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Boundary conditions for envelope functions in heterostructures
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In this paper a detailed derivation of the boundary conditions for envelope functions is carried out
making use of the k - p method. The resulting conditions are different from those of Harrison by an
extra term originating from a surface energy. This term removes the difference between expressions
for the transmission coefficient obtained with the help of microscopical calculations and the envelope-
function method. In the case of a simple band structure the resulting boundary conditions contain
two independent parameters. It is shown that the general boundary conditions suggested by Ando
and Mori contain a term which has to be neglected in the frame of the efFective-mass method.
The form of the boundary conditions for degenerate bands and for the case of different degrees of
degeneracy in the interfacing materials is considered.

I. INTRODUCTION of the continuity of the envelope functions Q, he used

The usefulness of the efFective-mass method in the
study of different properties of semiconductors has been
well proven both theoretically and experimentally. Some
important aspects of this method arise in its applications
to heterostructures. When two semiconductor materials
are in intimate contact and the bottom of the conduction
band (or the valence band) of one of them is close to that
of the other, one would expect that the efFective-mass
method can be used in the whole structure. However,
the Bloch functions and effective masses in interfacing
materials are usually different, and there may be a band
offset. All this results in different amplitudes of the Bloch
functions in the materials. Thus, a problem that is not
encountered in uniform semiconductors comes about, de-
termining the amplitudes. The amplitudes of the Bloch
functions are usually called envelope functions, and the
application of efFective-mass theory to heterostructures
is called the envelope-function approximation.

The effective-mass method easily leads to Schrodinger
equations for the envelope functions in both materials.
However, a question of boundary conditions for the en-
velope functions at the interface appears. Naive condi-
tions, i.e., the continuity of the envelope function and
its normal derivative at the interface, sometimes used for
the conduction band at the GaAs/A1GaAs interface, ap-
parently does not work in more complicated situations.
These conditions cannot be applied directly for complex
valence bands. They violate the conservation of the cur-
rent normal to the interface (i.e. , lead to a non-Hermitian
quantum-mechanical problem) for materials with differ-
ent effective masses. This problem is important, e.g. , in
the cases of electron transfer between minima of the con-
duction band located in different points of the Brillouin
zone and at InAs/GaSb interfaces where the effective
masses on different sides of the interface have different
signs.

Harrison suggested a generalization of the boundary
conditions for a simple band. Instead of the assumption

Then the conservation of the current normal to the in-
terface led him to another condition,

1 Bgt 1 Bgz
cstmt Bz ctzmz Bz (2)

Here the subscripts 1 and 2 correspond to the different
sides of the interface, mt and mz are the effective masses,
nq and nz are real constants, and the z axis is normal
to the interface. Many workers derived a simplified ver-
sion of Eq. (2) with aq ——o.z. All these derivations
assume that the envelope functions are continuous at the
interface. The second condition is usually obtained by
assuming that the kinetic energy has a Hermitian form
with a coordinate dependent effective mass. Then, in-

tegration of the energy across the interface yields the
boundary condition. s 4 7 The same argument, s or equiv-
alent t;o that, the continuity of the current across an
interface, m was used to obtain the boundary condition
for a degenerate band.

The application of the simplified conditions to the
band-structure calculation of III-V and II-VI com-
pounds heterostructures gave a reasonable agreement
with experiments~~ tz so that they seemed to be more or
less justified. However, when Stiles and Hamann1s car-
ried out numerical microscopic calculations of the trans-
mission coefficient across a Si twin interface they found
a contradiction with the result of the envelope-function
approach. Grinberg and Luryi 5 compared the plane-
wave transmission coefficient obtained with the help of
Eqs. (1) and (2) with that obtained from the exact an-
alytical solution for the Kronig-Penney model. They
showed that the two methods give somewhat different
expressions. The simple interpretation of this result is
that the consideration of heterostructures in terms of en-
velope functions is too rude an approximation. Such
a conclusion, however, seems to be very strange in the
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region of energies and lengths where the phenomenolog-
ical effective-mass approximation has been proven to be
valid. That is, the only possible solution to the para-
dox shown by Stiles and Hamann and Grinberg and
Luryii is is that Eqs. (1) and (3) contain an unjustified
simplification and cannot be used for description of all
phenomena in heterostructures.

The most general boundary conditions consistent with
the effective-mass approximation, where envelope func-
tions satisfy differential equations of the second order,
were suggested by Ando and Mori. z Those conditions
were used for the calculation of the band structure of
GaAs/AlGaAs and InAs/GaSb (Ref. 2) and for the de-
scription of the transition between I' and X valleys in the
GaAs/AlGaAs interface

In the next section it is argued that in the effective-
mass approximation the conditions of Ando and Mori
can be replaced by Eq. (1) and a generalization of Eq. (2),

1 Bgi 1 Bigs

nimi Bz nzmz Bz (3)

where Pi and Pz are real constants. Equations (1) and (3)
contain two independent parameters (each of the condi-
tions of Ando and Mori contains a wave-function deriva-
tive and so those conditions contain three independent
parameters). The dimensionless parameter ni/n2 char-
acterizes reflective properties of the interface at the band
edge. The second Parameter, q = (mimz) ~ (niPz-
nzpi), has the dimension of an inverse length. If q

i is
much bigger than the length scale of Qi and gz then the
terms containing gi and g2 in Eq. (3) can be neglected
and it is reduced to Eq. (2). In the opposite case Eqs. (1)
and (3) give Qi = Qz = 0 which means that the interface
is impenetrable. Another way to define the second pa-
rameter is to associate with the interface a surface energy
density. ~7

It will be shown in Sec. IV that the application of
Eq. (3) instead of Eq. (2) does not lead to the contra-
diction noticed by Stiles and Hamann and Grinberg
and Luryi. ~4~~5

In microscopic derivations of boundary conditions for
envelope functions an interface is sometimes assumed to
be a mathematical surface dividing two materials with
difFerent Bloch functions. ps s It is important to note
that models containing this assumption cannot be consid-
ered as a solid basis for phenomenological boundary con-
ditions. In reality, bulk Bloch functions in both materials
exist only at some distance from the interface which is
larger or about the size of the unit cell, ao. The electric
potential created by atoms in each material penetrates
across the interface and exact electron wave functions
near the interface can be substantially different from the
bulk Bloch functions. One also has to note the possi-
bility of steps, dislocations, and impurities segregated to
the interface during the growing of the structure. All
these complications, however, are important only on the
microscopic scale. Envelope functions do not vary on
the length scale of ap and microscopic details of the in-

terface can affect only the coefficients in boundary con-
ditions for the envelope functions. On the other hand,

the phenomenological boundary conditions for an enve-

lope function have to be valid under the same conditions
as the envelope-function approximation itself. That is,
its form cannot depend on a specific microscopic model.
This means that such conditions can be derived by mak-

ing use of the k p method. ii iz is The purpose of the
present paper is to give such a derivation.

In the next section the detailed derivation of bound-

ary conditions, Eqs. (1) and (3), is presented for the in-

terface between materials with a simple band structure.
In Sec. III modifications necessary for degenerate bands
are shown. The case of different numbers of degenerate
bands in the interfacing materials is also considered. The
last section discusses the application of Eqs. (1) and (3)
to electron transmission through an interface.

II. BOUNDARY CONDITIONS FOR A SIMPLE
BAND STRUCTURE

In this section the boundary conditions for the enve-

lope functions will be derived under the same assump-
tions which justify the effective-mass approximation in
simple band semiconductors. Let us consider an interface
between materials 1 and 2 such that material 1 occupies
the region z & 0 and material 2 occupies the region z ) 0.
The interface is not actually the plane z = 0 but occupies
some region around this plane with width of about the
size of the unit cell, ao. The exact structure of this region
is not important for the form of the boundary conditions.

There are two assumptions which make the applica-
tion of the effective-mass approximation possible in both
materials. The first is that all macroscopic length scales
(distances between different interfaces, the length scales
of external fields and all length scales related to the en-
velope functions due to external fields) are much larger
than the microscopic length scale, ap. It is convenient
to introduce a specific notation, L, for the minimum
macroscopic length scale. Then the first condition for the
effective-mass approximation in the bulk is ao &( L. The
second assumption is that all macroscopic energy scales
(the difference between the considered energy and band
edges, the band offset of the interfacing materials and
all energies related to external fields) are much smaller
than the widths of the conduction and the valence band
and the gap between them. In the bulk this assumption
is usually equivalent to the first one because the esti-
mates for microscopic and macroscopic energies are re-

spectively 5 /maps and 5 /mIz. In heterostructures this
assumption has a new meaning because the band offset
has nothing to do with external fields or the geometry
of a structure. To abbreviate notations it is convenient
to introduce an additional limitation on L in such a way
that ti /mL2 would be of the order or bigger than the
band offset. Then both conditions can be expressed in

terms of only one inequality, ao (( L.
This inequality allows one to separate a region 8 with

the boundaries z = zi & 0 and z = zz ) 0 which satisfy
the condition ap « z2, ~zi~ && L. It is important to note
that the exact values of zq and z2 do not matter.
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A. The first boundary condition

Let us consider the matching of electron wave functions
in the region 8 at an energy close to the band edges of
both materials. The structure of an exact wave function,

4(r), near the interface is very complicated because of
the mismatch between the band structure and the Bloch
functions in the interfacing materials. In general, evanes-
cent waves and a distortion of the Bloch wave functions
arising from the mismatch penetrate only a distance of
about ap in each material. If the energy appears to be in

the energy gap of one of the materials, the envelope func-
tion inside this material is also evanescent. But because
of the small energy difFerence between the energy and
the band edge this envelope function falls down on the
distance of about L and such a decrease can be neglected
in the region 8. This means that, in each material away
from the region of the width of ap around the interface,

4'(r) has to be proportional to the Bloch function. On the
distance less than L around the interface the difference
between the Bloch function for the considered energy and

that at the band edge, u„~ (r), is of the order of ap/L or
less (here n is the number of the considered band which
for simplicity of notations is taken to be the same for
both materials and j = 1, 2 labels the material). That is
for ~z~ && ap

4'(r) = Ciu„(r), z (0, 4(r) = Czu( )(r), z & 0

(4)

with an accuracy of ap/L.
The physical meaning of the constants Ci and Cz can

be seen from the consideration of the transmission and
reflection of a plane wave from the interface. In general,
for a plane wave incident normally from the first material

4'g, (r) = e'""u„i„(r) + Ri(ki)e '""u„ i„(r), z ( 0, O'A, , (r) = Tq(ki)e'""u„k, (r), z & 0,

and for a plane wave incident normally from the second material

i„(r) = e '""u„z (r) + Rz(—k2) e'""u„&,(r), z & 0, @ i„(r) = Tq( —kz) e '""u„k,(r), z ( 0 (5b)

outside the region of the width of ap near the interface.
Here ki and kz are wave vectors in the first and second
materials and the periodic parts of the Bloch functions,

u„& (r), depend on these vectors When .ki and kz go
to 0 a plane wave in the region 8 difFers from any other
function satisfying the condition ap/L « 1 only by a
constant factor, so that

Ci 1 + Ri(0) T2(0)
C2 Tg(0) 1 + Rz(0)

In the region 8, @(r) differs from 4'"(r) by a phase which
is constant with accuracy of ap/L. That is, the ratio
Ci/Cz can be chosen to be real. Now, according to the
definition of envelope functions, Ci = gi(0) and Cz =
gz (0) so that Eqs. (4) and (6) are equivalent to Harrison's
condition, Eq. (1).

It is worth making two remarks concerning the above
arguments. The relation between Ri (0), Ti (0) and
Rz(0), Tz(0) reflects the fact that to the first order in
ap/L the band-edge energies of the materials are equal
and at that energy there is only one solution to the
Schrodinger equation which is a constant. Corrections
to Eq. (1) which are obtained from the boundary con-

ditions of Ando and Mori2 and contain s+' are of the
order of ap/L and have to be neglected in the effective-
mass approximation.

take into account terms of the order of ap/L. With such
an accuracy, the expansion of an electron wave function
near the edge of the nth band outside the region 8 has
the form

~(~)
(i) $~ p2& ~0i (i)@ —flu„) . (i) (i) g ug, z ( zi, (7a)

mp, , g g. T
/+A

q(2)
(2) i5 pj~ c)$2 (z)

2u~ ~ (2) (2) g uJ, Z & z2 ~ (7b)
mP . g g Ty,

Here mp is the free electron mass, s and u are the(t) (t)

energy and Bloch function of the jth band at the center
of the Brillouin zone in the tth material, and p"„ is the
matrix element of the pth component of the momentum

between functions u and u„. Inside the region 8 terms(~) (~)

of the order of ap/L can be neglected and

where u(r) is the function with asymptotes @i(0)u„(r)
at z (0, ap (( ~z~ (( L and $2(0)u„(r) at z & 0, ap ((
z&&L.

The Schrodinger equation for 4 can be obtained from
a variation functional

B.The second boundary condition

The second boundary condition concerns a matching of
normal derivatives of the envelope functions and needs to

U @ @ 2

where U(r) is the lattice potential. For simplicity no
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&=Zi+E'g+f2, Z, =
(Z1

external field is included in f. The integral in Eq. (9)
can be broken into the sum of three integrals over the
regions outside and inside 8,

Qi (r) and @2(r). The variation bf contains also an inte-
grated term

h 1 c)gibli(0)— + ai pi%(0)
2 fni c)z ()

, E'b=
z(z(zg

W

—b42(o)— + &~P242(0)

52
I'7&iI + (&.'" —&)I%I' d'r,

2m]

(1la)

where

(11b)

Functionals 8'i and 82 can be calculated with the help
of Eqs. (7a) and (7b). The energy E is assumed to be
close to e„and e so that the difference between them(&) (2)

is of the second order in ao/I. That means that the
omission of terms of the order of ao/L leads to zero re-
sult. A nonzero result appears only in the second order in
the integrands, i.e. , one has to keep the second terms in
Eqs. (7a) and (7b) and all the derivatives of Qi(r) arising
from the first terms, which means that the calculations
are made with the accuracy of the second order in ao/L.
Each of the integrals can be broken into the sum of the
integrals over separate unit cells. Inside every cell the
envelope functions and their derivatives have to be con-
sidered to be constants. Bloch functions are suitable to
be normalized on the volume of the unit cell. The result
1s

(14)

In this term the difference between zi, zq and 0 is ne-

glected. The variations b@i(0) and bg~(0) are not in-

dependent due to the first boundary condition, Eq. (1).
Thus the requirement of the variation Eq. (14) to be zero
results in the second boundary condition, Eq. (3). The
k p method does not show a definite sign for the surface
energy and the parameter q can, in general, have either
sign.

Equation (3) contains terms with derivatives of the en-

velope functions which are of the order of ao/L compared
to the terms containing the envelope functions them-
selves. This difFerence appears because the terms with
derivatives originated from E'i and Z2 where the inte-

grands are of the second order in ao/L while the terms
containing the envelope functions came from the surface
energy, 8&, where corrections of the order of ao/I were

neglected. Usually the terms with derivatives can be ne-

glected in Eq. (3) and then the interface is impenetrable.
This means that those interfaces which allow electrons
to tunnel through have a surface energy which is anoma-
lously small for some microscopical reasons. One has to
remember that the last remark is relevant only to the
interfaces between materials with small band offsets, so
that the effective-mass method can be used in both of
them.

mt

P(&) P(&)
pnj pjn

m0 3 0
(~) (t)

john n j
III. BOUNDARY CONDITIONS IN THE

CASE OF DEGENERATE BANDS

is the effective mass (for simplicity only an isotropic mass
considered). The variable of integration in Eqs. (11a) and
(lib) scales as L so that Fi and Zq are of the first order
in ao/L.

The functional Sb is calculated with the help of Eq. (8).
Inside the region 8 it is impossible to carry out detailed
calculations because of the complicated structure of u(r).
However, one can notice that the value of E~ has to be
a linear combination of ~@i(0)(

and (@2(0)~

since these
quantities determine the values of u(r) at the boundaries
of the region 8. ~gi(0) (

and ~gq(0) (
are not independent

because of the first boundary condition and it is possible
to write down the result in a symmetric form,

The generalization of boundary conditions for the case
of degenerate bands is straightforward when the interfac-

ing materials have the same number of degenerate bands,
N. The resulting equations have the same structure as
Eqs. (1) and (3) although they now connect N envelope

functions of each material, gI ) and Qz~~), and contain
square matrices instead of scalar coefficients. That is,
the condition analogous to Eq. (1) is

@(a ) g y(j )

The functionals 8'~ and 8'2 are easily constructed if the
Hamiltonians for the envelope functions are known. The
boundary energy can be written as

E'b can be considered as the energy of the interface.
The Schrodinger equations for the envelope functions

can be obtained by the variation of E' with respect to

, y(a)+(p)y(a )(p) (16)

where Bjj is a Hermitian matrix. Then the second con-
dition is
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(j1) (jl) (jl) (j2) g (jz) g„i~(j2)
Dzz ~~1 ~zy W i Dzz Pl L&zz @2 + Dzti 42 + Dzz ~2 + B, , y(j&)

1 jjq g
+ 1jj, g

+ 1jjq g
— 2jjz g

+ 2jjz g 2jjz

If the term resulting from the surface energy in Eq. (17)
can be neglected this equation becomes identical with
the boundary condition suggested by Altarelli. io The
advantage of the derivation presented in this paper is
that the boundary conditions for envelope functions sat-
isfying all conservation laws arise naturally along with
the equations for them. Another advantage is that the
same scheme easily takes into account the surface energy,
which cannot be obtained from the continuity of the cur-
rent.

There is, however, a complication if the number of de-
generate bands in one of the interfacing materials, Ni, is
different from that in the other, N2, as, e.g. , in the case
of the InAs/GaSb interface when both light and heavy
holes in GaSb have to be taken into account. Now two
types of the first boundary condition, Eq. (15) and

y(j~) y(jz) (15')

are not equivalent because the number of equations in
them is difFerent. From a pure mathematical point of
view both problems are correct. Really, the total num-
ber of envelope functions is Ni + N2 If the. first condi-
tion, Eq. (15), contains Ni equations they leave N2 in-
dependent functions. So the variation of the correspond-
ing functional 8 with respect to independent Q' gives
N~ equations for the second condition and the necessary
total number of equations in the boundary conditions,
Ni + N2. Nevertheless, the possibility of two different
boundary conditions seems to be unsatisfactory because
they really correspond to different quantum-mechanical
problems. The situation is aggravated by the fact that
other types of boundary conditions are also conceivable.

The right form of the boundary condition can be found
from a consideration of whole wave functions near the
interface. Within the region 8, where the envelope func-
tions can be considered as constants, there are No linear
independent solutions of the Schrodinger equations. For
Gp « ~z~ && IJ they have asymptotes

Ng

4("){r)= ) C(,". u,.')(r), z & 0, (18a)

@(")(r)= ) C(,".)u(.')(r), z & 0, (18b)

1 & v & No. Let N1 C Ng. The full system of solutions,
@(")(r), has to contain all possible states with a given
energy in both materials. This means that the ranks of
the matrices Ci" and C2" equal Ni and N2 respectively.
That is, No & 2. It is possible to choose the functions
4'(") in such a way that the right-hand sides of Eqs. (18b)
are zeros for v ) N2. If No ) N2 then the right-hand
sides of Eqs. (18a) with v ) N2 can contain Ni linear

A( ) y(j ) A( ) y(j ) (19)

where the matrices A( ) and A .) have dimensions Ns x
Ni and Ng x N2, respectively "Phe valu. e of Ns as well as

the values of the matrix elements A, and A ", depend(&) (2)

on specific materials and the microscopic structure of the
interface.

Equation (19) holds for the case of Ni = N2 = N and
seems to contradict Eq. (15') if Ng ) N. However, in
some of the Eqs. (17) the terms containing Bjj, which
result from the interface energy can be so great that all
terms with derivatives, which are of the first order in

Go/L, can be neglected. The resulting equations together
with Eq. (15') are equivalent to Eq. (19).

The last argument hints that it may be possible to de-
rive all the boundary conditions from a single variational
principle.

One can also notice that in the case of an interface be-
tween materials with a degenerate band structure there
may exist plane waves that are totally reflected from the
interface even if a transmission is not forbidden by con-

independent combinations of the Bloch functions u( ) (r)
(0 & Ni & Ni). If No ) N2 + Ni—:Nb it is possible to
choose the functions @(")with v ) N2 in such a way that
all these linear independent combinations are contained
in the right-hand sides of Eqs. (18a) with N2 & ij &

Nt, while the right-hand sides of Eqs. {18a) with v )
N~ are zeros. This choice has selected functions @(")
with v ) Ns which have zero asymptotes both at z & 0
and z & 0. These functions describe surface states and
have nothing to do with the envelope functions. is The
algorithm of the choice shows that any linear combination
of functions 4(") with v & Ni, has a nonzero asymptote
at least on one side of the interface. These functions
describe transmission and reflection of bulk states. Their
number satisfies the inequality N2 & Ns & Ni + N2.

The matrix elements Ci ) and C2(" in the Ng

Eqs. (18a) and (18b) are the values of the envelope func-
tions at the interface. The first N2 equations for them
can be obtained by a linear transformation of the first
N2 functions 4( ) which diagonalizes the right-hand side
of Eqs. (18b) and subsequent projection of these equa-
tions onto the solutions to the Schrodinger equation with
asymptotes at z ) 0 equal to corresponding Bloch func-

tions u (r). If Nb = N2 the derivation is completed.
If Ng ) N2 then a similar procedure can be carried out
with the other Ni functions 4("). The right-hand side
of Eqs. (18a) (N2 & ii & Nq) can be diagonalized with

respect to any Ni of the Bloch functions u. )(r) and then
the equations have to be projected onto tie solutions to
the Schrodinger equation with asymptotes at z & 0 equal
to corresponding Bloch functions. The resulting bound-
ary condition has the form
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servation laws. The total reflection is described by those
functions 4&"& which have zero asymptote in one of the
materials. They definitely exist for Ni g Nz and for
Ny ——Ng ——N if Nt, & N.

IV. DISCUSSION

The simplest problem where it is necessary to use inter-
face boundary conditions is the transmission and reflec-
tion of an electron beam incident normal to an interface.
If the transmission and reHection coefficients are defined
according to

(z) eikgz + p(I )e
—tkgz

VA, , (z) = T(&i)e'"'*

then Eqs. (1) and (3) give

z&0,
z(0, (20)

I T(&i)I' =
~m2ki + ~mlkg) + m|PEgtp

(21)

Equation (21) differs from the transmission coefficient
resulting from Harrison's boundary conditions in the de-
nominator term which contains the parameter q charac-
terizing the interface energy. Equation (21) is identical
with the result of Grinberg and Luryii4 for the Kronig-
Penney model. For zero band offset the transmission co-

efficient goes to zero with the energy of the incident beam
while Harrison's boundary conditions, where q = 0, give
for ~T(0)) a finite value. Zero value for ~T(0)~z was ob-
tained by Stiles and Hamann.

The appearance of the parameter q detected in
Refs. 13—15 sheds some doubts on the results of all band-
structure calculations made with the help of simpler
boundary conditions. Naturally, an additional parameter
makes a comparison with experiments more difficult. The
comparison is complicated also by the fact that the main
band-structure calculation results relate to details of the
energy spectrum while typically experimentalists mea-
sure either energy differences between very specific points
in k space or kinetic phenomena. The importance of the
parameter q for the transmission coefficient shows that
it can be crucial for the calculation of the current across
an interface. However, for a finite band offset the en-
ergy dependence of the transmission coefficient does not
change dramatically with the introduction of q. Thus,
a careful consideration is necessary in the comparison of
experimental results with theoretical calculations.
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