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Piezoelectric fields in strained heterostructures and superlattices
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The piezoelectric response of strained heterostructures and superlattices is examined. A general crys-
tallographic direction of growth is assumed for a subcritical cubic piezoelectric layer. Piezoelectric
fields appear only along (or opposite to) the growth axis, provided all three direction cosines of the latter,
relative to the cubic axes, are nonzero. The formulation is based on elasticity theory, and the results are
compared with other approaches in the literature. Standard and less standard directions of growth are
worked out explicitly.

Strained piezoelectric (PZ) layers in heterostructures
(HS) and superlattices (SL) are capable of exhibiting PZ
fields. ' A number of theoretical and experimental works
have appeared in recent years which deal with this prob-
lem (see, for instance, Refs. 2 —4 and 5 —11, respectively).
Depending on the magnitude of the strains and the PZ
constants, the fields may reach significant values, exceed-
ing 10 V/cm, provided the concentration of mobile car-
riers is low enough to keep the fields unscreened. ' ' '
In the presence of PZ fields the overall behavior of the
layered system is modified. Changes in the electronic
band structure are among the most important conse-
quences, as demonstrated by spectroscopic and
nonlinear-optical techniques. ' Furthermore, the PZ
fields are expected to affect the degeneracy and frequency
of the long-wavelength optical phonons, by analogy to
similar effects induced by misfit strains. ' At present, the
PZ fields are determined for a general direction of pseu-
domorphic growth, assuming cubic PZ materials. The
thickness of the structure is less than the critical value.
The strain tensor can be treated in the framework of elas-
ticity theory and be considered uniform throughout the
volume of the dislocation-free layers. A detailed treat-
ment of the elastic strains and stresses has been presented
in Refs. 13—15; only the necessary results will be stated
here.

We designate the cubic axes by x, (([100], xz~([010],
x3() [001], and the HS or SL axes by x&)[[I&

m
&
n

& ],
xzff[lzmznz] (in-plane axes), and x3)f[13m3n3]—:N (direc-
tion of growth), 13,m 3,n & being their direction cosines
relative to x,xzx3. Primed (unprimed) tensor com-
ponents refer to the primed (unprimed) system, and all
Latin (Greek) indices run from 1 (1) to 6 (3). By a„and
h we designate the bulk lattice constants and the
thicknesses of the two constituents, i.e., v=e (s) for epi-
layer (substrate) in HS's (h, «h, ), and v= 1 (2) for layer
1 (layer 2) in SL's. The lattice fractional misfit f is equal
to (a, /a, )

—1 in HS's, and (az/a
&

) —1 in SL's. Wherever
obvious, the index v is omitted for simplicity. The re-
duced tetragonal distortion of either layer is computed
directly, using l3, m3, n3 and the corresponding elastic
stiffnesses C, ,

'

gg=ge/ell =(ell —e~)/ell

[C44+CC44(1 —T33)+3C (I3m3n3) ],

where we have set e3=e~ (strain component normal to
the plane) and eI =ez=e" (in-plane isotropic strain com-
ponent). B= (C» +2C, z ) /3 is the bulk modulus, and

C =Ci&
—Ci2 2C44 (2a)

T33 I 3 + 77k 3 + 7l 3 (2b)

5=C„C44+(CC44/2)(C„+ C,z )(1—T33 )

+C (C))+2C)z+C44)(l3m3n3) (2c)

Within a numerical factor, the common in-plane lattice
constant of both constituents in a free-standing, subcriti-
cal (coherently grown) SL is'

h G a +hzGzaz

h, G)+h2G2
(3)

with all =a, for a subcritical (coherently grown) HS. G„
is an appropriate shear modulus for each material given
by14

G, =3B„(3—bZ, ) . (4)

The in-plane and normal-to-the-plane strain components
of either layer are, in this case,

ell = ( a II /a ) —1

e =(1 itLZ}eII—

(Sa)

(5b}

=Z 46 ll

The remaining nonzero strain components e4 and e& are
proportional to the corresponding el and given by'

2ez3 E4 [C44T34+C(T3$T34 T35T3$))e
38C

II
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2es, =e5 = [C44Tq5+ C ( Tq~ Tqs
—Tq6Tq4)]e

3BC
II

=Z 5E' II

26&2= E'6 —0,
(6b)

(6c}

where e&„„ is the antisymmetric unit tensor (i.e.,
]23 2]3 ]$3 ]z2 333 0 etc ), In X iX 2X s it

can be shown that the PZ tensor takes the form

I
A, ,PK A,jtlK

where the fully symmetric fourth-rank tensor T&„„ is
defined by

TJTJT&pp lplpl lp+m&m„m„m+n&n„n„n

(7)

In the primed system of axes, the component array of
the strain tensor is e' = ( e ', e', e,eg, e5, 0). In the
unprimed system the strain tensor becomes'

where

Tz„„=(lzmz+l„m&)n„+c.p. =2(lzm„n„+c.p. ) —e&„„

(12)

is a fully symmetric third-rank tensor analogous to T&„„
of Eq. (7), and c.p. means cyclic permutation over 1, m, n.

From Eqs. (8)—(10) we find

'P

P) E'4

1=~ll
0

P= P2 =e
5

P3

E6
L

3Bell

0

l', (C~+Cm ~ )(C44+Cn 3)

m~(C44+Cns )(C~+Cl~)
n z ( C44+ Cl z )( C~ +Cm z )

$m 3n( C~ +Cl q }( C ) )
—C )~ Cl q

)—

nels(C~+ Cm s )(C&&
—

C&z
—Cm q )

l~m&(C 4+4Cn~)(C» —C,2 Cn3)—

3Be~II

m zn s(C~+ Cl q )(C„—C,~
—Cl ~ )

n~l~(C~+ Cm & )(C» —C,2 Cm
&
)—

l~m~(C44+ Cn s }(C„—C,z
—Cn ~ )

(13}

P~ = ee"(T—/336K —
T$23 4 g]3 5 (14)

In x &xzx3, on the other hand, the primed components of
the polarization are easily reached by writing Eq. (9)
directly in the primed system. The results are

The reason for writing the strain tensor in both systems is
that the computation in a particular situation is easier if
one or the other form is used. Having laid the necessary
background information, we proceed to the main objec-
tive of this work, i.e., the general formulation of the PZ
effect. We start with the phenomenological definition of
the PZ phenomenon in terms of the strain-induced polar-
ization,

(9)

2C (lq—msn3 ) T35 ],
34

3BeeII

Pp = — [(C),—C)2 ) +2C44 —C T33 ]
2 2 2

(isa)

Alternatively, P' can be obtained from Eq. (13) by rota-
tion; after some computation, the following compact
form for Pz is reached in this way:

3Be peal
[(Cll C12)C44T&&&

2 2A 233

X(!&means) . (15b)

The PZ constant ez „„=ez;(i =1—6) is a third-rank ten-
sor with only one independent component e in the cubic
PZ classes T and Td. In x,x2x3 it can be written as

(10)

Then, the in-plane component of P ( =P') is written as

P =P'=x'P'+x'P' =P—NP' .
II II 3 (16}

The magnitude Pl = PI~
is best obtained from Eqs. (15a),

P' =(P' +P' }'
II

3BeeII 2 2 2[2(CI) C12) C44(1 T33)—4(lemons ) [9(C&i —Ci2) C44 —C (la+c.p. —Tu )

+2(C, )
—C,~ )C44C (1—3T33 ) ]]' (17)
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E3=—P3
EII 0 '

EOKs
(18a)

P'
D r 03 7

Ep
(18b)

where higher-order identity expressions for the direction
cosines have been used. ' As expected, the components
P&, P3, and PII =PII depend only on l3, m3, n3.

Of the two components of P', only P3 gives rise to a PZ
field E,', and only PII gives rise to a PZ displacement D II.

The electrostatic equations applied to each layer yield

(iv) N= [120]/VS,

P2 =P3 =0, E3 =0,
10e (C» —C,2 )b,eP'=—

1 gcl1 —8C12+9C44
'

ll 1 '0D =P /E

where' x', [001]and

3Be"(8C„—8C,~+9C~ )

4(C|,—C,2)+C~(17C),—8Cip)

(v) N= [112]/&6,

(22a)

(22b)

(22c)

where Ep is the vacuum permittivity and K, is the static
(relative) dielectric constant of the layer. It has been as-
sumed that no external charges are present and the
dielectric constant is uniform throughout the layer. The
same applies to the polarization components which ex-
hibit a dependence on x3 only at the interfaces, i.e.,
P'= P'(x

& ); this implies V' P3%0, V' X PIi@0, V' X P3
=V'

PII
=0.

Equations (18) combined with Eqs. (15) and (17) pro-
vide direct expressions for the PZ field and displacement
for an arbitrary direction of growth. The following gen-
eral rule becomes clear now: PZ fields are induced only
for those directions of growth for which all three direc-
tion cosines 13, m3, and n3 are nonzero (equivalently, the
direction of growth N must not lie on the mirror planes
specified by any two of the cubic axes x &, x2, and x3 ).
Following the terminology often encountered in the
literature, we define such directions of growth as polar
axes. Thus PZ fields are expected to be present for N
along [111], [112], [211), [113], etc. , but not for [100],
[110], [120], etc. The PZ displacement, on the other
hand, is zero only for N along the high-symmetry direc-
tions [001]and [111]or their equivalent directions.

We give below results for some standard and less stan-
dard directions N:

P', =0, P2 =ebe/&3,
3e(C„—C,~)he

P3=
&6(C» —C,2+ C44)

3 3 EO s& DII 2/EO

where' x&ii[111]/&3 and

(23a)

(23b)

(23c)

18Be"(C,1 —Ci2+ C44)EE= (23d)3(C„—Ci~+ C~ )(Ci, +Ci2+2C44) —C

(vi) N= [113]/M 1 1,
24 ZBeeii [«|i —Cia )C~+9C'/l l']pl

1

(24a)
P2=0,

pl
3

9aeEII
11 12 44[(C —C ) +2C —83C /11 ]

Apart from an opposite sign for P2 and P3, the same
results hold for grown along [211]/&6, with
x&ii[111]/&3. PZ studies for [211]-grown multiple quan-
tum wells were reported recently. '

(i) N = [001],

P3 0 E3

(ii) N = [111]/&3,
P1=P2 =0, D' =0,
P', = 2eb el&3, E—

3
= P3/eyc, ,

—

(19)

(20a)

E3 = P3 /&r/r» D—

where" x', ii[332]/V22 and

b =C„C44+19CC44(Cii+Ciz)/11

+9C (Cii+2C, q+C4q)/11

(24b)

(24c)

(24d)

where'

9B
C11+2C12 +4C44

(20b)

6BE
C„+C, +2C„

(21b)

(iii) N= [110]/&2,

P2 =P3 =0, E3 =0, P1 = —eAE, D
II

= 1/Ep,

(21a)

where' x', i~[001] and

To summarize, explicit expressions have been derived
for the PZ fields and displacements in strained HS's and
SL's grown along an arbitrary direction. The layers have
been treated as homogeneous and dislocation-free, with
no interfacial disorder; we have not considered correc-
tions due to internal displacements [internal strain pa-
rarneter g (Ref. 17)]. In HS's, all present results concern
the epilayer, with e,"=f (no effect on the substrate). In
SL's, the results concern each layer v independently, with

geive bynEq. (Sa). Often, on the other hand, overcriti-
cal HS or SL systems are completely relaxed at the
growth temperature T, because of misfit dislocations. In
such cases, the in-plane strain E at room temperature Tp
is no longer determined from Eq. (Sb), which is valid only
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for coherently grown subcritical systems. Instead, it is
equal to —(P—P„)(Ts—To)—= 5—135T, where P„ is the
thermal expansion coeIIicient for layer v, and P is a
thermal expansion coeScient characterizing the entire
system; its value is given by an equation similar to Eq. (3),
with a' and a replaced by P and P„, respectively' (more
precisely, P and P stand for their mean values in the tem-
perature range b T=Ts —To).

The sign of P3 (and E3) for a strained layer (i.e.,
whether it points along N or —N), depends on four fac-
tors, (i) the polarity (cation A or anion 8}of the layer's
face nearest to the free surface, (ii) the sign of the PZ con-
stant, (iii) the sign of the in-plane strain, and (iv) the
direction of growth, through the sign of the product
( 13m 3 n 3 ), according to Eq. ( 1Sb). [It is assumed that the
bracket of Eq. (15b}is positive, as is the case for most ma-
terials under consideration. ] By definition, a positive
component P3 points from the layer's 8 face towards its
A face. There is a fifth factor, the hydrostatic pressure
which, depending on the choice of constituents, may also
affect the sign of the piezoelectric field. '

It should be emphasized that whereas E3 is always in
the direction of +N, the same is not true for the polariza-
tion P'. In fact, according to Eq. (17), in-plane com-
ponents of P' are always expected to exist, with the ex-
ception of growth along [100] and [111],or equivalent.
The in-plane components of P' may give rise to in-plane
PZ fields in low dimensionality systems, i.e., quantum
wires and quantum dots. To the best of the author' s
knowledge, no such phenomena have been reported thus
far.

The present approach to the PZ fields in HS's and SL's
has been treated in the framework of elasticity theory,

whereby the medium is looked upon as an elastic continu-
um, as far as the boundary conditions for the strain and
stress fields are concerned. In this sense, the results differ
from those of Ref. 2 where the boundary conditions have
been chosen so that the interface atoms have the correct
local bonding on stepped surfaces. Such surfaces occur
for low-symmetry directions of growth. On the contrary,
the results of Ref. 2 coincide with the present ones for the
high-symmetry directions [111]and [110].' To quantify
the differences between the two approaches, we have cal-
culated E3 and P~~ for a single layer of GaAs grown along

[113]. We have taken Ctt =119, C&&=54, C44=59 in

GPa, e = —0. 16 C/m, tc, = 12.9, and e~' =0.01. Using
Eqs. (24}, we find E3 = —7.3 X 10 V/m and

PI =1.4X 10 C/m . On the other hand, the results of
Ref. 2 lead to the same signs and higher values by 60%
and 20%, respectively. ' It would be interesting to com-
pare the numerical results of both approaches against ac-
curate experimental data. "

Finally, since the strength of PZ fields may reach sub-
stantial values, because of large values of e' and/or e, it is
necessary in such cases to consider terms in Eq. (9) which
are nonlinear in e„„. Such nonlinearities can be best in-

corporated into the present analysis by including elec-
trostrictive strains, i.e., strains which are quadratic in the
components of the PZ fields. ' Nonlinearities in the PZ
fields have already been observed.
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