fraction
of the restored orbital angular momentum will be g/b, .
As a result the ground-state Zeeman transition has a
small anisotropic contribution of the orbital angular
momentum. The Zeeman transitions in the excited elec-
tronic states (girja» g2pttH, and g3JfcBH) are possessing
full orbital angular momentum (and large anisotropy),
since no electrostatic or chemical interaction (at least we
assume so in this simplified model} is removing the six-
fold degeneracy of the excited states.

III. TIME EVOLUTION OF THE SPIN CE¹RR

This state will evolve according to the Schrodinger equa-
tion

I'P(t)) = g b;exp
iE, (t t,)— —

The most important interaction between the tunneling
electrons and the spin center is Coulombic interaction.
Exchange and correlation interactions are expected to
play a significant role at closer distances. We will initial-
ly consider the case where the tunneling is performed
directly above the spin center. En this case the Coulom-
bic interactions are not capable of breaking the symmetry
of the spin center. Such an interaction can only reduce
the size of h. Therefore, the excited state ~%(to)) was
calculated by taking a smaller value of 6 in the original
Hamiltonian. Then the Hamiltonian was diagonalized
and a set of eigenvectors ~v; ) were calculated. It should
be emphasized that the eigenvectors

~ v; ) are not eigen-

As known from inelastic tunneling spectroscopy, the
tunneling electrons are capable of exciting diferent
modes in tunneling junctions. This is true in particular in
the STM since the tunneling electrons are restricted to a
very small region. The problem of the excitation is a very
complicated one and was not completed yet. It is clear,
however, that the excitation is quite significant. Such an
excitation will lead to a superposition of eigenstates,
namely to a time-dependent behavior. The charge densi-
ty in the ~SPv ) orbitals will become time dependent. In
order to show that indeed such a time evolution should
lead to a modulation of the tunneling current at the pre-
cession frequencies, this time evolution, as given by the
Schrodinger equation, will be calculated. Any excitation
of the spin center will drive it into a superposition of
eigenstates

~%'(to)) = gb, ~u, ) where b; =(u;~% (tv)) .

vectors of the original unperturbed Hamiltonian (labeled

~ u; ) ), but are superpositions of them.
As will be shown later, the strongest time-dependent

signal is observed when the system is initially excited into
a superposition of spin states. Therefore the initial state
is taken as a superposition in which the two ground spin
states of the perturbed Hamiltonian (labeled ~v, ) ) and

~ vz ) ) are taken with equal weights, namely we start with
a complete spin superposition

As the perturbation is removed, the dynamics is calcu-
lated with the help of the eigenvectors

~ u; ) and the eigen-
values E; of the unperturbed Hamiltonian. The time evo-
lution of the charge density in the ~SPO ) orbitals

p~s~3 &(t) is calculated. The excitation will lead to a time-
0

dependent charge density which is a sum of several oscil-
lating components. The frequencies correspond to the
energy differences between the eigenstates.

Rearranging the expression for this sum of complex ex-
ponential functions results in a sum of slowly modulated
osciBating functions,

p~s+3 )(t)=ao+ g a„sin(co„t )sin(Q„ t )
0

av is the time-independent "static" part of
p~s~3 )(t), a„ is

0
the intensity of the nth oscillatory component. The size
of the difkreat a„ is dependent first of all on the spin-
orbit coupling. When this will vanish, no modulated
functions will appear. The spin-orbit coupling provides
the upper limit for the difFerent a„. The observation of a
weaker signal of BDPA (Ref. 20) relative to the Pb center
is consistent with the smaller spin-orbit coupling of car-
bon as compared with silicon. The actual size of these a„
is dependent on the process of excitation. It is important
to emphasize —and it will be shown —that such a time
evolution of p 3)(t) is observed after any excitation.

0
For example, it is observed even if it does not take place
exactly above the spin center or if the initial state is in a
pure spin state (namely the initial state is either ~v, ) or
~v, )).

p
~
s+ 3 ) ( t ) appears to be a sum of several "beat" func-

0

tions. Relevant to our case are components in which the
beat is a product of a "fast" oscillating function at a fre-
quency co„corresponding to (6+5, }/A' ("electronic" fre-
quencies) and a "slow" oscillating function at a frequency
Q„corresponding to one-half of the Zeeman transition
(goy~ /H/2A'). The frequencies Q„and co„are a result of
interference between two functions oscillating at the fre-
quencies (E,„E,)/A' and (E,„—E2)/R, where E,—and
E2 are the two ground-state Zeeman energy levels and
E,„ is an excited electronic energy level. Each excited
state should contribute one beat function with
0 =(gpss H ) /2A'. There should be six such functions.
Due to symmetry considerations only four have a
nonzero amplitude.

Figure 3 shows the intensity of one of the four com-
ponents, which has Q„=gop&H/2R, as a function of the
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FIG. 3. The amplitudes of one term (out of four) contributing
to the Zeeman frequency signal as a function of the intensity of
the excitation. This excitation intensity is changed in the calcu-
lation by changing the value of g/b, in 1 ~

u
& ) +

~ v& ) ) /&2:
g/6=1 (curve 1), g/b, =0.5 (curve 2), g/5=0. 1 (curve 3),
g/b, =0.04 (curve 4), and g/6 =0.01 (lower curve).

size of electrostatic perturbations [by changing the size of
b in ( ~v& ) + ~v2 ) )/&2] and as a function of the direction
of the magnetic field. When the magnetic field is parallel
to the ~SPo ) orbital, and no symmetry breaking is intro-
duced, the amplitude is zero. This can be associated with
the absence of precessing orbital angular momentum
when the field is in this direction (go =g, in conventional
ESR spectroscopy in this case). The other three com-
ponents have a similar but not identical behavior.

The case discussed above, in which the tunneling
occurs directly above the spin center, is a very special
case. It is more realistic to assume that the electrostatic
interactions will break the symmetry of the spin center.
Figure 4 shows that when this is the case, a small devia-
tion from symmetric excitation gives a significantly
different and larger oscillatory component. Our calcula-
tions indicate that a nonsymmetric perturbation can
create a more pronounced excitation than a symmetric
one. In this case, the amplitude will be nonzero, even if
the magnetic field is parallel to the dangling bond.

An additional important question is whether the sys-
tem has to be with an initial spin superposition in order
to give a nonzero oscillatory function with
Q„=gop~H/2' (i.e., whether a superposition of ~v, )
and

~ v2 ) is required). At the moment we assume that the
system is present initially in this superposition of spin
states. Nevertheless, excitation into a superposition of
spin states by the tunneling electrons is a possibility
which must also be taken into account. Our calculations
show that the size of the initial spin superposition has a
very important e8'ect. In the case of a weak electrostatic
perturbation, if the initial state is not spin polarized
[~%'(t&&)) =~v, ), for example] than the intensity of the
calculated oscillating component is zero. When a
stronger electrostatic perturbation is applied on the sys-
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FIG. 4. The amplitudes of the Zeeman term (same as in Fig.
3) when the excitation is not "symmetric. " Curve a is the same
as curve 1 in Fig. 3 ("symmetric" excitation). In curve b, in ad-
dition to taking (/b, = 1, the energy of levels 7 and 8 is lifted by
g/4 in the excited state. In curve c the energy is lifted by g.
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FIG. 5. The amplitudes of one term (out of four) contributing

to the Zeeman frequency signal as a function of the size of the
initial spin superposition. The amplitudes are shown for
difFerent coefficients of the initial state c, ~v, )+cz~vz): c, =1
(curve 1), cl =3e2 (curve 2) cl =c2 (curve 3), c2=3cl (curve 4),
and c2 = 1 (curve 5).

tern this is no longer the case, but still, even in such cases,
the initial spin superposition has a significant affect on
the intensity of the calculated oscillating components
(Fig. 5).

To summarize, any excitation will drive the system
into a superposition of states. This leads to a time evolu-
tion which is modulated by the Larmor frequency. In the
following it will be shown how the nonlinear characteris-
tics of the STM leads to a direct observation of the Lar-
mor frequency.
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IV. OBSERVATION OF A LARMOR FREQUENCY
COMPONENT AT THE TUNNELING CURRENT

As was shown above, any excitation is capable of lead-
ing to time-dependent charge-density oscillations in the
paramagnetic dangling bond. In a close proximity to the
spin center, the tunneling process will be affected by these
oscillations. This can be attributed to several mecha-
nisms. First, the Coulombic interaction between the os-
cillating charge density and the tunneling electrons will
add a time-dependent term to the static potential energy
Vo(x) as represented by the barrier shape:

V(x, t ) = Vo(x)+ g V„si n(co„t )sin( Q„T) .

Second, the tunneling current is sensitive also to the bar-
rier width. The charge-density oscillations affect the bar-
rier width by changing the classically forbidden region.
Barrier width oscillations were used, for example, in the
detection of surface acoustic waves with the STM. In
addition, these oscillations are expected to affect the local
density of states —at the Fermi level. The tunneling
current in a planar tunnel barrier can be expressed as
J(t) aexp[ —2[V(x, t)]' d], where 2 =[Sam, /fi]'
V(x, t) is the barrier height, and d is the barrier width.
Due to the exponential dependence of the tunneling
current on the barrier height and width, the gap exhibits
nonlinear behavior. If J(t) was a linear function of
V(x, t), than only components with frequencies co;+Q;
and co; —Q; will be observed in J(t) [i.e., only the fre-
quency components of V(x, t) itself]. As a result of the
nonlinear dependence of J(t) on V(x, t), the sum and
difference frequencies, 2Q„, 2'„, and 0 will be observed
as well. This nonlinear dependence gives rise to the ob-
servation of the Larmor frequency of individual paramag-
netic spins. The ability to observe sum and difference fre-
quencies was exploited in STM detection of surface
acoustic waves. In our case, four components of
p! 3)(t) have oscillating terms with the frequency

0

difference 2Q„=col (the Larmor frequency). The intensi-
ty of this ~L component which was measured experimen-
tally depends on the degree of the nonlinearity of the
STM. This can be easily understood by looking at the
series expansion of the exponential function:
e "=1—x+x2/2! —x /3!+ . As x —+0, the non-
linear character of the gap becomes rather small. For in-
creasing x, it is expected that the nonlinearity of the
STM, as well as the amplitude of the Larmor frequency
component, will be bigger.

An order of magnitude calculation can be performed in
order to estimate the contribution of the barrier height
modulations to the Larmor frequency component of the
tunneling current. Considering only Coulombic interac-
tions, the potential can be estimated by eed /r, where ed is
the charge in the dangling bond and r is the distance be-
tween it and the tunneling electron. By taking this form
of interaction we ignore the electrostatic interaction with
the static nuclear charge. We are only interested here in
the time-dependent term in the potential due to the
charge-density oscillations. The relevant time-dependent
term in the charge density is
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O

—7 I
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log!o(a/b)
FIG. 6. The amplitudes of the principle frequency (A+co)

and the difference frequency (2Q) as a function of the ratio be-
tween the constant and the modulated barrier height (a /b) for a
gap distance of 4 A (solid curve), 6 A (dashed curve), and 8 A
(dotted curve). The amplitudes are calculated relative to the dc
tunneling current.

ed(t) =rie sin(Q„t )sin(co„t ),
where g is the ratio between the oscillating charge densi-

ty and the constant charge density. Assuming g=0.01
(considering the contribution of all four relevant com-
ponents and ignoring the difference in the frequency of
the "fast" components —co„s), the contribution of the os-
cillating barrier amounts to several tens of meV for
d=4 —8 A. The intensity of the difference frequency
component J(2Q„=coL ) can be calculated by a numerical
Fourier transform of J(t)

In Figure 6 the amplitude of the original (Q„+m„) and
the difference (2Q„) frequencies as a function of the ratio
a /b is shown for different tunneling distances, where a is
the static potential and b is the time-dependent potential.
As can be seen, the relative intensity of the difference fre-
quency component increases with the gap distance, a fact
which is consistent with a larger nonlinear response of
the STM at larger distances.

In the experimental system, the design of the rf requip-
ment was such that a detection limit of 10 ' A rf
current was assumed. The actual sensitivity was better
and the detection limit was in the order of magnitude of
10 " A rf current. Even with a tunneling current of
several nanoamperes (this was indeed the case in most of
the experiments), especially for cases of smaller tunneling
distances, the ratio a/b cannot be more than 5 in order
to pass the detection limit of the Larmor frequency com-
ponent. This implies a very small static barrier (-0.2
eV). The barrier height at large tip-sample distances is an
average between the work functions of the tip and the
sample, which amounts to several electron volts in our
case. However, as the barrier width is reduced, the bar-
rier height is becoming smaller according to the
simplified formula V= V„—a/d, where V„ is the bar-
rier height at infinity (average of work functions), d is the
barrier width, and a-10 eV A. (This formula is true
only for d )2 A, where the reduction in V is mainly
due to image forces. ) Although barrier heights of the or-
der of 0.2 eV can be observed according to this formula it
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seems that this value (of the static barrier height) is some-
what unrealistic. This discrepency can be resolved in
several ways: First, only the impact of the charge-density
oscillations on the barrier height was considered, ignor-
ing a similar impact on the barrier width. Including the
impact of the barrier width modulations will increase the
col component, resulting in a detectable signal for much
larger barrier heights.

In addition, in this treatment we ignored the nonlinear-
ity of the STM which is a result of the nonuniform densi-
ty of states on the semiconductor surface. This gives rise
to a nonlinear response in the IV curve. Including this
nonlinearity in the STM response to the charge-density
oscillations will increase the amplitude of the col com-
ponent.

In our model a value of q=0.01 was taken. This is
based on the value of g/b observed from ESR spectros-
copy. However, this value was observed for a "free" spin
center (namely, a spin center on which no chemical or
electrostatic interactions are applied). The strong in-
teractions induced by the tip may reduce the size of 5 in
the spin center. Such interactions have attracted
significant attention recently, since they play a role in
many STM phenomena. The reduction in 6 will increase
the size of the oscillating components relative to the stat-
ic one leading to a much larger value of g. Our calcula-
tions indicate that for g=0. 1 the oscillating components
should be detectable for barrier heights of several elec-
tron volts. Although the problem of the amplitude of the
~1 oscillating component has to be further elaborated, it
was shown above that such a component does exist. We
showed that the nonlinear dependence of J on V plays a
crucial role in this efFect. This point was not well ela-
borated in a previous paper.

V. DISCUSSION

The Larmor frequency component can be detected
when an excitation is driving the paramagnetic dangling
bond into a superposition of states. Despite the fact that
the excitation is primarily electrostatic, the spin-orbit
coupling introduces modulations at the Larmor frequen-
cy into the time evolution. The excitation is probably a
result of several competing processes. It is an extremely
complicated problem. Although such a calculation has
not been completed yet, we are able to draw at this stage
several qualitative conclusions.

The tunneling electrons interact with the spin center
through Coulombic, exchange, and correlation interac-
tions. As the electron tunnels through the junction it
may transfer a fraction of its energy to any elementary
excitation to which it may couple. It is well established
that tunneling electrons may excite vibrational modes of
adsorbed molecules in tunneling junctions. There are
several experimental evidences of exciting electronic tran-
sitions in organic molecules and rare-earth oxides us-

ing inelastic tunneling spectroscopy. Using STM for ex-
citing optical transitions in the visible range, ' photon
emission was observed. In these processes parity conser-
vation rules are slightly lifted. This is attributed to the

mixing of functions with different parity by the strong
electric field in the barrier. Direct Coulombic interac-
tions between the tunneling electrons and the dangling
bond are most probably the main cause of excitation.

The tunneling electrons may also excite phonons in
tunneling junctions. These lattice vibrations create
time-dependent modulations of the local electric field.
These modulations, although weaker than those which
are a result of the direct electrostatic interactions with
the tunneling electrons, are still capable of creating a pro-
nounced excitation —leading to a superposition of states.
An additional possible source of excitation is via modula-
tion of the spin-orbit coupling. It should be recalled that
the spin-orbit coupling is proportional to (and is a result
ofl the electric field applied by the screened charge of the
nucleus on the electron. It is quite clear that the strength
of the electric field applied on the spin center by the tun-
neling electrons (and to a lesser extent by the biased tip)
is approaching the order of magnitude of the nuclear
charge field. It is therefore expected that a continuous
change in the size of the spin-orbit coupling might also
play a role in the excitation process.

A problem which must be taken into account is the de-
phasing associated with the excitation process. If each
electron will destroy the phase of the superposition, the
signal will not be detectable. In cases where the electro-
static perturbation is not too strong, the spin polarization
is only weakly and indirectly afFected by it—via the
spin-orbit coupling, and therefore the Larmor frequency
modulation will continue from the point where it was be-
fore the perturbation. (This is similar to the requirement
for an initial spin superposition for having a nonzero am-
plitude modulation —as was discussed above. ) This is no
longer true when the electrostatic perturbations are
strong. In this case it is quite clear that the spin polariza-
tion will also be affected.

The change of the modulation as a result of the (strong)
electrostatic perturbation should be slowly varying on a
time scale of the Larmor precession in order to prevent a
complete dephasing of the signal. The time scale of a sin-

gle tunneling process is of the order of femtoseconds. A
typical tunneling current in the STM is J-10 A, im-

plying 10' electrons per second. Therefore each such
process could be treated independently. In a Larmor fre-
quency of 10 Hz, if the probability of excitation will be 1

or even 0.1, no signal will be observed. An order of mag-
nitude calculation for the probability of excitation of vi-
brational modes of an adsorbed CO molecule gives an ex-
citation probability of 0.01. A more precise answer to
the problem associated with the interplay between excita-
tion and dephasing will have to be answered by a more
detailed model. This problem can be addressed experi-
mentally by changing the magnitude of the magnetic
field. In the limit of slow precession, many tunneling
electrons will interact with the precessing spin during one
cycle and will dephase the signal. In the high-field limit
the regular relaxation processes will dominate.

The theory must be further developed in order to pro-
vide more quantitative answers to many problems, some
of which were mentioned above. There are many ques-
tions which have to be addressed experimentally in order
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to test the theoratical predictions. Examples of such fur-
ther research directions are as follows.

(l) The theory predicts that the frequency of modula-
tion will be the Larmor frequency of the ground-state
Zeeman transition (as measured with conventional ESR
spectroscopy). This means a dependence of the frequency
on the direction of the magnetic field (g anisotropy). Al-
though it will be quite difBcult to determine the direction
of the magnetic field relative to the individual spin center
on the microscopic level, an attempt will be made to fol-
low the dependence of the frequency of the signal on the
direction of the magnetic field.

(2} The question whether spectroscopic information
can be observed with this technique is of course of central
importance. For example, ESR spectroscopy is used in
order to determine the symmetry of the spin center
through, for example, the anisotropy of the g tensor. (In
the spin center discussed here, this is a C3, symmetry. )

However, the spin center under the STM tip probably has
different properties than the "free" spin center measured
under normal conditions in ESR. Unfortunately, it is
possible that the information regarding the symmetry of
the spin center will be completely destroyed by the strong
and partially random electric field applied by the tip,
which is only a factor of 10 or so smaller than the field
applied on the electrons by the nucleus. (Since the forces
applied by the tunneling electrons are so instantaneous
they are not expected to change this information, i.e., to
change the eigenvalues and eigenvectors of the spin
center. ) The chemical interactions between the tip and
the spin center might also have a similar effect. These
questions will be addressed experimentally.

(3) Regarding the observation of spectroscopic infor-
mation, the question of observing a hyperfine spectrum is
of great interest. The appearance of such a spectrum will
be entirely different than in the macroscopic hyperfine
spectrum which is an ensemble average. Looking at one
spin, it is expected that only one line of the hyperfine
spectrum will be observed (corresponding to a certain
orientation of the interacting nuclei). After some time
the signal will jump to a different frequency. The time
between the jumps is expected to be related to the spin-
lattice relaxation of the interacting nuclei.

(4) An extremely important question will be how the
lifetimes of all the states will affect the signal. It is con-
jectured that the signal should be dependent more on the
different relaxation times of the different ESR transitions,
and less on the different electronic lifetimes. The argu-
ments are similar to those in the case of the interplay be-
tween excitation and dephasing; electronic excitation pro-
cesses are not expected to affect significantly the ESR
transitions. (It does so only indirectly through the spin-
orbit coupling. ) Predicting the precise affect of the relax-
ation processes requires a more detailed treatment of the
problem. These predictions can be compared with exper-
iments on different spin centers, for example, by saturat-
ing the ground-state Zeeman transition with an external
strong rf field. Creating an initial spin superposition with
an external rf field should affect the intensity of the signal
as was discussed earlier. Working at different tempera-
tures might also provide useful information regarding

these processes.
From studies by the ESR spectroscopy, 80% of the un-

paired electron density is localized on the central Si atom
of the defect, while 98% of it is located on the Si(Si)4
cluster which consists of the central Si atom and the four
atoms bound to it. It is an important question: What
will be the predictions of the model when the molecular
orbitals of the extended system [the Si(Si}4 cluster) are
taken into account. In this way several conclusions about
the role of localization might be obtained. This question
is extremely important, since it is intended to study spin
centers on conducting surfaces. Of similar interest is the
question of the optimal size of the spin-orbit coupling. A
large spin-orbit coupling, while leading to a larger signal,
will probably lead to relaxation processes which are too
rapid, leading (at room temperature} to a complete
broadening of the signal. This question may be tested by
performing the experiment on different spin centers.

Recently an alternative theory on this effect was
developed. According to this theory, the Larmor fre-
quency component is explained by a singularity in the
tunneling current, which arises due to coherent tunneling
of pairs of electrons with opposite spins accompanied by
a spin reversal of both electrons in the course of this
scattering of the paramagnetic center. Several experi-
mental tests must be done in order to check the predic-
tions of both theories and the validity of each model.

According to the model which is discussed in our pa-
per, the spin-orbit coupling of the examined spin center is
the only reason for observing the Larmor frequency com-
ponent. The alternative theory gives this role to the
spin-orbit coupling of the atom at the apex of the tip.
Replacing the tip material, so that the tip atoms will have
a different atomic number, will help to elucidate which
model provides the correct prediction.

While the reason for changes in the signal intensity are
numerous and complicated, as has been discussed in de-
tail in this paper, the alternative model predicts a much
simpler relation for the intensity ratio between the Lar-
mor frequency components (JJ ) and the static com-
ponent of the tunneling current (Jo). This intensity ratio
is (using the terminology of this paper )

dln[JJ
/ din/Jo(' =2,

dz dz
where z here is the gap width. This relation can be
directly tested by changing the size of the dc tunneling
current.

In summary, the ESR-STM experiments raise many
questions which have to be resolved. Further develop-
ments in this research direction will provide STM the ca-
pability to follow many interesting fundamental phenom-
ena and to obtain chemical information on individual sur-
face spin centers.
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APPENDIX A

1. The matrix elements of gL S (including 5)

We have

IsPoa & ISPo3p) IsP3a) IsP3p& IsP23a & ISP3,p& IsP33a & IsP', p &

&aSP,'I

& psP,'I

(aSP',
I

& psP',
I

& aSP,'I

& psP,'I

&aSP,'I

& psP,'I

4 4

'4

'4

'4

4 4

4

4

'4

4

4

4

4

4 4

'4

'4

'4

'4

4

'4

4 4

4

4

4

4 4

'4

'4

'4

4 4

4

'4

'4

4 4

2. The matrix elements of p,(g, S+L)-H

We have the expression as given on the following page.

APPENDIX B

The first step in x the perturbative treatment is applying gL S as a perturbation to the unperturbed Hamiltonian,
where (aSPoI&oISPoa) =(pSPoI&oISPop) =b and the other elements are zero. First-order nondegenerate pertur-
bation theory can be applied in order to find the corrected eigenfunctions ISPoa ), and ISPop) „provided that g « 6,

&e, IgL SIsP,'a&
ISP,'a&, =ISP,'a&, + y

I 0 i

where I%;) is the ith eigenfunction which is mixed by the perturbation with ISPoa)o and Eo E, is the energ—y
difference between them. The same expression holds for ISPop), . The eigenfunctions ISP&a), ISP&p), . . . , ISP~p)
are mixed as a result of the perturbation. These states are originally degenerate. The removal of the degeneracy is cal-
culated with the help of degenerate perturbation theory. Since all elements in the 6X6 matrix spanned by the six de-
generate functions ISP & a), ISP& p), . . . , ISP3p) contain the element g (Appendix A 1), this matrix can be numerically
diagonalized. If the coupling of the functions ISP &

a ), . . . , ISP3p) with ISPoa) and ISPop) is ignored, then numeri-
cal diagonalization of the Hamiltonian, giving us the six linear combinations I+3), . . . , I+s) of the basis functions
ISP, a ), . . . , ISP3p) is completing the diagonalization to first order in gL.S.

The energies of the resulted states ISPoa) „ISPop) „I+3), . . . , I+s) form a set of four Kramers doublets. Their de-
generacy can be removed by an external magnetic field. The Zeeman term causes mixing between the doubly degen-
erate states. Thus we have to diagonalize four 2 X 2 matrices which are created by applying this term on the four pairs
of degenerate eigenvectors. Since the Zeeman term was applied as a second, smaller perturbation (namely, gp~H &&()
it was possible to ignore all the other coupling terms.
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For our case the most imPortant transition is the ground-state one (gopsH). Therefore we use the matrix in the

ISPoa) &, ISPoP) &
basis as an example. The matrix was calculated knowing the operation of the angular momentum

operators on the orbitals (P„,P, or P, ) and spin a,P) functions. The following 2X2 matrix is observed:

l»oa&& ISPoP& i

, (aSP,'I gePsH g PsH PsHy PsH
2 b 2 4 4

gepBHx

2

Ige pB Hy

2

PsH, PsHy PsH„
4 4 2

PsHy PsHz PsHx
2 4 4

, & psP,'I ge pB Hx Ige pBHy+
2 2

RePsHz g PsHz PsHy PsHx
2 6 2 4 4

PsHz PsHy PsHx
4 4 2

Qi PsHy PsHz PsHx
2 4 4

The diagonalization of a 2 X 2 Hermitian matrix is a textbook problem which leads to analytic expression for the ei-
genvalues and the eigenvectors. See Table I.

TABLE I. The energies in this table were calculated by diagonalization of four 2 X 2 matrices which
were calculated as described in the text. In the left column the magnetic field is parallel to the Z direc-
tion, and in the right column, the field is parallel to the direction of the ISPo & orbital, namely

Hx =Hy =H, =H/&3.

pB Hz
E, =5+ 2.002+2.002+

2

pBH
E, =a+ "' (2.002)

2

pBH,
Ep =6— 2.002+ 2.002+

2

pBH
E2 =6— (2.002)

2

E,= —2.732~+ 0.274+0. 111+pBHz

4 2
E, = —2.732~+ 0.421+0.021+p, H

Ee = —2.732~ — 0.274+0. 111+
4 2

Ee = —2.732~ — 0.421+0.021+pBH
4 2

pBHz
E5 =0 732~+ 1.976—0.456+

4 2

pBH
E~ =0.732~+ 1.57—0.028+

4 2

E =0.732 — 1.976—0.456+pBHz

4 2
E6 =0.732 — 1.57—0.028+pBH

4 2

pBHz
E7 =2++ (2.218)

4 2

pBHzE,=2+ — (2.218)
4 2

pBHE, =2~+ (3.619)
4 2

pBHE,=2~ — (3.619)
4 2
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