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Effects of trapped states on spectra of four-wave mixing and differential transmission

Eiichi Hanamura
Department ofApplied Physics, Uniuersity of Tokyo, 7-3-1 Hongo, Bunkyo ku-, Tokyo 113, Japan

(Received 25 February 1992)

Excitons are sometimes trapped at impurities in crystals and at defects on interfaces in the confined

systems, such as quantum wells and microcrystallites embedded in a host matrix. We discuss these trap-

ping effects on the third-order optical polarization under nearly resonant pumping of the exciton. First
we predict an enhancement of y'"(Q;Q, —Q, Q) by a factor I „T/I T g multiplicatively on that
enhanced by the large excitonic dipole moments. Here I „Tand I T g are, respectively, the rate at
which the exciton is trapped and the decay rate of the trapped electron into the ground state. In many

cases, I „T is much larger than I & ~ so that a large enhancement of y"' is expected. Second, the
four-wave mixing spectrum ~y'3'{2Q, —Q2;Q„—Q2, Q, ) ~

under two beams II, and Q2 is shown to consist
of three hierarchical structures as a function of Q&

—Q&, i.e., the sharpest spike around Q&
—Q2=0 with

the linewidth ~Q, —Q2~ =I T s, the steep shoulder with the center also at 0,—Qt=0 and the width I „
(the exciton decay rate), and the wide structure with the width I „g around Q, =co&, and Q2=co&, . Here
I „g is the relaxation rate of the exciton polarization and Ace&, the lowest exciton energy. Third, the
differential transmission spectrum is found to show the strong absorption saturation peak or the sharp
induced absorption dip as a function of pump-probe detuning Q2 —

Q&, depending upon the pump fre-

quency Q, relative to the exciton peak co&, .

I. I&TRODUCTION

The third-order optical interaction of solids brings
about many interesting physical phenomena. In this pa-
per, however, we confine ourselves to the third-order pro-
cesses described by the susceptibilities y' '(Q;Q, —Q, Q),
X' '(2Q, —Q2', 0), —Q2, Q)), and X' '(Q2, Q), —Q„Q~). '

The first one includes optical Kerr effect and absorption
saturation, the absolute value of the second,
~g' '(2Q~ —Q2, Q„—Q2, Q, )~, gives the four-wave mixing
spectrum as a function of Q&

—Q2, and the imaginary
part of the third, y' '(Qz, Q„—Q„Q2), the diiferential
transmission spectrum. These third-order optical suscep-
tibilities have been shown to be enhanced under nearly
resonant pumping of the lowest-energy exciton. This is
because the exciton has rnesoscopically enhanced transi-
tion dipole moment. This enhancement has been also ex-
perimentally confirmed in CuC1 microcrystallites embed-
ded in NaC1 matrix or glasses, and in ZnSe crystal.

The excitons are trapped sometimes at impurities in a
crystal and at defects on the interfaces in a confined sys-
tern. We will clarify in this paper how strongly the
third-order optical responses are modified when the exci-
ton is trapped at impurities and defects. Excitons in the
crystal are trapped at impurities such as donors, accep-
tors, and isoelectronic atoms. These bound excitons are
observable as redshifted lines below the free exciton line
in many semiconductors. Several kinds of semiconduc-
tor microcrystallite show broad luminescence bands red-
shifted by as much as 1 eV below the exciton line.
The origins of these redshifted bands are still controver-
sial. However, we can describe the main effects of these
trapped states on the third-order nonlinear optical
responses only in terms of a few relaxation constants
relevant to the trapped state.

Conversely, once these relaxation constants are ob-
tained from observation of the third-order optical
responses such as four-wave mixing spectroscopy and the
differential transmission spectrum, we will be able to get
some information about the trapped state. In Sec. II A,
we will formulate nearly degenerate four-wave mixing un-
der also nearly resonant pumping of the lowest-energy
exciton. The third-order optical polarization
( P ' '(2Q

&

—Qz,' Q &,
—Qz, Q, ) ) with two incident beams

with angular frequencies Q, and Q2 is calculated in terms
of the third-order density matrices of electronic system.
These are obtained by the third-order perturbations in
electron-radiation interactions.

The effects of the reservoirs such as the radiation vacu-
um and phonon fields are taken into account in terms of
several longitudinal and transverse relaxation constants.
In some cases, the trapped electron has a long decay time
(I T ) '. Here I T denotes the sum of the radiative

and nonradiative decay rates of the trapped electron into
the ground state. While the electron is in the trapped
state, this electron is missing in the ground state and the
trapped electron is inversely polarizable into the higher
excited states. Both of these processes contribute to the
third-order optical susceptibility and enhance it by the
factor I „T/I T s. Here I „T is a trapping rate of
the exciton, which is proportional to the concentration of
defects and a cross section for the trapping. The decay
time (I T s )

' of the trapped state has been observed to
be on the order of microseconds in CdS, Se quantum
wells" while the trapping rate of the exciton I „z- may

be larger than the exciton radiative decay rate I „—10
sec '. This is because the emission intensity from the

trapped state is much stronger than that of the free exci-
ton. As a result, we may expect the y' ' enhancement to
be on the order of I „T/I T g

—10, as will be dis-
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cussed in Sec. II C. Note, however, that this
enhancement is possible only at the expense of a slow
response time, ' which is determined by the longest de-
cay time (I'z )

' —1 psec.
In Sec. II D we will discuss the four-wave mixing spec-

trum. First, the third-order optical polarization
( P' '(20, —Qz', 0„—Qz, 0, ) ) is evaluated under nearly
resonant pumping of the exciton with two beams (Q„k, )

and (Qz, kz) for the four-wave mixing at

(20~ —Qz, 2k& —kz}, and with three beams

(Q~, k&), (0„—k, ) for pump and (Qz, kz) for probe to
generate the phase-conjugated wave at (20& —Qz, —kz).
Second, we insert this polarization (P' ') in the source
term of the Maxwell equation. Then the signal intensity
is proportional to the square of an absolute value of
(P' '). We will be able to show, in Sec. II D, the spec-
trum ~y' '(20, —Qz', 0,,

—Qz, Q, )~ as a function of
Q&

—Qz to have the hierarchical structure with spectrum
widths I z. g, I „, and I „g around Q&

—Q2=0 under
nearly resonant pumping of the exciton.

In Sec. III, the differential transmission spectrum is
discussed also under nearly resonant pumping of the exci-
ton. Under application of the pump beam Q& and probe
beam Q2, the differential transmission spectrum is
presented by —Im(P' '(Qz, Q&,

—0&,Qz)) as a function
of Q&

—Q2. Real and imaginary parts of the third-order
optical susceptibility show complicated structures as
functions of Q, —Q2 as well as of Q&

—co„, while the ab-
solute value of ~g' '~ has a rather simple structure. In
this sense, the differential transmission spectrum has im-
portant information on the trapped state. The popula-
tion grating from the trapped state prT(0, —Qz) has a
strong dependence on Q&

—Q2 in the same way as in the
four-wave mixing. This hierarchical structure with two
kinds of broadening I „and I T g is also rejected on the
differential transmission spectrum. Under the resonant
pumping of the exciton Q& =~„,the spectrum shows the
positive peak, i.e., the absorption saturation peak at
Q&

—Q2=0 with the spectrum width I „. When the
pumping is suSciently far off resonance, on the other
hand, the induced absorption with the sharpest spectrum
width I T g is expected with a sharp dip in the spectrum
at Q&

—Q2=0. In Sec. IV, we will discuss whether these
features, due to the trapped state, have been observed al-
ready in the four-wave mixing spectrum and the
differential transmission spectrum. The future problems
relevant to these effects of the trapped state will be dis-
cussed also in this section.

A. General expression

First we show the model of our electronic system in
Fig. 2. The third-order optical polarization under nearly
resonant pumping of the exciton in a pure crystal can be
described in terms of a three-level model, i.e., a crystal

k

(b)ks= ka 2k t

k

(c)

k,=k~+2k

k —k 1

ing pump beams (0&,k, ) and (0&, —k&) and probe beam

(Qz, kz), one of the nearly degenerate four-wave mixing
means generation of the phase-conjugated wave

(20, —Qz, —kz). Here two beams (Q„k, ) and (Qz, kz)
make the population grating p' '(0, —Qz, k, —kz) and the
third beam (0„—k, ) is reflected by the population grat-
ing p' '( 0,—Qz, k&

—kz ), resulting in generation of the
Phase-conjugated wave (20, —Qz, —kz). The same Phase
conjugation is possible even when the roles of the two
pump beams are exchanged. These processes are shown,
respectively, in Figs. 1(b) and 1(c). We will evaluate the
third-order polarization (P' '(20t —Qz, 2k& —kz) ) or
(P' '(20& —Qz, —kz)) in Sec. IIA, show the excitonic
and trapped-state enhancement of y' '(0;0, —0,0), re-
spectively, in Secs. II B and II C, and clarify effects of the
trapped states on the spectrum of the four-wave mixing
as a function of Q&

—Q2 in Sec. II D.

II. NEARLY DEGENERATE FOUR-WAVE MIXING

In this section, 5rst we will evaluate the spectrum of
nearly degenerate four-wave mixing under nearly reso-
nant pumping of the exciton

~
n ) which possibly relaxes

into a lower bound state
~
T ). Under application of two

beams (Q„k, ) and (Qz, kz), both of which are nearly res-
onant to the exciton, the signal at (20,—Qz, 2k, —kz)
originating from the third-order polarization (P'3'(20&—Qz}) is observed as shown in Fig. 1(a). On the other
hand, when we use three incident beams, i.e., two collid-

s 2= —k

FIG. 1. (a) Nearly degenerate four-wave mixing by two in-
cident beams (Q~, k& ) and (Qz, k2) induces a signal in
(2Q& —Q2, 2k, —k2). (b) and (c) Generation of phase-conjugated
wave by three incident beams. (b) The third wave (Q&, —k, ) is
reflected by the population grating made by (Q&,k&) and (Qz, k2)
into the phase-conjugated wave (2Q, —Q2, —k2) and the four-
wave mixing (2Q& —Q&, k2 —2k&), and (c) the third wave (QI k])
is reflected by the population grating made by (Q&, —k&) and
(Q2, k2).
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FIG. 2. Energy diagram of the electronic system in a semi-
conductor microcrystallite. g is the ground state, n is the one-
exciton state, m is the two-exciton state, T is the one-exciton
trapped state, and M is the state connected from the T state by a
one-photon transition. I „~ and I „are transverse relaxation
constants and I „g I T and I T g are longitudinal ones.

FIG. 3. The development of the density matrix of electronic
system due to its perturbation of the external fields with angular
frequency 0& and Q2 for four-wave mixing and generation of
phase-conjugated wave.

ground state ~g ), a single-exciton state ~n ), and a two-
exciton state ~m ). This exciton in the state ~n ) possibly
relaxes into the trapped state

~
T ) by emitting phonons,

the rate of which is described by the longitudinal decay
rate I „T.The exciton state ~n ) and the trapped state

~
T ) decay into the ground state ~g ) radiatively or nonra-

diatively by emitting a photon or phonons. These rates
are presented by the longitudinal decay rates I „and
I T, respectively. This trapped electron in

~
T ) is con-

nected to the higher excited states ~M ) by one-photon
transition. We also introduce three transverse relaxation
rates I „z, I „, and I T~, corresponding to each transi-
tion dipole moment. Effects of the reservoirs, i.e., radia-
tion vacuum and phonon fields, are taken into account by
these longitudinal and transverse relaxation constants.

The density matrix p(t) of the electronic system obeys
the following equation of motion

The other component with time dependence exp(iQzt) as
shown in Fig. 3 is obtained by a similar method, corre-
sponding to the propagation of the electronic state in the
density matrices to the right, as follows:

(0)
pgg Hg„( —Qz }

(2.4)

(2)

[fico gp' g'(2Q, )+H' „p'„'g'(Q, )]
Bt iA

(2) In second order in H', we have an off-diagonal com-
ponent p' g(2Q() and three diagonal ones p'„„'(Q(—Qz),
pgg'(Q, —Qz), and PTT'(Q, —Qz), which contribute to the
generation of four-wave mixing at 20, —02, as shown in
Fig. 3:

Bp 1 [Ho+H', p(t)]+
Bt i% relax

(2.1)

(l)
Png 1 (l) (0) (1)(~ngpng +HngPgg ) ngPngat iA

(2.2)

When the pump field with a component exp( —in, t)
works in H„', the dominant term of p'„" has the same
time dependence exp( —in, t). Then we have for the sta-
tionary case

where H0 denotes the Hamiltonian of the electronic sys-
tem and H' = —P E describes the interaction between the
external field E=2E( cos( Q It —k( r ) +2E cos( Qzt—kz r) and the electric dipole moment P= —eg;r; of
the electronic system H0. The density matrices are ob-
tained iteratively with respect to the interaction Hamil-
tonian H'. We show in Fig. 3 the progression of density
matrices in each step of the perturbation to third order in
H' under the rotating-wave approximation.

(1) To first order in H', only two off-diagonal com-
ponents contribute:

—r.,p.",'(2n, ), (2.5)

(2)
~pnn

dt
[H„'g (Q()pg'„'( —Qz) —p'„g'(Q()Hg„( —Qz) ]

I fi

(2)
nPnn (2.6)

(2)

[H'„( —Qz)p'„"(Q() —pg'„'( —Qz)H„'g(Q() ]
Bt ih

—r„,p(„'„)(Q,—Q, )+r, ,p(2) (Q, —Q,},
(2.7}

(2)"=—r, ,p",,'(n, —n, )+r„,p'„'„'(n, —n, ) .
Bt

(2.8)

{2)
at

(2.9)

Here I „=I „+I „Tand it is noted that the conser-
vation of the population in the second order is confirmed,
c.e.,

H„'g(Q, )pgg'

en, —~„,+ir„, )
(2.3) The stationary solutions of Eqs. (2.5)—(2.8) are obtained

as follows:
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H' „(01}p'„g'(01} H' „(01}H„'g(01}pgg'

A'(20, —co + 1 I ) fi (2Q, —to +i I }(0,—to„+iI „)
H„' (01}p' 'Hg„( —02}(2iI „g+01—02)

p(„'„)(0,—0, )=,e'(0, ~„,+ir„,)(0, ~„, i—r„,)(ir„+0, —0, )
'

(2.10}

(2.11)

T g / 1 2

p' '(0, —0,)= —p'„„'(0,—0 ) —p' '(0, —0 )

(3) To third order in H', the following three off-diagonal components are relevant to the present phenomena:

(2.12)

(2.13)

'„'(20,—0 )=—i(to„iI—„)p'„'(20,—0 )

+ . [H„'m( —Q, )pmg(20, )+H„'g(0, )pgg'(0, —0, )
—p'„'„'(0,—Q2)H„g(0, )],

iA
(2.14)

—p' „'(20,—0 }= i(co—„iI' „—}p' „'(20,—0 )

+ . [Hm„(Q, )p'„'„'(0,—0, ) —pmg(20, )Hg„( —0, )],i%'
(2.15}

PMT(201 02}= ' (~MT '~MT )PMT(201 02)
dt

+ ~ [HMT( 01)PTT( 01 02 } PMg (201)HgT( 02) ]
I fi

(2.16)

The last term of Eq. (2.16) is neglected for simplicity because the transition dipole moment between the trapped state
~T) and the ground state is negligibly small. Then the stationary-state solutions p'„g'(201 —02), p' „'(201—02}, and

pMi (20, —02) are solved from Eqs. (2.14)—(2.16):

(3) nm( 02}pmg( 01} Pnn(01 02) ng(01}

H' „(0,)p'„„'(0,—02)—p' g(201)Hg„( —02)

iri( 201—02—
„cog +iI'„g )

(2.17)

(2.18)

(2) HMT( 01)PTT(01 02 } Pmg ( 1 ) gn ( 1 2)
(2.19)

Here in deriving Eq. (2.17), we used the conservation relation Eq. (2.13).
(4) Finally, we have the expression of the third-order polarization with the frequency component 201—02 under

nearly resonant pumping of the lowest-energy exciton
~
n ) with the largest oscillator strength:

( P( '(201 —02) ) =Tr [Pp' '(201 —02) J

PgnPng (201 02}+PmnPnm (201 02}+PTMPMT(201 02)

P „H„' (
—02)p' '(201)—2Pg„p'„„'H„'g(Q1) P„H' „(01)p'„„' P„p' g(201)H—'„(—02)+
A'(20, —Q2 —co„+iI „) (ri(20, —02—t0 „+iI „)

gnHng ( 01)PTT(01 02 } TMHMT( 01}PTT(01 02)
(ri(20, Q2 co„+iI „)— M

—1)'i(20, 02 coMT+i I MT
—)—

(2.20a)

(2.20b)

(P' '(0))=y' '(0;0, —0,0)(E~ Ee (2.21)

Here we use a single beam with 0,=Q2= 0 and E means

B. Kxcitonic enhancement of y' '

In this section, we will review the excitonic enhance-
ment of the third-order optical polarization

the electric field in the crystal, where we should take ac-
count of the local field effects induced by the external
field. We choose, e.g., the lowest-energy exciton in CuC1
microcrystallite (MC) as the elementary excitation re-
sponsible for the nonlinear optical responses. The exci-
ton Bohr radius az is 6.7 A in CuC1 crystal. In the CuC1
spherical MC with the radius R much larger than a&, the
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1

2M
(n =1,2, . . . ) .

center-of-mass motion of the exciton is quantized as
2

(2.22)

nant pumping of the lowest exciton (1s, n = 1) in the sys-
tern without the trapped states such as in the fresh CuCl
MC embedded in a host matrix NaC1, we have

~ng ~1 ~mg (~1+~int) ~mn ~1+ ~int ~

(2.23)
aB

has a mesoscopic enhancement (2v 2/~)(R/as) in
comparison to the band-to-band transition one p,„. It is
noted that the oscillator strength is almost entirely con-
centrated on the lowest exciton state (1s,n =1). '

The exciton in CuC1 MC which is not strongly irradiat-
ed appears not to be accompanied by a trapped state.
Therefore, we can evaluate the third-order optical suscep-
tibility y' i(n;n, —n, n) from Eqs. (2.20) and (2.21) by
neglecting the contribution from the trapped state and
putting E&=E2=E and 0,=02=0. Under nearly reso-

Here we assumed the infinite potential barrier for an exci-
ton in the matrix, and E is an energy gap between the
valence and conduction bands of CuC1, E,"„,the exciton
binding energy in the lowest (ls) electron-hole relative
motion, and n the principal quantum number for the
center-of-mass motion with the mass M within the MC of
the radius R. The transition dipole moment to this exci-
ton state from the crystal ground state

2&2 R 1P = —p,„(n =1,2, . . . )

and

P„,=P, , P.„=&ZP, ,

I „=2y, I „=I =y+y', I =2(y+y'),
I „=I'+2y =3y+y' .

(2.24)

Here we considered the case that the same kind of exci-
ton, including the spin structure, is excited in a rnicro-
crystallite. When the second exciton has different spin
structure from the first one, two excitons form the bound
state, ' ' i.e., the excitonic molecule so that
2Aco;„, & —30 meV in CuC1, and this contribution to y' '

under 0=co, is almost negligible in comparison to that of
the same spin structure because of large detuning

~
n —coi —2';„,~

( &&co,„,&&
~
n —coi ~

—I ) in the denomina-
tors.

Inserting the expression of Eqs. (2.24) into the first two
terms of Eq. (2.20b), we have the third-order optical sus-
ceptibility for the system of semiconductor MC's with a
number density N, as follows:

y'"(n;n, —n, n) =&,
l pi l" . 1

fi (n co, +iI —) (n co, —iI—)

1

A'3(n —co, +iI )(n —co —t'I )[n —co —2';„,+i (I +2y) j

x 2(y+ ) n —co, iI—
0 co co +& I

(2.25)

The mesoscopic dipole moment P, given by Eq. (2.23)
is multiplied four times in the expression of the third-
order optical polarization so that the meso scopic
enhancement of g' ' is expected under nearly resonant
pumping of the exciton. As far as the exciton is con-
sidered as a harmonic oscillator or an ideal boson, it can-
not contribute to any nonlinear optical responses. Here,
however, three factors make the excitons in MC deviate
from the harmonic oscillators: (1) two excitons with the
same spin structure in a MC interact with each other
through the repulsive interaction

b 3 3

13m Eexc~B 13 b aB

3 477R /3 4 '"' R
(2.26)

in the first Born approximation, and two excitons with
different spin structures form the bound state of the exci-
tonic molecule with the molecular binding energy
%co = 2fico;„„(2) the longitudin—al decay rate of the ex-
citon 2y, and (3) the transverse relaxation rate I'=y+y'
with the pure dephasing constant y'. As a result, under
such nearly resonant pumping the lowest exciton

g, =g~, as ~n —~i~ &&~;„, in the MC with a radius R
&R & g, y' '(n;n, —n, n) is evaluated as fol-

lows.
(a) co;„,& ~

n —~ i I
& I:

1+
A'(n —co, ) y

(2.27)

where N, =3r/(4~R ) is—the number density of the MC's
with r a constant volume fraction.

(b); & I & In—

ZZV, )iP, )'
l (2.28)
&'(r+ r')'r

For case (a), g' ' is almost real and increases as R be-
cause the fourth power of P, gives an R dependence and
overcomes the R dependence of N, . For case (b), g' '

becomes almost imaginary and increases as R if the lon-
gitudinal decay rate 2y is determined not by the superra-
diance but by size-independent processes. On the other
hand, when the superradiative decay 2y is dominant over
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the pure dephasing y', Iy( 'I decreases as R as R in-
creases. For example, a system of CuC1 MC's with
R =80 A and the volume ratio r =10 will show
Imp' '= —10 esu when we assume Al"=0. 1 rneV and
2Ay =0.03 meV.

Masumoto, Yamazaki, and Sugawara observed the ab-
sorption saturation effects by the pump-probe method,
which depend on the size of the CuC1 MC's. They ob-
tained —Imp' '~R and Imp' '= —10 esufor0. 12%%uo

CuC1 MC's with radius 100 A, nearly in agreement with
the theory. ' When the longitudinal relaxation rate 2y
is determined by the superradiative decay but the dephas-
ing y' is much larger than y, —Imp' '~R, while
—Imp' '~R for the case in which 2y is determined by
other size-independent processes. From the exponential
factor 2.6 observed by Masumoto, Yamazaki, and
Sugawara, the superradiative decay looks to contribute
only partially to the longitudinal decay while Itoh's
data' show the large quantum efficiency for the superra-
diative decay. Nakamura, Tokizaki, and Kataoka also
observed a large y' ' value under nearly resonant pump-
ing of the exciton in CuC1-doped glasses, and they ob-
tained the optimum size to get the largest y' ' value,
which depends on the lattice temperature. As mentioned
in Refs. 2 and 18, when the broadening l becomes larger
than the quantization energy fi(co2 co) ) = 3' m /(—2MR ),
the lowest exciton level is hybridized with higher levels
with the smaller transition dipole moments. As the ra-
dius R of the microcrystallite increases, the quantization
energy fi(co2 co() decre—ases while the phonon broadening
AI increases so that the mesoscopic enhancement of
Iy' 'I is reduced by this hybridizing effect as the size R in-
creases beyond the critical size. Then we can expect the
optimum size for the largest Iy( 'I, which depends on de-
tuning Ico, —Ql and the lattice temperature. We have the
expressions Eqs. (2.27) and (2.28) from Eq. (2.25} for the
relevant case co;„,&&IQ —co)l and I in which the mesos-
copic enhancement of y' ' is realized as in Ref. 19, but
the full expression (2.25) is a little different from those in
Refs. 2 and 19. The present treatment fully takes into ac-
count (1) all possible contributions under rotating-wave
and nearly resonant approximations and (2) the normali-
zation of the density matrix in the closed system correct-
ly.

trum of nearly degenerate four-wave mixing under nearly
resonant pumping of the exciton. The spectrum of this
signal intensity as a function of the difference frequency
0&—Qz of two incident beams will give useful informa-
tion of the bound states. This four-wave mixing spec-
trum gives not only many interesting physical phenome-
na, but also will be useful in clarifying the nature of the
bound states. We will first discuss in this section three
effects of the trapped states on y' '(Q; Q, —Q, Q ).

(1) In many cases, the trapped state has long decay
time. Then the electron in the ground state cannot con-
tribute to the polarization with frequency 0 while it is in
the trapped state. This gives a contribution to y' ' and is
represented by the third term of Eq. (2.20b), i.e.,

(2.29)

Note that this contribution is the product of the dom-
inant term in Eq. (2.25) and a factor I „r/rr, i.e.,
the factor measuring how long the excitation persists in
the trapped state. The imaginary part of this term de-
scribes enhanced saturation of the absorption around
A=co, . The lowest excited level in CdS& Se MC may
be different from that of CuCl because the former is on
the border between the weak and strong confinements.
However, the enhancement factor I „r/I r s works
independent of the detailed electronic state. Trapping
time ( I „r)

' is considered to be on the order of
nanoseconds or picoseconds, while the decay time of the
luminescence from the trapped state is estimated to be on
the order of microseconds. If this estimation is correct,
g( '(Q;Q, —Q, Q) is enhanced by a factor ofr„r/1 r —10 —10 in comParison to the MC's
without the trapped state. However, the trapped state
with the longer decay time is more easily saturated so
that the higher-order optica1 processes become non-
negligible.

(2) The second effect of the trapped state on y( ' is
presented by the last term in Eq. (2.20b). This is denoted
by 4yz '. When we introduce the linear susceptibility of
the trapped state y(T')(Q) and the population nr(' in the
trapped state, the second contribution Ay&

' is expressed
as follows:

C. Trapped-state enhancement of y(3) (Ref. 20)
g~(3)IEI2Ee int ~—~(1)(Q) (2)E —int (2.30)

Exciton emission line is observed at the same position
as the absorption peak in the CuC1 MC's embedded in a
host NaC1 matrix, while the much stronger emission lines
of CdS& „Se„MC's show redshifts of an order of 1 eV
below the absorption peaks than the nonshifted emission
line does. These redshifted emission lines come from the
trapped state of the MC's. Several microscopic models of
these bound states have been proposed but these states
have not been clearly identified yet. These trapped states
may be localized at the MC surfaces so that these are
sometimes called surface states. In this section, we evalu-
ate contribution of those trapped states to
g' '(Q;Q, —Q, Q} in terms of characteristic constants of
these states. In Sec. II D we will derive the signal spec-

where

(2.31)

(2.32}

Here PT~ denotes the transition dipole moment between
the trapped state T and the higher excited state M, and
I MT the transverse relaxation rate relevant to this transi-
tion. We do not know these values at present so that we
treat g'T" as one parameter. This contribution of Eq.
(2.30) can be considered as a polarization process once
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the trapped state is populated. When the nearly resonant
states co~T=Q are continuously distributed, the imagi-
nary part of Ay&

' has the sign opposite to that of Ap& '.
Therefore, this imaginary part means induced absorption.
It is noted that this Agz ' has the same enhancement fac-
tor I „T/I T g as the first contribution bgI '.

(3) The third effect comes from the modification of the
first two terms of Eq. (2.20b) because I „=I'„g+I „T
increases by a term I „z- due to the presence of the
trapped state. If the decay I „ is determined by the ra-
diative process, it is of an order of nanoseconds. When
the trapping rate I „Tis on the same order of magni-
tude or smaller than I „g, this third effect is negligible.
For the opposite case I „T&&I„,the dominant part
of the nontrapped state contribution described by the first
two terms of Eq. (2.20b) is reduced by the factor
I „g/(I „T+I „g) in comparison to y1 ' without the
trapped states.

It is noted that the excitonic enhancement of y' ' is ac-
companied with the fast switching due to the superradia-
tive decay, resulting in the enhancement of the figure of
merit, but that the trapped-state enhancement of g' ' is
accomplished at the expense of long response time, which
is determined by the longest time constant
(I 2 g)

' —10 sec.

D. Four-wave mixing spectroscopy

The effects of the trapped state on the third-order po-
larization (P' '(2Q, —Qz) ) are discussed for two cases of
two- and three-beam excitations in this section. First, un-
der application of two beams (Q„k, ) and (Qz, kz), both
of which are nearly resonant to the exciton, the signal at
(2Q, —Qz, 2k, —kz) is observed, originating from the
third-order polarization (P' '(2Q, —Q2, 2k, —kz) ). This
is schematically shown in Fig. 1(a). Second, under appli-
cation of two pump beams (Qi, +k, ) and probe beam
(Qz, kz), the generation of the phase-conjugated wave is
observed at (2Q, —Qz, —kz) as shown in Figs. 1(b) and
l(c). In this first case, the last two terms of Eq. (2.20b)
come from refiection of the beam (Q„—k, ) due to the
population grating pTT'(Qi —Qz, ki —kz) on the trapped
states created by the two incident beams (Q„ki) and

(Qz, kz). In the second case, the third wave (Q„k, ) is

refiected by the population grating p'zz'(Q, —Qz, —k,
—kz), both resulting in generation of the phase-
conjugated wave of the probe beam (Qz, kz) at
(2Q, —Qz —kz). Both cases can be discussed in the same

way in terms of Eq. (2.20b). The effects of the trapped
states are expressed for both the cases in the following
form:

~P"'(2Q1 —Q2) pTT(Q1 Qz)l: —x' gn' (Q»i2)+XT (Q1 Qz)]E1e (2.33)

where

r„
T g

1 1 2

I „ I2I „i(Q,——Q )jH„' (Q, )p' 'H'„( —Q )

r'{r, ,—1(n, —Q, )jIr„1(n, —n, )I(—n, ~„,+ir„,)(n, ~„, ir„, )—' (2.34)

—P P{1)(n Q )
/lg gll

x(2Q, —n, —~„,+ir„, )
' (2.35)

PTMPM Ty',"(Q„n,)= y
M A'(2ni —Qz NMT+1I MT)

(2.36)

As Eqs. (2.33) and (2.34) show, the third-order polarization has a singular behavior as a function of Q, —Qz around the
origin Qi —Qz=0 because I „and I T in the denominator of Eq. (2.34) are very small in comparison to I „g. Here
the ongitudinal decay rate I „=I„+I„T.The decay time of the exciton (I „) is observed to be on the order of
nanoseconds, while the decay time of the trapped excitation (I T ) to be on the order of microseconds, e.g., in the
case of the exciton in GaAs quantum-well systems. On the other hand, the transverse relaxation time (I „g ) of the ex-
citon is on the order of picoseconds. The signal of the degenerate four-wave mixing (DFWM) is proportional to the
square of the absolute value of P' '(2Q, —Qz).

Let us consider first the exciton in GaAs quantum wells and bulk crystals. In this case, the exciton-exciton interac-
tion is negligible, because it is inversely proportional to the crystal volume, for the excitons with the same spin struc-
ture. The molecular binding energy of two excitons with different spin structure is so small in GaAs crystal that this
contribution should be taken into account under nearly resonant pumping of the lowest exciton. Then we have the fol-
lowing expression of the third-order optical polarization:
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(P' '(20i —02)) =2~Pi, ~
E( 0—2)E(0 ) /fi

2l f
(20,—0 —co„+iI )[20,—0 —co» + i ( I +2y ) ](0,—co„+c r )

2[2r —i (0,—0~) ](0,—ci)»+i r )

[2y i—(0,—Qz)] (Qi —co„—i I )

(2iy+co ) ~P /P» ~

(2n, n—, ~—„+ir)[2n, n—, ~—„+~'.+c(r+2y)]
2(2iI+0, —0 )

(Qi —co» iI—')(Qi 0—2+2iy )

1 1
X

(0i co—i, —iI ) 0i co»—+co~ /2+i I

r„z.[2r—(Qi —Q2}]+ [r, , i (—0, 0—)][2y (0—, 0—)](0, co„—+i 1 )(0, co»— i I—)

~PMr ~'/~P i, ~'
x

2Q] Q2 N] +i r ~ 2Q] Q2 COM7 +i r~y
(2.37)

where P is the transition dipole moment between 1s ex-
citon state and the excitonic molecule (EM) state, and we
use the same notations of I and 2y as in Eq. (2.24).
When we denote by I and a, respectively, the coherence
length of the exciton and an average separation of two ex-
citons in the EM, the excitonic transition dipole moment

P» is on the order of (1/aii) p,„ in the bulk crystal,
while the transition dipole moment P to the EM from a
single ls exciton is -(ci /aii) ~2@,„.'s'~' ~3 As a result,
the relative magnitude of the second to the first term in
the square brackets of Eq. (2.37) is estimated to be on the
order of magnitude ~P /P»~ (I'/c0 )-(a /I) (r/co )

under nearly resonant pumping of the 1s exciton
Q&-Q2-co&, . In the case of the exciton in GaAs quan-
tum well, it is -(a /I as)'c (I'/co" ), ' ' and
Rr flub =-1 meV. As a result, the first term overcomes
the second at such a low temperature as the exciton
coherent length 1 is larger than the molecular extent
a -az. On the other hand, the exciton in bulk CuC1
crystal has large molecular binding energy flu -30 meV
&&AI -0.02 meV at low temperature T-4 K. There-
fore, the molecular level is so greatly detuned under near-
ly resonant pumping of the lowest exciton that the contri-
bution from the EM to y' ' is almost negligible. Further-
more, the coherent length I of the exciton is much larger
than the molecular extent a in the good crystals at low
temperature. As a result, the second term in the square
brackets of Eq. (2.37) is negligible in comparison to the
first also under nearly resonant pumping of the lowest ex-
citon at low temperature in the good CuC1 crystals.

The signal of DFWM is proportional to the square of
the absolute value of (P' '(2Q, —02)). The absolute
magnitude of the third-order polarization
~(P' '(2Qi —02)) ~

is plotted as a function of detuning
Q&

—Q2 in Fig. 4. As a result, the spectrum of the
DFWM shows the following hierarchical structure: (1)
the very sharp Lorentzian structure (like a spike) with the
half-width rr —106 sec ' around 0,—02=0, (2) the

x iE(ni)i E( —Q2) . (2.38)

Figure 4 describes the absolute value, the real, and the
imaginary parts of the normalized third-order susceptibil-
ity y' '/[~P„~ /(Rl ) ] as a function of normalized de-
tuning (0,—02)/I'. Here the linear polarizability y')' of
the trapped state was neglected because this does not give
any qualitative changes of the four-wave mixing spec-
trum which is presented by ~y' '~. This is mainly because
the transition dipole moment PM&- of the trapped state
has no excitonic enhancement, so that

~ PMr ~ /~ P i, ~
is

negligibly small in the last term of Eq. (2.37). Both spec-
tra of Figs. 4(a) and 4(b) are characterized by two
hierarchical structures, i.e., the sharpest spike with the
spectrum width I z /I =0.001 and the second shar-
pest peak with the width I „/I =2y/I =0.2 both at
Q&

—Q2=0. The third structure has the peak at Q, =co„
and the width I . As Fig. 4(b) shows, the four-wave mix-
ing spectrum has asymmetry and dip under off-resonant
pumping (Q, —co„)/I =1.0. Based on these theoretical
results, we will discuss the physical origins of these
hierarchical structures and the observed four-wave mix-
ing spectra of GaAs quantum wells in Sec. IV.

III. DIFFERENTIAL TRANSMISSION SPECTRUM

Differential transmission is measured as the transmis-
sion change of the probe field E~„b,(nz, k2)

rather sharp Lorentzian with the half-width I „—10
sec ' around Qi —Q2=0, and (3} the broad structure
with the width I „—10' sec ' around Q&-co„and
Qz-co„~. These DFWM spectra have been observed by
Remillard and his co-workers for the exciton in GaAs
quantum-well systems.

The third-order optical susceptibility y' '(2Q i—Qz, Q, ,
—Qz, n, ) is defined by

(P' '(20, —0 )) =y' '(20, —0;0,, Q, Q—, )
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=2E2cos(Q2t —k2.r) due to the presence of pump field

E~„~(Q„k,) =2E, cos(Q, t —k, .r) as shown in Fig. 5.
This is described by the third-order optical polariza-

tion P' )(Q2, k2):

P'"(Q, ,k, ) =q(3)(Q,;Q„—Q„Q,)

Ep„)Q t)

Eoda»

where

X E(Q, )E( —Q, )E(Q2), (3.1)

Pfo

(b)

40.0 20.0 Ec„„)Qt)

I o

Ep ()+02)

20.0

/ X (3)
~ReX

lw
E

lw
Ol
K

0.0

FIG. 5. Schematic of measurement of differential transmis-

sion by (a) conventional method and (b) that used by Steel et al.
(Ref. 11).

0.0
-1.0 0.0

(g,—02)/I

40.0
(b)
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I
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-(3)
IfYl X
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') Re X
(3)

-20.0
1.0

20.0

IH
E

INI
K

0.0

E(SQ;)=E, exp[+i(Q, t —k; r)] (i =1 and 2) .

In this section, we derive the expression P' )(Q2, k2) by
the third-order perturbation in electron-radiation interac-
tion H'. We use the same dipolar approximation for H'
as in Sec. II. This difFerential transmission spectrum is
also evaluated under nearly resonant pumping of the
lowest-energy exciton, which relaxes possibly into a lower
bound state. We use the same 6ve-level model for the
electronic system as shown in Fig. 2. The density matrix
p(t) of the electronic system also obeys the same equa-
tions as Eq. (2.1). We present in Fig. 6 the progression of
density matrices in each step of the perturbation to third
order in H' under the rotating-wave approximation.

(1) In first order in I', we need consider in the present
problem the following three components of the density
matrices:

0.0—1.0 0.0
(a,-a,)lr

——20.0
1.0

(3)FIG. 4. Four-wave mixing spectra ~g ~
=y")(2Q)

—Qz, Q„—Q2, Q, )~/[~P„~ /(fil ) ] are shown by solid lines as a
function of detuning (0&—02)/I . Parameters are
I T /I =0.001, I „T/I =0.01, y/I =0.1, and (a)
(Ol —~&, )/I =0 and (b) (0&—

co&, )/I =1.0. Real and imagi-
nary parts of the normalized third-order optical susceptibility
are presented by the dashed-dotted and dotted lines, respective-
ly.

(1)
p (Q))

(1)
( Q2)

ng

n (2)(Q +Q )~ mN,'

p
(2)

( 0 )

p
(2)

p' '(Q,

p'"( Q, Q,
CC

p
(3)

(3)
p MT(Q2)

FIG. 6. The development of the density matrix of electronic
system due to its perturbation of the external Selds with angular

frequencies Q& and Q2 for differential transmission measure-

ment.
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H„', (n, )p,
"'

p,"'H,'„(—n, )

H„',(n, )p,'"
fi(Q2 —co„+iI'„)

(3.3} =H' „(02}p'„(0,}+H' „(0,)p'„g(02), (3.5)

(3.4)
fi(0 —0,+1I„')p'„„'(0 —0, }

=H„(0 )p"„'—( —0, )p'„"(0 )H'„( —0, ) . (3.6)

p'„„'(02—0, ) are obtained from Eq. (2.1) as follows:
(3.2)

f(0, +n, —~.,+ir.,}p(2)(n,+n, }

(2) The second-order stationary solution of Eq. (2.1)
consists of one off-diagonal component p' g(Q, +Q2) and
six diagonal ones. For example, p' ' (01+Q2) and

These density matrices are expressed in the following
form;

H'„(02)H„' (0, )pg'
' H' „(01)H„'g(02)pg'g'

e2(0, +0, ~.,+ir.,)(0, ~,+ir„,) f'(0, +0,—~,+iI ., )(n, —~.,+ir„, )

2I „i(—Q —0, ) H„' (0 )p' 'H'„( —0, )
(2)(0 0 )

ng 2 1 ling 2 gg glk 1

r„—1 (02—01) f22(02 —co„g+ir„g)(01 co„g
——iI'„g)

The second-order population at the trapped state
~
T ) is obtained from an equation similar to Eq. (2.8}:

(3.7)

(3.8)

PTT(02 01} r ~ 0 0 P (02 Ql}
T g

l 2 1

The conservation of the population is guaranteed by the following relation which is also obtained from Eq. (2.1):

p' '(0 —0,)= —p'„„'(0 —0, )—p' '(0 —0, ) .

Three other components are given by replacing Q2 by 0, in Eqs. (3.8)—(3.10), as follows:

2r„, H„', (n, )p,",'H,'„(—n, )
(2)(p )

Ilg Ifg 1 gg gfl

f'(0, ~„,+ir„,)(0, ~„, ir„, )
'

(3.9)

(3.10)

(3.11)

p' '(0 —0, )= p'„„'(0),
T~g

p( 2 )( p ) p( 2 )
(p ) p( 2 )

( 0 )

(3.12)

(3.13)

(3) To third order in H', three off-diagonal components p'„g'(02), p' „'(02), and PM'T(Q2) are obtained by solving the
following equations for the density matrices:

fi(0 —co„+ir„)p'„'(0 )=H„' ( —Q, )p' '(0, +0 )+H„' (0 )p' '(0)

+H„'g(0, )pgg'(Q2 —01)—p'„„'(0)H„' (Q2) —p'„„'(Q2—01)H„'g(Q1),

fi(0 co „+iI „)p' „'(—0 )=H'„(0 )p'„'(0)+H'„(0, )p'„„'(0 —0, )—p' '(0, +0 )H'„( —0,),
@02 MT+i rMT PMT(02 HMT(02)PTT(0)+HMT(01)PTT(02 Ql)

(3.14)

(3.15)

(3.16)

When we are interested only in the nearly resonant
pumping of the lowest-energy exciton with the largest os-
cillator strength, we may choose single- and two-exciton
states, respectively, for one- and two-excitation states

~
n )

and ~m ). Here we must distinguish between two cases of
two-exciton state ~m ): (1) two excitons with the same
spin structure are excited and (2) those with different spin
structure for which the bound state of the EM is formed.
As mentioned already in Sec. II, the second contribution
is negligible for the following two cases: (a) the coherent
length of the exciton is much larger than the average sep-

I

aration a of two excitons in the EM, e.g., for excitons in
pure GaAs quantum wells at low temperature, and
(b) the molecular binding energy fico is much larger than
the excitonic homogeneous broadening AI and the 1s ex-
citon is nearly resonantly pumped, e.g., for excitons in
bulk CuCl crystal and CuC1 mjcrocrystallites. Fur-
thermore the contribution of the trapped state to the ab-
sorption saturation and difFerential transmission spectra
is dominant over the intrinsic contribution near the de-
generate case 02=0&. We are interested here in the
singular behavior of the difFerential transmission spec-
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trum around this frequency region. Therefore, we
confine ourselves to the case in which two excitons in the

~
m & state have the same spin structure in the bulk crystal

or quantum-well system, so that the repulsive interaction
fi~;„, between two excitons is negligible in comparison to
RI . As a result, we can choose the eigenenergies, the
transition dipole moments, and the relaxation constants
as follows:

~ng ~1s ~

Pn =P
I

mg 2~1s~ ~mn ~1s ~

P „=&2P„,
and

I „=2y, r„,=r, r, =2r, r.„=r+2y . (3.17)

Then we can represent the differential transmission spec-
trum in lowest order both in the pump and probe fields in
terms of —Im ( P' '(Q2) &. Here

(P" (n, ) &
=T.(Pp'-"(n, ) &

gnpng (Q2)+Pnmpmn(Q2)+ g PTMPMT(Q2)

Pg„H„' ( —Q, )H'„(Q2)H„' (Q))pgg'

r'(n, ~„,+ir„,)(n, +n, ~, +—ir, )(n, ~„,+—ir„, )

P „H„' ( —Q, )H' „(Q,)H„'g (Q2)p' g'

a'(n, ~„,+ir„,)'(n, +n, ~,—+ir, )

4r„,P,„a„',(n, )p,",'a,'„(—n, )a„',(n, )

r'r„(n, —~„,+ir„,)[(n, —~„,)'+r2„, ]

2[2I „i(n—Q, )—]P „H„' (Q }pI 'H'„( —Q, )H„' (Q, )

e'[r„ i(n, —n, )](n—, ~„,+—ir„,)'(n, ~„, ir„,)—

2r„,P„a' „(n,)a„',(n, )p,",'a,'„(—n, )

x'r„(n, —~.„+ir.„)[(n, —~„,)'+ r'„, ]

[2I „i(n —Q—, )]P„H'„(Q,)H„' (Q )p' 'H'„( —Q, )+
3r'[r„—i(n, —n, ) ](n,—~.„+i r.„)(n,—~„,+ i r„,)(n, —~„,—i r„, )

P„H' „(Q2)H„'g (n, )pg'g'Hg„( —Q, )

r'(n, —~ „+ir „)(n,+n, —~ ,+ir , )(n, —~„,+ir„, )

P„.H.'„(n, )a„',(n, )p,",'a,'„(—n, )

x'(n, ~.„+ir.„)(n,+n, ~.,+ir., )(n, ~„,+ir„, )

2I „ I „H„' (Q, )p' 'H'„( —Q, )

r'r, ,r„[(n,—~„,)'+ r'„, ]

TMHMT( Q2 ) gn ng 2

n,—,+ r, n, —
n, + r„,

I „[2I„i(n —Q, )—]H„' (Q )p' 'H'„( —Q, )+"'
%3[I i (n —Q, )][I—„i(n —Q—, )]

PTMHMT( n 1 )

0 —co +i I
P „H„' (Q, )

02 CO +i+
(3.18)

This is rewritten in the nondimensional form by scaling all frequencies and relaxation constants to I:
(Q —Q, )/I —=x, (Q, —co„)/r=y, y/I"—:y, I „ /I:—y„, r /I =y

(3.19)

PMT

P ls

1 —= —A +iB,
(Q2 ~MT)/r+
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(P'"(x))/[IP, I &(Q,)I&(Q )I'/(&I )'] =- 1 1 1

(x +y +i)(x +2y +2i) y +i x +i

+ 2 + 2(2 —ix }

y(y +1)(x+y+i) (2y —ix)(x+y+i) (y i—)
1

y(y +1)[x+y+i (1+2y)]
2 lX

(2y ix—)[x +y + i ( 1+2y )](x +y +i)(y i }—

1 1

[x +y+i (1+2y)](x +2y +2i) y +i x +y +i

71l~T

rrT (y +1}
1—A +iB+ x+y+i

1—A +iB+
x +y+i

y„r(2—ix)
+

(2y ix)(y T
—

s ix—)(x +y +i)(y i)—
(3.20)

The last term of Eqs. (3.18) and (3.20) describes the main
effect of the bound state on the differential transmission
spectrum. This has two factors [I'r g

—i (Qz —Q, )] and

[I „—i (Q2 —Q, )] in the denominator. The linear polari-
zability —A+iB of the trapped state is given by Eq.
(3.19). The decay rates I r and I „are, respectively,
the smallest around the second smallest constants so that
—Im(P' '(Q2) ) has the very large spike or dip as a func-

tion of Qz —
Q& and Q2 —

Q& =0, depending upon the sign
of B —1/[(x+y) +1]. The higher excited states IM)
constitute the continuum so that the summation over M
reduces A and B to be a constant almost independent of
Q2 around Q2 =co&, . We calculate the differential
transmission spectrum —Im(P'3'(Q2) ) by choosing
A =0 and B =0.25 and y=—(Q, —co„)/I = —2.0, 0.0,
and 2.0, as shown in Fig. 7.

As Fig. 7(b} shows, —Im(P' '(Q2)) has a positive
peak around x =(Q2 —Q, )/I =0 with the width 2y/I'
when y =(Q, —co„)/I'=0. This positive peak
—Im(P' '(Qz} ) )0 means the absorption saturation.
This is due to the fact that the absorption saturation of
the exciton —1/[(x +y) + 1] overcomes the induced ab-
sorption B of the trapped state in the brackets in the last
two terms of Eq. (3.20). On the other hand, it changes
into the dip with some asymmetry with both sides, when

y =(Q& —
co&, )/I =+2, corresponding to B —1/

[(x+y) +1])0 around x =0. The sharp dip has the
spectrum with 2yT g/I and means that the induced ab-
sorption due to the trapped state is overwhelming. This
kind of spectrum change has been observed on the exci-
ton in PbI2 crystal with different assignments. This will
be discussed in Sec. IV.

IV. DISCUSSIONS

The third-order optical nonlinearity causes a great
variety of phenomena. In this paper, we have discussed

several eS'ects of the excitonic trapped state on the third-
order nonlinear optical responses. First, we discussed in
Sec. II the nearly degenerate four-wave mixing under
nearly resonant pumping of the exciton with two beams,
and the generation of the phase-conjugated wave with
three beams. The signal for both of these phenomena is
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proportional to the square of the absolute value of the
third-order optical susceptibilities y' '(2Q, —Q2', Q, ,—Qz, Q, ). Although both real and imaginary parts of
y' 'are accompanied by complicated structures as Figs.
4(a) and 4(b) show, the spectrum of the absolute value of
y' ' is rather simple but has a hierarchical structure due
to the presence of the excitonic trapped state. Usually
the trapped state has the longest decay time
rT g

=(I r g)
' so that the sharpest peak of ~y' '~ ap-

pears at Q, —Q2=0. The exciton has the second longest
decay time r„=(I„) '. As Figs. 4(a) and 4(b) as well as
Eq. (2.33) and (2.34) show, the spectrum of ~y' '~ has also
the Lorentzian shape with width I „around Q&

—Q2=0.
The relaxation constant I „ofthe excitonic polarization
is the largest. As a result, the signal of the four-wave
mixing as well as the generation of the phase-conjugated
wave, which is described by the square of ~y' '~, has
broad enhancement around Q, =co„as well as Q2=co„g
as Eqs. (2.33) and (2.34) show.

On the other hand, the differential transmission spec-
trum is described by the imaginary part of

'(Q2, Q„—Q&, Q2). Depending upon the pump fre-
quency Q, relative to co„, i.e., the magnitude of the ab-
sorption coefficient of Q2 from the trapped state into the
higher excited state relative to that from the ground state
to the excited one

~
n ), the differential transmission spec-

trum changes from the induced absorption to the absorp-
tion saturation, i.e., from the dip to the spike, as Figs. 7
show. The polarization rotation spectrum under the
pump-probe method is not represented by the absolute
value of y' ' but by the real and imaginary parts of g' ' in
a complicated way. Therefore, we can expect the dip and
spike structures around Q, =Q2 depending upon the
pump frequency QI relative to co„ in the polarization ro-
tation spectrum of the linearly polarized probe light un-
der pumping by the circularly polarized pump beam.

Remillard and his co-workers measured cw frequency-
domain four-wave mixing mainly due to the n = 1 heavy-
hole exciton in GaAs multiple quantum wells, and ob-
served that the excitation relaxation consist of both fast
and slow components. This was made possible by the
high-resolution spectroscopy measurements of
frequency-domain four-wave mixing as a function of de-
tuning QI —Q2. They observed three resonances with
linewidths of 3 GHz, 10 MHz, and 30 kHz, which corre-
spond to the lifetimes 100 psec, 30 nsec, and 10 psec, re-
spectively. We may tentatively assign those hierarchical
structures in terms of the present model as follows. The
sharpest spike with the linewidth 30 kHz corresponds to
the spike in Fig. 4, the linewidth of which is determined
by I"

T g. This looks reasonable as the lifetime of the
trapped state is considered to be on the order of mi-
croseconds. The second sharpest structure, with
linewidth 10 MHz, also with the center at QI Q2=0
comes from the excitonic lifetime (I „),on the order of
nanoseconds. The widest structure, with width 3 GHz, is
not clearly assigned but the present model suggests this
broad band to come from the dephasing F„ofthe exci-
tonic polarization.

The differential transmission spectrum was observed

for the exciton in PbI2 crystal to change around Q, =Qz
from the dispersive type under off-resonant pumping of
the exciton

~ Q, —co„~) I on both the sides into the nega-
tive induced absorption line with symmetric shape at the
resonant pumping ~Q, —co„~=O. These had been ana-
lyzed by the conventional y' ' expression for the intrin-
sic system. We consider, however, the ability to properly
understand these features only by taking into account the
effects of the trapped state as shown in Fig. 7. The effects
of the trapped state on the differential transmission spec-
trum are represented mainly by the last two terms of Eq.
(3.18). The contribution of the last term, in particular, is
extremely enhanced when the detuning ~Q&

—Qz~ of two
beams is reduced to less than the exciton spectrum width
I. This is because the decay rate I T of the trapped
state into the ground state is the smallest and the decay
rate 1"„ofthe exciton is the second smallest among the
inverse of the characteristic time constants, so that the
population prr(Q2 —Q~) of the trapped state increases
under (Q2 —Q, [ (I T g, and (Q2 —Q, (

(I „as Eq. (3.18)
show.

The sign of the transmission spectrum around
(Q2 —QI)/I =0 depends on the relative magnitude of the
excitonic absorption to the induced absorption from the
trapped state to the higher excited state. Therefore, we
expect the absorption saturation, i.e., the negative in-
duced absorption due to the 1s exciton with the sym-
metric broadening as shown in Fig. 7(b) at the resonant
pumping ~Q, —co„~=O. This changes into induced ab-
sorption for off-resonant pumping of the exciton
~Q, —co„~/I =2 because the induced absorption from
the trapped state T to the higher excited state M is al-
most independent of Q& around Q2-Q&-co» as the M
states are continuously distributed but the excitonic ab-
sorption is reduced to —,

' of the peak value at the off-

resonant pumping, as Figs. 7(a) and 7(c) show. Here the
differential transmission spectrum becomes negative
around ~Q2

—Q, ~
/I =0. This means that the induced ab-

sorption overcomes under the off-resonant pumping
~ Q, —co„~ /I =2. The differential transmission spectrum
around the origin of (Q2 —Q, ) consists of two structures.
The first one is the sharp induced absorption line with the
smallest spectrum width I T g. The second is a com-
bined structure of the dispersive type and the absorption
saturation both with the spectrum width I „as Figs. 7(a)
and 7(c) show. Note that the left- and right-hand struc-
tures are exchanged with respect to the origin
(Q2 —QI)/1=0 for the pumping (Q, —

co&, =2I ) above
the exciton co„[Fig. 4(a)] and (Q& —co„=—2I') below
one [Fig. 4(c)]. The relative depth of the sharp dip de-
pends on the ratio of I „T to F„. The trapping rate
I"„Tis determined by the concentration of the impuri-
ties and the cross section of trapping the exciton at the
impurity.

Finally, we list the problems remaining unsolved in the
present paper. First, we discussed the stationary
responses of the third-order nonlinear optica1 phenomena
in this paper. When we, however, use the short laser
pulses, as short as picosecond or femtosecond magnitude,
we need to solve the equations of motion for the density
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matrix as a function of time. The signal intensity as well
as the spectrum of four-wave mixing and differential
transmission depend sensitively on the relative time at
which the pump and probe beams are applied. This is a
future problem. Second, we do not yet know the micro-
scopic structure of the trapped state, e.g., in the semicon-
ductor microcrystallite of CuC1 and CdS& Se„embed-
ded in insulators or glasses. We believe that the donors
or acceptors, or the isoelectric traps, will play the roles of
the trapped states of the exciton in bulk crystals, e.g. , in
PbI2 and CuC1 crystal. The surface fluctuations of the
GaAs quantum-well system also may represent the trap-
ping center of excitons. While we are calculating micro-
scopically the surface-trapped states in the semiconduc-
tor microscrystallites, the origin of the trapped state may
be partially solved experimentally by observing the

present four-wave mixing spectrum or the differential
transmission spectrum while controlling the concentra-
tion of impurities.
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