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Forming of wave packets by one-dimensional tunneling structures having a time-dependent potential
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We study the influence of a relatively small (in a classical sense) arbitrary time-dependent electrical
pulse on the transmission amplitude of one-dimensional tunneling and resonant-tunneling structures.
The transmission amplitude is found with use of semiclassical perturbation theory. First, the simplest
tunneling structure —a potential barrier —is considered. It is shown that the form of the outgoing wave

packet is sensitive to the presence of poles of the potential in the complex plane of time. For instance, a
potential pulse with a single-peak time dependence can generate an outgoing wave packet with a number
of peaks related to complex poles. Next, an expression for the transmission amplitude of arbitrary one-
dimensional structure is obtained under the assumption that the time-dependent part of the potential is
independent of the coordinate inside the structure. Then a resonant-tunneling double-barrier structure
is considered. The expression for the transmission amplitude is simplified in this case, making use of the
Breit-Wigner approximation. As examples we consider the switching-on of a potential, constant in time,
and a potential with a linear time dependence. It is shown, in the nonadiabatic case, that at the moment
of switching the outgoing flux begins to oscillate, with the amplitude of oscillation vanishing with time.
We consider also the charge-accumulation process during one-dimensional resonant tunneling of
monoenergetic electrons and study the conditions of intrinsic stability of a double-barrier structure.

I. INTRODUCTIQN

The classical problem of tunneling through a potential
barrier and resonant tunneling has recently been general-
ized to the case of a potential having an increment with a
harmonic dependence on time for both simple tunnel-
ing' and resonant tunneling. ' These investigations
were stimulated mostly by the progress in the preparation
of nanometer tunneling and resonant-tunneling de-
vices, ' ' including devices subjected to an alternating
field. The recent advances in manipulating atoms with a
scanning tunneling microscope allo~s one to make
artificial structures consisting of a finite number of atoms
with atomic-size accuracy. ' ' Therefore one can believe
that in the not-too-distant future artificial tunneling and
resonant-tunneling devices working on the levels of a
finite system of atoms deposited at preselected positions
will be created.

Investigating the properties of such devices under the
inhuence of radiation, one can speak also about the
nanometer detector of radiation. ' ' An alternating
electrical field can also be generated inside the structure,
e.g., owing to the charge-accumulation process in the
resonance-tunneling device. Thus the time depen-
dence of an applied field can in general have an arbitrary
form (from the simplest harmonic to pulselike) generated
by a laser or charged wave packets passing by at small
distance from or just inside the structure investigated.

One of the versions of a nanoelectronic device is a
structure having good ballistic qualities of electrons. It
can be modeled by a potential profile containing quantum
wells and barriers and a number of electrodes.

In Fig. 1 we show the simplest structures we consider.
Figures l(a) and 1(b) demonstrate a tunnel junction and a
resonant-tunnel junction subjected to a radiation. In Fig.

(c)

FIG. 1. Simplest nanometer tunneling and resonant-

tunneling structures.
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1(c) we denote the situation when changing the potential
barrier between electrodes 2 and 3 is caused by a charged
wave packet passing by inside wire 1. In Fig. 1(d) we
show a device where the nonstationary charge-
accumulation process in its upper, resonant-tunneling,
part (see below) may induce barrier oscillations and hence
the related alternating current in the lower tunnel junc-
tion. The sequence of structures shown in Fig. 1 can be
easily continued.

The principal aim of the present work is the investiga-
tion of both the pulse transformation by the tunneling
structure and the pulse transformation and generation by
the resonant-tunneling structure. These problems might
be regarded as a basis for developing a general theory of
more complicated nanometer structures where the time-
dependent potential is induced both due to the external
radiation and intrinsic charging. By this, we mean, e.g.,
the the generalization of the stationary theory of compli-
cated resonant-tunneling devices.

Below we consider one-dimensional structures having a
time-dependent potential. In Secs. II—IV we assume that
the time-dependent form of the device potential is known.
In Sec. V the time dependence of potential appears as a
result of the charge accumulation in quantum wells, con-
sidered using the self-consistent-field approximation.

To calculate the outgoing electron wave function, we
use semiclassical perturbation theory. It allows us to ob-
tain the time-dependent increment of the action staying
in the exponent of the expression for the wave function.
The action for tunneling processes has an imaginary part,
and such an increment can change the wave function by
an order of magnitude. In Sec. II we formulate the
scattering problem under consideration and given an ac-
count of semiclassical pertubation theory. In Sec. III we
derive a semiclassical expression for the outgoing elec-
tron flux for the simplest tunneling structure: a time-
dependent potential barrier. As examples, we find the
analytical expressions for the outgoing flux for the poten-
tials having poles in the complex plane of time. We show
that, under definite conditions, a pole can generate a peak
in the flux dependence of time and coordinates. For ex-
ample, a potential pulse with the time dependence
(y t +1) ', considered in Sec. III C, has only one max-
imum, but it can generate a wave packet with two maxi-
ma related to the real parts of complex poles of
(y t +1) '. Another example considered in Sec. III is a
potential with the Lorentz dependence of time (Sec. III B)
and potential subjected to the periodic sequence of
Lorentz pulses (Sec. IIID). In Sec. IV A we obtain the
expression for the outgoing amplitude for an arbitrary
one-dimensional potential structure submitted to a poten-
tial pulse independent of the coordinates in the region of
the structure. In Sec. IV C the double-barrier resonant-
tunneling structure is considered. The formula for the
transmission amplitude obtained in Sec. IV A is simplified
using the Breit-Wigner approximation. As examples, in
Sec. IV D we assume that the structure is subjected to a
potential, constant in time, and a potential having a
linear dependence of time, switched on at a definite mo-
ment. We show that in this moment, in the nonadiabatic
case, the outgoing flux starts to oscillate. The amplitude

of oscillations vanishes with time. In Sec. V we study the
charge-accumulation process during one-dimensional res-
onant tunneling of monoenergetic electrons using the
self-consistent-field approximation. The equation for the
transmission amplitude is derived. Using this equation,
we study the intrinsic stability of a one-dimensional
resonant-tunneling device.

II. ASSUMPTIONS AND THE DESCRIPTION
OF THE CALCULATION METHODS

A tunneling structure will be described below by the
potential V(x) (one-dimensional model) and additional
(applied) alternating potential W (x, t ) Th.e electron
wave function of the problem satisfies the Schrodinger
equation

8 A' 8
iA = — + [ V(x)+ W(x, t)]1( .

2m
(2.1)

Let V(x) and W(x, t) be constants to the far left and to
the far right of the structure and, in particular,
lim„„W(x, t) =0 Sup.pose that an electron is given to
the far left by the stationary incident wave with energy
E,27

Q;„(x,t)=u ' exp — Et+m J—v dx

2
v (x)= (E —V(x—)

1/2 (2.2)

The corresponding outgoing wave to the right of the
structure is convenient to present in the form

g,„,(x, t)=T(x, t)v ' exp — Et+m f —u dx

(2.3)

To find the transmission amplitude T(x, t), we use the
following methods.

A. Semiclassical pertubation theory

'2
as i as+ + V(x)+ W(x, t)=0
Bt 2m Bx

(2.4)

and expand the action S in powers of W(x, t) up to the
first order:

We suppose V(x) and W(x, t) to be rather slow (semi-
classical) functions everywhere except in a finite number
of points (interfaces) where they or their derivatives may
have discontinuities. We assume also that W(x, t) is
small compared with the kinetic energy of electron
mv /2, as usually it takes place in practice. To solve Eq.
(2.1) in semiclassical regions, we consider the correspond-
ing Hamilton-Jacobi equation
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S =So+Si+
T 2

as, + 1 as
+ V(x)=0,

Bt +2

as, 1 as, as,+— + W(x, t)=0 .
Bt m Bx Bx

(2.5)

f=v ' exp —(So+S, )
l

Solving (2.5), we obtain the general semiclassical solution
of Eq. (2.1}in the form

electron-current density, and the value Q(x, r } is propor-
tional to the electron-charge density.

III. SINGLE BARRIER

Let us consider the case of simple barrier shown in Fig.
2(a). We assume first that W(x, t) is an analytical func-
tion having no poles in the complex plane of time. Then
the expression for the outgoing flux 6"(t) can be found by
straightforward matching the solutions (2.6) in points x,
and xz and also with the incident wave (2.2). As a result,
we have

So(x)= Et+—m f U dx, (2.6) 8(t) =8 exp[I (t)],

S,(x, r)= f'W x, r+ f" "" Xp

to=exp —„—m )U~dx
1

d '
Io(t)= —Im f W x, t+iro+ fx( U(x')

(3.1)

where q(r) is an arbitrary function that is small com-
pared with So [the derivatives of g(r) must be small com-
pared with the derivatives of So also]. Particular cases of
the approximation (2.6) were used earlier in the calcula-
tions

f 2dx

+f 2 dx
W +f& dx

xl U(x) x2 V(x )

B. Current and charge densities of the outgoing electrons

In the approximation considered, the outgoing wave
(2.3) can be presented as a linear combination of solutions
(2.6). Because of the inequality S& «So„we have
1(t„=ivy, and according to (2.3), the flux of the wave
function to the right of the structure,

where x =x2, v means i~v~ for U image, and ro is the tun-

neling time. ' One can see that two integrals of W in (3.1)
can be rewritten as one integral over time on the circuit
Co in the complex plane of time with cuts along the seg-
ments (Imr =0, —~ & Res & 0) and (Imw= i ro, —
0 & Rer & ~ ) [see Fig. 2(b)], so that

(2.7)
V(x)

(a)

1S

The corresponding probability density of g,„,is

$(x, t) = [v(x)] '~ T(x, t)
~

(2.&)

(2.9) Xq

'L
I

X2

According to (2.6), the important property of the func-
tion cP(x, r) is that it only depends on the argument of the
function g in (2.6):

8(x, t)=8 t —f x dx
v(x)

(2.10}
0

0 g4
~3

It means also that for U {x)=const {i.e., in a homogeneous
medium) the wave packet ~g,„,(x, t)~ propagates along
the x axis without changing its form, having velocity v.

To calculate 8(x, t) it is obviously enough to find this
function for one value of x. Below we will put x equal to
the right boundary of the structure x 2.

The values (2.8) and (2.9), considered for one electron,
only have a probability meaning. However, in a real situ-
ation, there may be many electrons having initial energies
close to E. Then the value 8(x, t) is proportional to the

0 0
~2 f co

-I&O

FIG. 2. (a) Potential barrier and (b) the circuits of integration
in the complex plane of time: Co staying in Eq. (3.2) and C stay-

ing in Eq. (3.12).
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Iv(t)= —Im f dr W(x(r), t+iro+r},=2
Co

(3.2}
function in a vicinity of r„. Then, substituting Eq. (3.8)

into Eq. (3.2), we find the jump of Io(t) in the moment t„*:

x

x) v(x') EI(t„')=2m. sgn(c)[c Rea(x„*}—d Ima(x„')], (3.9)

A. Potential W(x, t) having poles
in the complex plane of time

In general, the function W(x, t), being a slowly varying
function for real t, can nevertheless have poles for com-
plex t, which may significantly change d"(t} under definite
conditions.

Let t„(x) be a pole of W(x, t), so that in a small vicini-

ty of t„(x) the potential W(x, t) has the form

W(x, t)= a (x)
t t„(x) '— (3.4)

with complex residue a (x). Then the pole of integrand in
(3.2) will be

where Eq. (3.3) defines the function x (t) standing in Eq.
(3.2).

Expressions (3.1) and (3.2) assume the continuation of
W(x, t) into the complex t plane and can be used for in-

vestigation of different particular cases. The case of har-
monic pertubation W(x, t)=Q(x)cos(cot} was studied in
detail in Refs. 1-3. It was shown in particular that the
Q(x)cos(tot) contribution into P(t) has a double-
exponent dependence on the adiabatic parameter m~p and
can be large for very small Q(x), but large enough cv To'

where the real values c and d are defined by the equality

at„c+id= 1 — "(x„*)v(x„') (3.10)

I (t)=I,(t)— g EI (t„'),
Ret &t,

0& Imt„& ~0

(3.11)

where the sum is taken over all poles t„ that have inter-
sected the circuit Cp before the moment t. Suppose that
the circuit C passes around the points ~„=t„—i 7 p t, as
shown in Fig. 2(b). Then Eq. (3.11) can be rewritten in

the form similar to Eq. (3.2):

Thus the function Io(t) is discontinuous in the point
t=t:

To find the correct solution of the problem, we must
match semiclassical solutions of Eq. (2.1) in every point
t„*, demanding the continuity of the wave function or,
simply, the continuity of 8(t) in these points. It means
that the function Io(t) in expressions (3.1) and (3.2) must

be changed by the continuous function

r„(x,t) = t„(x) iso t —. — (3.5)
I (t)=—Im f dr W(x (w), t+i ro+r),2

c
(3.12)

t„*=Ret„,

r„"=i(Imt„—ro) .
(3.6)

The criterion of intersection is the inequality

0&Imt„&ip . (3.7)

In the near vicinity of ~„* and t„', we can write

W{x{r),t +i ro+r)
a (x„*)

(t t„*)+(r r„')[—1 —(Bt„I—Bx )(x„') v(x„')]

(3.8)

where x„'=x(t„'). Let a(x(r)) and t„(x(r)) be smooth

The time t being changed, the point ~„ is moving in the
complex plane of time from the right to the left in paral-
lel to the real axis. Suppose that in the moment t =t„'
the point v „ is intersecting the imaginary part of the cir-
cuit Cp in the point ~„*. The values t„' and ~„' are the
roots of the equation r„(x(r),t}=r. The latter can be
rewritten in the form

where the circuit of integration C stands instead of Cp.
The potentials V(x) and W(x, t) may be represented by

different analytical functions in different regions of the
axis x. Each of these analytical functions has its own
analytical continuation into its own complex plane of
time. The only common points of these planes are the
points r'"' corresponding to the points xk =x(r'"'), where
V(x) or W(x, t) lose their analyticity. In this case the
circuit C must be fixed in the points ~'"'.

Suppose that a(x(r)) or Bt„/B (x(x)r) has a discon-
tinuity in ~=~' ' and that the value ~„' coincides with

It can be shown then, using (3.8), that the integral
(3.12) diverges for t~t„' as ln(~t —t„'~). However, the
value of I(t) is restricted by the validity of semiclassical
perturbation theory used [fiI(t) must be small compared
with the characteristic value of the action So]. Neverthe-
less, if I (t) )0 near such point, then, being the exponent
of I(t), the outgoing flux 8(t) can reach anomalously
large values here. We will consider in Secs. IIIB—IIID
the examples of W(x, t) with simple poles and discon-
tinuity that can cause such a phenomenon.

In the case more generalized than that considered
above, the potential W(x, t) can have a pole of Nth order.
Then the discontinuity in the Nth derivative of W(x, t)
with respect to x may also lead to an infinite peculiarity
in I(t) We will not dw. ell here on the investigation of
such cases.
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B. Pulse with the Lorentz dependence of time

Consider the example when

0, x &x), x+x2
V(x)=

x& &x &x2,

W(x, t) = 0(x)
y2t 2+ 1

0~ x &xo

(3.13)

It is not difficult to find from Eq. (3.15) that I(t) for
Wp & 0 has one maximum t = r& /2 only (for Wp & 0 it will
be minimum) and that the maximum of ~I(r, /2)~ is
reached for yap= 1. In Fig. 3(a) the function
I(t)=(yfi/Wp)I(t) is shown for yap=1 and different

yr, . For yr, =0, as follows from Eq. (3.17), we have
I(t)-1n~t~ for t ~0. In Fig. 3(b) we show I(t) for
different yTp and fixed y~, =2.

C. Pulse with the time dependence (y t + 1)
x xp

Q(x)= Wp, xp &x &x,
x) xp

Wp, x&x, .

Consider the pulse

Q(x)
(yt )4+1

(3.19)

The barrier in this case is submitted to the total move-
ment and remains rectangular, and the interaction with
alternating field occurs only in region xp & x &x

&
in front

of the barrier.
Calculations by formulas obtained above give t„=y 'exp (5 2n ),—n =1,2, 3,4 . (3.20)

where the function Q(x) and potential barrier V(x) are
taken to be the same as in the preceding section. The po-
tential (3.19) has four poles

d"(t) = d"pexp[I (t)],

cPp=exp ——~2m (E —Vp) ~

' (x2 —x, )
2

(3 14) In this case the function I (t) has the form

Wp 4I(t)=, Im g [f'"'(t)—f'"'(t —r, )],
2y ~)A'

f+(t r,—) f—(t —r))]—,

f*(t ) = [ 1 ky(rp —it) ]in [1+y(rp it)], — (3.15)

f '"'(t) =yt„z„ln(iz„),

z„=y(t +imp t„), —

(a)

(3.21)

[2( V —E)]'~ '
(2E) ~

(3.16)
0.0 =-

Here 7p is the tunneling time and r& is the time for an
electron to cross the region xp&x &x, of interaction
with alternating field. Suppose that this time is small, so
that ~1+y(rp it)~ &&yr&—. Then

-0.5

-1.0.

Wp (1 yap) +y—t
I (t)= ln

2yfi (1+yrp) +y t
(3.17)

a

3
7t

This formula is exact for 7, =0 i.e., for the case when

Q(x) is zero to the left of the barrier and is constant Wp

in the barrier region [such a steplike x dependence was
considered in Ref. 1, but for the cos(tot) time depen-
dence]. In this situation I ( t), and hence d (t) for Wp & 0]
is infinite for t=0 and yap= 1. This is just the case dis-

cussed at the end of the preceding section. Actually, in
this case, the zero of the complex ~ plane coincides, for
t, =i y ', with both the point of discontinuity of W(x, t)
and the pole of the integrand in Eq. (3.12).

In the adiabatic limit when y~p and yi, are small, the
result (3.17) gives

0.0

-0.5-

I

-2

4

(b)

3 2 1

28 o~oI(t)=-
yfi(y t +1)

(3.18)

This is just the same as the result obtained for time-
independent W(x, t) with t assumed as a parameter.

FIG. 3. Form of the normalized exponent
I(t)=(yA/Wo)I(t) in the expression for the outgoing Aux in

point x =x2 for the Lorentz pulse. (a) ye=1: (1) y~I=O, (2)

@~I=0.5, and (3) y~, =2; (b) @~1=2: (1) &~o=0. 1 (2) y~p=0. 5,
(3) ye=1, and {4)ye=3
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(a') W

0.0

-0.5

-1.0
iiUu

FIG. 5. Periodic sequence of pulses.

05. 2 3 (b)

not deal with a new T-periodic model of W(x, t). But
assume that in these vicinities W(x, t) has the form (3.13)
with Wo &0 and large

~ Wo ~/(A'y). In this case the con-
tribution of W(x, t) is large and the integral (3.22) can be
calculated by the saddle-point method. Putting the

0.0

-0.5 ~

a
I
O

t

10

5.

FIG. 4. Form of the normalized exponent
I(t)=(yA/8'p)I(t) in the expression for the outgoing flux in
point x =x2 for the pulse (3.19). (a) yap=0. 707: (1) y~&=0, (2)

yT~ = 1, and (3) y~& =2; and (4) y~& =4; (b) yap=0. 8: (1) y~& =0,
(2) y~, =1, (3) y~)=2.

(b)

where ro and r, are defined by formula (3.16).
If yr& +0 and ro—=1m t& 2=2 '

y
' [i.e., if W(x, t)

has a discontinuity in x =x, and if ~„=t„—i~a —t can
cross the zero of complex t plane], then I(t) has a loga-
rithmic peculiarity for t ~Ret„In Fig. 4(.a) the cases are
shown when vo is slightly smaller than Imt& 2. Two maxi-
ma in these dependences correspond to the moments
when t passes Ret, and Retz. For the dependences
shown in Fig. 4(b), the value ro is slightly larger than
Imt„. The interesting feature of these dependences is that
I(t) can change its sign in spite of the constant sign of
W(x, t) considered.

O

(c)

D. Periodic sequence of pulses
O

It is interesting to examine the case of a periodically
driven potential with W(x, t), as shown in Fig. 5. The
pulses in this case can be obtained as a superposition of
harmonics. Now let us calculate the tunneling probabili-
ty averaged over the period T of W(x, t):

( 8( t) ) =—J cP( t)dt .
T 0

(3.22)

Let the peaks of W(x, t) be negative and large enough so
that the main contribution into 8(t) is made by their vi-
cinities small compared with the period T. Now we will

fTQ

FIG. 6. The normalized average tunneling probability
Q (t):( ( cP(t) ) /80) ( T/70) as a function of yro for the periodic
sequence of Lorentz pulses, Wp7 p/A 3. (a) 'T]/Tp 0.5, (b)
w)/7 p 1, and (c) ~&/~p=2.
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derivative I, (t) equal to zero, we find the saddle point
t =~, /2 and V(X)

Pp
&4(t)) =

T I„—(r& /2)

1/2

exp[I (r, /2)],
(3.23)

with I(t) defined by Eq. (3.15). The main contribution to
(8(t) ) is made by the vicinity

which is smaller than v.
p for yap p1, —1. In Fig. 6

the normalized averaged tunneling probability Q
=((4(t))/Pp)(T/rp) is shown as a function of dimen-
sionless inverse pulse width yap for r&/rp=0. 5, 1,2 and
Wpr p/R= —3. For l rp= 1 the function Q (1 'rp) has a
discontinuity of the derivative reserved from Eq. (3.15).
Note that large values of Q and sharp peaks appear for
the parameters y~p and y~& having an order of unity.

IV. CONDUCTANCE
OF COMPLICATED DEVICE: DOUBLE-BARRIER

RESONANT- TUNNELING STRUCTURE

In the examples of Secs. III C and III D, the potential
W(x, t) was considered to be independent of x in the bar-
rier region. In other words, it was proposed that the in-
teraction of electrons with alternating fields takes place
outside the barrier only. Such a situation might be real-
ized by the special design of the device. In general, such
an approximation is valid when the characteristic dimen-
sions of W(x, t) are large compared with the dimensions

Xq

FIG. 7. Potential V{x) for an arbitrary one-dimensional
structure.

of nanometer tunneling devices. ' For instance, this ap-
proximation is good when W(x, t) describes the interac-
tion with infrared radiation with relatively large wave-
length. Under definite conditions it is also good for
W(x, t) describing the long-range interaction with a
charged wave packet changing with time.

A. Outgoing Aux for the potential W(x, t)
independent of x inside the device

Owing to the reasons indicated above and because of
the computational difficulties in solving the general prob-
lem for complicated structures, we assume below that
W(x, t) is independent of x inside the device.

In front of the device, near x, (Fig. 7), where
W(x, t)= Wp(t) is already independent of x, the incident
wave (2.2) is transformed into the solution

g(x t)=v ' exp — Et+m f —v dx —f dr W x(r)r+t —fXl x& U

x d+—Wp ~+t-
Xl

—f dr Wp(r)

(4.1)

In the region near x „where W(x, t) = Wp(t) is independent of x, this function can be expanded into a Fourier integral
of elementary solutions:

g(x, t)=u '~ f dAC(A)exp , Et+m f u d—x+A, f —t —f d~ Wp(~) (4.2)

In the approximation considered, we suppose that the
values of A, , contributing to integral (4.2), are small com-
pared with the electron kinetic energy mU /2.

Let Tp(E) be the transmission amplitude of the device
for the electron with energy E in the stationary case [i.e.,
for W(x, t)—:0]. Because of potential W(x, t) indepen-
dence of x in the device region, the integrand in Eq. (4.2)
can easily be continued into the region beyond the device,

so that the amplitude (2.3) in point x2 is

T(x2, t)= f dA, C(A, )Tp(E+A, )exp —
(
—At) . (4.3)

oo
0

Finding C(A, ) by the inversion of Eq. (4.2) and substitut-
ing it into Eq. (4.3), we obtain the result
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T(x2, t)= f dA, To(E+A, )

X f" dpA(p, t)

T(x2, t) into the complex plane of time. Actually, substi-

tuting Eqs. (4.5) and (4.6}into Eq. (4.4), we have
T

T(x2, t)=TO(E)f dc@exp —[ c—o(t+iro)] X(co, t)

Xexp —[ —A(t +p, )]
'(4.4)

= T,(E)A( t —i—r„t) . (4.7)

i 0
A(p, t)=exp —— d~[W{x(~),T p)

The imaginary part of the logarithm of the right part of
Eq. (4.7) times 2 gives the result (3.12).

—Wo(& —p)]—f d'7 W (O'T}

Here function x ( t) is defined by Eq. (3.3).

B. Simple barrier case

For the simple barrier, we have in the approximation
considered

Ar7 0
To(E +A, )=To(E)exp

fi
(4.5)

A{@,t)= fdtoexp —(top) X(to,p) . (4.6)

This representation allows one to continue the function

I

One can make oneself sure that the result (3.12}might be
also derived from Eqs. (4.4) and (4.5). To prove this let us
formally represent the function A(p, t) in Eq. (4.4} as the
Fourier transformation r,r,

(E —E )+(i/2)(r, +r )
(4.8)

where I
&

and I z are the partial widths of decay of the
level Eo through the left and right barriers. Substituting
(4.8) into (4.4), we have

C. Double-barrier structure

Resonant tunneling through a double-barrier structure
is a problem that has caused many investigations both in
theory and experiment (see Refs. 17 and 16 for a review).
In Refs. 5-14 a photon-assisted resonant tunneling was
considered, i.e., the case with W(x, t) = Wo(x)cost0t. It is
interesting to study the influence of the potential W(x, t),
having another dependence on t, on the resonant-
tunneling process.

Assuming that an incident electron has energy E close
to the resonant level Eo in the quantum well, let us use
the Breit-Wigner approximation for the stationary
transmission amplitude:

T(x&, t)= ——(1,12) ~ f dpexp —— (E Eo)+—(—I', +I ) (p, t)—
—f dr[W(x(r), ~+p) Wo(r+p)] —f dr Wo(—w) (4.9)

The value —00 in the last two integrals is not principal here. The integral representation of the amplitude, similar to
(4.9), was found earlier in Ref. 5.

D. Examples: switching of the constant increment Wand
the increment having the linear dependence of time

Assume that the constant potential 8'0 is switched on at the moment t=O:

W(x, t) = W,e(x — x)e( ).t
Then, according to (4.9},we have

(4.10)

T(x2, t )=(I,I 2)

exp —{[E E+—(r, +r, )]—te(t)]

E E+—(I', +I )—

1 —exp —{[E Eo —W, +—'(r, +—r, ) ]te(t) ]

+
E —E,—w, +—(r, +r, )

2

(4.11)

For t (0 the amplitude T(x2, t ) has the stationary form (4.8}. For large t ))A'/(r, +I 2), the amplitude becomes sta-
tionary again and has the form (4.8) with E+ W„substituted for Eo. In the intermediate region t -A'(r, + I z), the am-
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plitude, and hence the outgoing flux 8(t ) =
~
T (xi, r ) ~, is an oscillatory function of time (see Fig. 8).

Now let W(x, t) be a linear function of r switching on at moment t =0:

W(r, x)=Q,re(x —x, )e(i) .

Calculation by form (4.9) gives

(4.12)

T(x, t )=(r,r, )' exp — E E—+—(I,+ I ) te(t)l l 1

E —Eo+(i/2)(I, + I i)
(4.13)

D(t) =— dr exp —— E E+——(I +I ) r+ —Q (r —t )
l l 1 2

fi o
o 2 i 2 2 o

(I I- )1/2

E Eo Qo——t +(i/2)(I, + I'i) (4.14)

and has a usual adiabatic form.
In the opposite case (iriQo)'~ /( I &+ I z) && 1, we have

'
j. /2

The integral D(t) can be simply expressed via the error
function of complex variable. We will not write here this
expression, but only consider some limiting cases.

Assume that (A'Qo)'~ /(I, +I'i) &&1, i.e., that W(x, t)
is an adiabatically slow function of time. Then

V. CHARGE ACCUMULATION
DURING RESONANT TUNNELING

As an application of form (4.9), let us consider the
resonant-tunneling process taking into account the
charge accumulation in the quantum well. ' We
will consider below the monoenergetic incident electrons.

Taking the derivative of Eq. (4.9) with respect to t, we
have

+ E E —W—(t)+—(I +I ) TdT
dt 0 0 2 1 2

D(t)=i
0

1/2
0

[C(z)+S(z)],
(4.15)

0=(I,I )' exp —f dr W(x(r), r+t)

(5.1)

where C(z) and S(z) are the Fresnel integrals. In this
case the function D (t) is small compared with the previ-
ous item in square brackets in Eq. (4.13). According to
forin (4.13) and (4.15) for t —(fi/Qo)', the flux
d"(t)=~T(xz, t)~ has small oscillations vanishing in the
interval t -(fi/Qo)'~ .

To estimate the exponent in (5.1), assume that the charac-
teristic value of 8'is 0.05 eV and that the characteristic
distance in front of the barrier, where 8' is important
(i.e., where W- Wo), is 100 A. Then, for a typical elec-
tron velocity U-0. 3 a.u. =0.6X10 cm/s the exponent
has an order of unity. It is clear now that under different
conditions the exponent can be small or comparable with
unity. When it is small (for small W), Eq. (5.1) is
simpli6ed:

S.O.

L~
L Os.
Lhl

L Oe-

0.4-

O.O ~

-2
0

0 4 6 8 10
tO;+r, )rh

FIG. 8. Outgoing fiux as a function of t(I, +I &)A for a
double-quantum-well resonant-tunneling structure and
8'(x, t) = 6'pe(x —x, )e(t). (1) E —Ep =0.75(I, + I ),
8' =1.5(I,+I ); (2) E —E =1.25(I, +I ), S' =1.5(I,
+I,); and(3) E —E =1.5(I,+I, ) W =1.5(I,+I ).

(5.2)

W(x, t) =Q(x)
~ T(xi, t) i

Wo(t) =Qoi T(xi, t ) i

(5.3)

According to general estimates, the potential increment
W(x, t), caused by charge accumulation in the quantum
well, can rise to an order of 1/a (in atomic units), where a
is the width of the quantum well. For a —100 A, that
means 8'~0. 1 eV.

For the monoenergetic incident electrons, the charge
density is simply proportional to the squared absolute
value of the wave function, ~g(x, t) ~, localized in a quan-
tum well. Introducing the total charge
Q(t)- f ~P(x, t)~ dx in the well, we can find in the ap-

proximation considered that Q(t)-~T(xi, t)~ . The
latter makes reasonable the following model of W(x, i):
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Particular cases of this model were used earlier in Refs.
21 and 24. In our case the function Q(x) is constant Qp

inside the structure. Such an approximation seems to be
rather satisfactory because of the long-range character of
the Coulomb interaction.

Substituting Eq. (5.3) into Eq. (5.2), we obtain the equa-
tion for the transmission amplitude found in Ref. 21. In
order to obtain it, the authors ' used the adiabatic ap-
proximation for the wave function and assumed that the
potential depends on time inside the quantum well only.
Our deduction of Eq. (5.2) shows that it is valid under the
broader conditions that were assumed in Ref. 21. Anoth-
er conclusion from Eq. (5.1) is that the exponent in Eq.
(5.1) is not small in general.

Let us derive the conditions of stability of the station-
ary solution of Eqs. (5.1) and (5.3). For the stationary
process, the function W(x, t} is independent of time. Set-
ting T(t) = To =—const, we find froin (4.14) that

with

A(v) =—f dr Q(x(r) }e".
1 o

(5.10)

The roots of Eq. (5.9) define the characteristic inverse
times of the system. If Rev(0, then the stationary solu-
tion Tp is stable.

For resonant tunneling the time v ' is usually large
compared with the characteristic time r, of Q(x(r) }. In
this case

Seeking 8, and R, in the form cj kexp(vt), we find from
(5.8) the following equation for v:

iri v +irtv[I i+I i+28o(E E—
o

Q—oc}'o)A(v)]

+—'(I,+I ) +(E E——Q 8 )(E E——3Q cF }=0,
(5.9)

and

( I I )1/2

Tp E E —Q—~T ~
+(i/2)(I', +I )

X exp ——
~ To~ f dr Q(x(r)) (5.4)

0
A, =Ap= —f dr Q(x (r))0

Qx v
1 0 dx —1

'6 —co V
(5.11)

is independent of v. The conditions of stability of the sta-
tionary amplitude (5.4) then looks as follows:

T(t) = To+ T, (t),
with small deviation T, (t). Then the flux

8(t)=
~
T(t)~ =d'p+2Re[TpTi(t)] .

It is convenient to define the increments

(5.6)

8, =2Re[ToT, (t)], %'i=2 Im[TpT, (t)] . (5.7)

According to (5.1) and (5.3), these functions satisfy the
linear set of equations

r, r,
+o= ~To~'= (5.5)

(E Eo Qo/o) +—(I i+I i)

The value of 8p can be defined by the cubic equation
(5.5), and then the phase of To is simply defined by Eq.
(5.4). Note that the stationary flux (5.5) does not depend
on the value of potential W(x, t) in front of the structure.

In order to find the conditions of stability of the sta-
tionary solution T(t)—:To, we put

4r, r,
A,o & 2/di, „, (r, +r, )' (5.13)

This inequality is right for A.p &2 because cP,„1.Ac-
cording to (5.11), for v '»r„we can estimate A,p by
Qpr, /fi. Then, setting fiv- I,+I z, we obtain that
A,p « Qo/( I",+ I'z ). The latter means that for
Qp I i+ I p we have A,p « 1 and the second inequality in
(5.12) holds for all E. The value A,p can have an order of
unity if Qo» I,+I z. Then, for Ap&2/8, „, the second
inequality in (5.12) defined the region of instability:

—,'(I', +I' ) +(E E —Q cP—)(E —E —3QyP' ) &0,
(5.12)

I i+I i+2K 8o(oE Eo Qpdo) &0

The first of these inequalities, found in Ref. 21, excludes
from the dip(E Eo) curve —in Fig. 9 the region between
the infinities of d8p/dE marked by circles. The second
inequality holds everywhere if

+—(r, +r, )8,
d

dt 2

+ cfp(E Eo —Qpcf—p) f d—r Q(x(r))8&(r+t)2 0

+ (E Eo Qod p)Ri =0
(5.8)

(E E —3Q 8 —)8—
1

dt 0 0 0 1

+ „a,(r, +—I,)f dr Q(x(r))d", (r+t )
1 0

+—(I i+I i)%', =0 .
1

E-Eo

FIG. 9. Typical 80(E —Eo) dependence found from (5.5).
The region of instability defined by the first inequality in (5.12)
is marked by circles.
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E —E,—Q,cF, (0
(5.14)

For A,o not too large, this region is covered by the one
defined by the first inequality in (5.12). But for very large
Ao, this region covers almost all parts of the c)'o(Eo E)—
curve with negative differential conductance.

Suppose now that Qo(x) is extremely long ranged, so
that r, is large compared with v. Then (5.11) gives

k(v)=QO/tv (v '((r, ) . (5.15)

Substituting this into (5.9), it is easy to verify that all the
d"o(Eo E) cu—rve is stable in this case.

The conditions indicated above define the region where
the stationary solution for the transmission amplitude ex-
ists. If they fail, then the outgoing flux cannot be station-
ary and oscillates. The particular cases of such oscilla-
tions was studied in Refs. 21, 24, and 25.

VI. DISCUSSION

Qk(x)

ylt +1 (6.1)

We would like to make some additional comments on
the results obtained.

(1) The most important conclusion from the considera-
tion of the simple barrier case in Sec. III is the fact that
in the nonadiabatic case the form of the outgoing wave
packet may have no similarity to the form of the applied
potential pulse. We had shown that the outgoing wave
packet may have peaks related to the poles of the pulse in
the complex plane of time. Choosing the applied pulse
having, e.g., the form

probability can be obtained only for relatively small
time-dependent pertubations of potential. The exponen-
tial sm.allness of the transmission probability remains un-
der such a pertubation, but the latter can change the out-
going flux by an order of its magnitude. Exact calcula-
tions made without any pertubation theory will never
give, of course, any singularity in the transmission ampli-
tude for a smooth and finite, for t real, potential. Never-
theless, such calculations must confirm the appearance of
peaks predicted by the above theory. A similar effect of
the double-exponential growth of the transmission proba-
bility found analytically in Refs. 2 and 3 was confirmed
by computer numerical calculations in Ref. 4.

(2) It is interesting to generalize the results obtained in
Sec. IV to the case of complicated multidimensional tun-
neling devices in alternating fields. It seems to be not
dif5cult to make such a generalization for the case of the
time-dependent increment of the potential that is in-
dependent of electron coordinates in the region of the de-
vice, similar to the treatment of Sec. IV.

If there is more than one quantum well (dot) in the
structure, then the mutual inliuence of the charge accu-
mulating in each quantum well must be taken into ac-
count. The latter might be used for modeling a type of
resonant-tunneling nanometer device based on the
charge-accumulation process.

(3) Above we restricted ourselves to the consideration
of one-dimensional problems. There is intrinsic interest
in these one-dimensional structures. Another point is
that the result obtained can be generalized by taking into
account the contribution of electrons having different ini-
tial momenta and energies. In this case the model (5.3)
for the accumulated charge must also include a sum over
the momenta and energies of incident electrons.

(note that this pulse, as a function of t, has one maximum
only), we can obtain the outgoing wave packet with a
number of peaks corresponding to complex poles of (6.1).

Note that the anomalous growth of the transmission
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