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We study a quantum dot in the fractional quantum Hall regime by solving the problem exactly for up
to eight electrons at filling factors between 1 and —,. Many-body coherence in the fractional regime

strongly suppresses the resonant conductance through a weakly coupled dot below the integer regime
values. In particular, using the edge-wave theory of excitations, we predict that, at low temperatures
and small bias voltages, all conductance peaks are lowered by a factor of 1/N at v= —,', and that at v= —,

odd and even peaks are suppressed differently. We also show that strongly coupled excited states lead to
an anomalous temperature dependence of the resonance peaks, whereas weakly coupled excited states
can be identified from the line shapes in nonlinear measurements.

I. INTRODUCTION

Advances in microfabrication techniques have recently
made it possible to fabricate electronic devices on the
nanometer scale. The physics of electron interaction in
these new devices has attracted a great deal of both ex-
perirnental and theoretical interest. In particular, the ca-
pacitances of the devices are so small (=10 ' F) that
any change in the number of electrons changes the total
energy appreciably. This has opened interesting experi-
mental possibilities relating to charging effects in small
structures. For example, periodic resonances have been
observed in the conductances of these devices as a func-
tion of gate voltage in the absence' or presence of a mag-
netic field.

Recent studies have clearly demonstrated the impor-
tance of Coulomb interactions in small samples. ' The
interactions have two conceptually different effects in
small electronic systems. First, they lead to the phenom-
ena known as Coulomb blockade, which is a manifesta-
tion of charge quantization due to the small capacitance
of the system. The second effect of electron-electron in-
teractions, which can be seen also in macroscopic sam-
ples, is to introduce nontrivial correlations in the many-
electron wave function. This effect is responsible for the
formation of fractional quantum Hall (FQH) states in
macroscopic samples, and it is interesting to see how the
FQH states manifest themselves in small samples, where
charge quantization effects are important. It is especially
interesting because the small capacitance allows one to
study experimentally the relation between a state of
(N —1) or N electrons in the dot, which could shed light
on the non-Fermi-liquid behavior of the FQH system.

A good way to study that relation is through conduc-
tance rneasurernents as a conductance process inevitably
involves a change in the number of electrons in the sys-
tem. Until our work no theoretical predictions existed
for conductance through quantum dots in the fractional
regime, although the problem had been studied in the in-
teger regime. ' In this paper we solve the problem exact-

ly for up to eight interacting electrons in a quantum dot
in the FQH regime, and also make analytic predictions
based on the edge-wave theory of excitations.

Our work focuses on the experimentally observable
effects of many-electron correlations in a quantum dot in
the FQH regime. In particular, we predict that at low
temperatures and small bias voltages many-body coher-
ence leads to a strong, filling factor-dependent suppres-
sion of the conductance between two electrodes coupled
weakly to each other via the dot. At temperatures larger
than the excitation gap, and at finite bias voltages, trans-
port through excited states is allowed and the predictions
are modified somewhat. The good agreement between
our exact wave functions and those based on Laughlin
states lead us to believe that these predictions are valid
for larger dots as well. Many of the results for low tem-
peratures and small bias voltages have been published in
an earlier Rapid Communication. In this paper, we dis-
cuss the validity of our approximations in more detail, re-
port our results at finite temperatures and bias voltages,
and extend the analytic discussion to filling factor v= 3.

II. EXPERIMENTAL SETUP

The central feature of the experimental setup we have
in mind is a quantum dot, which is usually fabricated by
using either gate electrodes or etching to laterally confine
electrons in a two-dimensional electron gas at a semicon-
ductor heterointerface (Fig. 1). The radius of the electron
charge distribution is typically 100—200 nm. The dot is
coupled weakly to two external leads the chemical poten-
tials of which are pL and pz. The weak links are estab-
lished either electrostatically by means of narrow con-
strictions (in planar structures), or by separating the dot
from leads by a larger band-gap material (in vertical
structures). A bias voltage can be applied between the
two leads so that pL & pz. A third electrode, the gate, is
used in the planar geometry to control the number of
electrons in the dot, which in a typical experimental ar-
rangement is approximately 100. In the vertical
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FIG. 1. (a) Planar experimental geometry (Refs. 2 and ]1).
Negative voltage —

V& is applied to the top gate, which expels
electrons in the two-dimensional electron gas and creates a la-

terally confined quantum dot. The dot is weakly coupled to the
leads through electrostatic tunnel barriers, which are also
formed using the top gate (i.e., the leads L or R are in the same

plane as the dot). The back gate voltage VG is used to control
the number of electrons in the dot. The chemical potentials p&
and p& are set by external reservoirs. (b) Vertical experimental
geometry (Refs. 24 and 23). Electrons in the central GaAs layer
are weakly coupled to the leads through the narrow

A1Ga& „As,barriers (i.e., the leads L or R are directly above
and below the quantum dot). Lateral confinement is obtained
through ion bombardment or chemical etching. No gate elec-
trode has been built in.

III. MODEL

geometry experiments no gate electrode has been used.
In the experiments we are considering, a strong magnetic
field is applied in a direction perpendicular to the
heterointerface, and the current between the external
leads is measured as a function of gate voltage and mag-
netic field. A current or conductance peak is observed
when the chemical potential in the leads coincides with
the energy required to add an electron to the dot.

So far the experiments have been performed in the re-
gime where several Landau levels are occupied (the in-

teger quantum Hall regime), and the study of the move-
ment and relative heights of the conductance peaks has
provided detailed information of the electronic structure
of the dot. We expect that similar experiments in the
FQH regime, i.e., when only one Landau level is occu-
pied, will be performed shortly. ' The conductance ex-
periments in the fractional regime that have been per-
formed so far were conducted at a fairly strong coupling
between the dot and the leads, " which is different from
the limit we study.

The parabolic approximation for the confining potential
has been shown to be remarkably accurate in the com-
mon experimental geometries employing the planar struc-
ture. " It is, of course, also very convenient mathemati-
cally, as we will point out later. In the planar geometry
device that was used by McEuen et al. the curvature of
the confining potential corresponds to A&no=1. 6 meV, '

which is approximately equal to the cyclotron energy at 1

T. Throughout this paper we limit our discussion to the
regime of sufficiently high magnetic fields perpendicular
to the plane such that only the lowest Landau level is oc-
cupied. This approximation is justified very we11 in ex-
tended fractional quantum Hall samples, ' and we will ar-
gue that it remains justified for a parabolic dot in the
fractional quantum Hall regime.

Since the Hamiltonian H is cylindrically symmetric (in
symmetric gauge), it commutes with the (two-
dimensional) angular momentum operator, and its eigen-
states in the lowest Landau level can be written as

0M ~ exp

X g(z; —
z~. )PM (z„.. . , zz),

i (j
(2)

where P~ is an Mth-order symmetric polynomial of N
variables and z~ =xj+iyj gives the coordinate (xj,y~ ) of
the jth electron. It is a special feature of the parabolic
potential that the length scales of the magnetic field and
the confining potential combine to just one length scale,
the effective magnetic length l,cc(B), which is given by
l,cc (B)=m co,cclfi, where co,cc= (4coo+ co, )' and co, is the
cyclotron frequency. Due to this property of the Hamil-
tonian the magnetic field only appears in the length scale
and does not affect the functional form of the states. The
simplest many-particle state that obeys the exclusion
principle and is fully in the lowest Landau level is ob-
tained by setting PM (z„.. . , zz)=1. That state is a
Slater determinant of the lowest angular momentum
single-particle states, and has filling factor v=1 and total
angular momentum L =N(N —1)j2. Other states of the
form (2) have angular momenta in excess of this value.
The quantum number M denotes the excess angular
momentum of a state so that the total angular momen-
tum is given by L= —,'N(N —1)+M, and a enumerates

the different eigenstates with the same M.
In the absence of electron-electron interactions, states

with the same excess angular momenta are degenerate.
This degeneracy is broken by interactions, and the energy
is given by

Aco~g
E~M = [N+L(1 —co, /co, s)+ ,'N(N —1)g~~ ]—,

We consider an interacting two-dimensional electron
gas, in a magnetic field, confined in the plane by a para-
bolic potential and described by the Hamiltonian

H= g [—ifiV, —e A(r, )] + ,'mcoog r, —

+QU(~r, —r, ~) .

where /AM is the expectation value of the electron-
electron interaction V(r) in the many-body eigenstate

The first term in the energy can be viewed as the
kinetic energy of electrons in the lowest Landau level, the
second term is the potential energy due to the confining
potential, and the last term is the interaction energy.
From this expression for the energy we can see that in-
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eluding only the lowest Landau level is justified in the
discussion of the lowest energy states of a noninteracting
system if l,„&(co, /coo), or N & (co, /coo), where l,

„

is

the maximum single-particle angular momentum; for an
interacting system it is justified more generally because
the interaction energy decreases with increasing system
size or increasing angular momentum.

IV. EXACT DIAGONALIZATION

We now proceed to find QM, the exact ¹lectron
eigenstates. Since the interaction does not couple many-
particle states with different angular momenta, we solve
each angular momentum separately in three steps: (a)
enumerate all possible N-particle basis states ~NMP)
with a given angular momentum, (b) calculate the in-
teraction matrix (,NMP'~V~NMP), (c) diagonalize the
matrix.

To facilitate step (a} we use the fact that the center-of-
mass coordinate separates in our problem, which is
another consequence of the particular form for the
confining potential. A state with center-of-mass angular
momentum L, m can be written as

L
c.m. L

z& m™~ QL =0 and has energy EL =EL

+L, m Ac@,s(l —co, lco,s)/2, where z, is the complex
center-of-mass coordinate z, =1/Ngz, . The center-
of-mass motion can be probed by cyclotron resonance ex-
periments, ' and has been theoretically studied earlier. '

In conductance measurements, on the other hand, the
lowest energy states are most important, and it turns out
that only states with L, =0 contribute to conductance
at low temperatures, as we will show later.

In the following we construct states which explicitly
exclude the center-of-mass motion. We start from the
primitive symmetry polynomials 0 z', which are given by
sums of all h-term products of N variables, i.e.,

symmetric polynomials of N variables can be written as
sums of products of primitive symmetric polynomi-
als. ' ' To exclude the center-of-mass component we
perform a change of variables and consider cr's of the
variables z; —z, . The products of these polynomials
can be used as a basis of symmetric polynomials of order
M without center-of-mass motion. The exclusion of
center-of-mass degrees of freedom reduces the number of
basis states significantly: for example, for N = 5 electrons
there are 13 states with excess angular momentum M =7,
but only three of them contain no center-of-mass motion.

In the exact diagonalization of the Hamiltonian for
sma11 systems we take the interaction potential to be
V(r)=Q A' /2mr, which allows us to evaluate the in-
teraction matrix elements analytically [step (b}]. The
coupling strength Q is only a scale factor in the last term
in (3) and has been set equal to 1 in the subsequent discus-
sion. This choice is different from the actual interaction
potential in the experimental systems, which is Coulorn-
bic r ' at intermediate distances, varies more slowly at
short distances due to the finite thickness of the electron
gas, and at 1arge distances turns over to a r behavior
due to image charges in the gate electrodes. However, it
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FIG. 2. (a) Occupations of single-particle states of definite
angular momenta in the lowest eight-particle eigenstate with ex-
cess angular momentum M=14. (b) Occupations of single-
particle states in the eight-electron particle-hole symmetric state
with P =2 and q =3. The overlap between this state and the ex-
act state shown in (a) is 0.75. (c) Schematic picture of the transi-
tion at v=

3
from an (N —1)-particle state to an N-particle state

through process I. Solid line: occupations near the edge of the
system of N —1 particles; dashed line: occupations near the
edge of the system of N particles. (d) Schematic picture of the
transition through process II.

has been shown that the FQH effect is quite robust
against variations in the interparticle potential, ' and in

particular the short-range differences are suppressed by
the exclusion principle. Consequently, we expect the r
potential to give reliable qualitative results.

In order to interpret our results and make experimen-
tal predictions for larger dots we want to label the exact
eigenstates in a way which can be extended to larger sys-

tems. Therefore, we first construct an average filling fac-
tor v,„.The average filling factor is constructed by ap-

proximating the charge distribution of an exact many-

electron eigenstate with a uniform charge distribution
with a sharp edge. The density and radius of the uniform
charge distribution are determined by requiring that the
total charge and the expectation value (r ) agree with

the exact solution. Since for a uniform distribution
(r ) =R /2, where R is the radius of the uniform distri-
bution, we obtain v,„=N@0/2n.B(,r ) =N /2(N+L).
The second expression was obtained using
(r ) =21&(N+L)IN, which is valid for states in the
lowest Landau level. For large N this agrees with the
filling factor for Jastrow states vJ =N(N —1)/2L (notice
that L scales like N }. We have solved the eigenstates of
systems of 3—8 electrons up to excess angular momentum
M=18 corresponding to average filling factors down to
v,„'"=

—,', =0.19 for N=3 and v,„'"=
—,", =0.59 for N =8.

The condition I,„&(co, /coo) is satisfied by all the exact
solutions for co, &4.5co0, so the approximation of includ-

ing only the lowest Landau level is well justified for mag-
netic fields in the FQH regime.

While for large systems the filling factor is constant
throughout the bulk, in small systems the edge is much
more important and the average filling factor only serves
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as a guide and does not specify the state uniquely. A
more useful way to characterize a few-electron state is via
n (m), the occupation of single-particle states of definite
angular momenta m =0, 1,2, . . . ,

' '

n(m)=(c t c ) . (4)

X [QP (ZN+1). . . , ZN+P )]

Specifically, these ¹lectron wave functions are de-
scribed by P holes in the l/q Laughlin state in a back-
ground of N+P electrons in the v=1 state. These
Laughlin-type states have excess angular momenta

M=P N (P ——l)q
—1

2

and have core filling factors v=1 —1/q over the central
fraction of the dot, in the large-N limit. For example, the
state with N=8, P =2, and q =3 has M=14. Different
choices of P correspond to different edge structures and
we cannot say a priori which of them is energetically
favorable. The single-particle occupations in this state
are shown in Fig 2(b), and t.he resemblance to n (m) of
the exact lowest energy eigenstate suggests the
identification of the latter as a v= —,'particle-hole sym-

metric state. We find that for those M for which a
particle-hole symmetric construction exists, the lowest
eigenstate can be identified in this way. The overlap be-
tween the exact many-particle state and the correspond-
ing particle-hole symmetric construction varies from 0.6
to 0.8 for those states that could be identified. These
overlaps are large enough to allow us to label the exact
states in the same fashion as the particle-hole symmetric
ansatz states, i.e., in terms of holes occupying correlated
FQH states with simple filling factors, although the An-
satz states should not be used to calculate quantities like
the ground-state energy.

We want to point out that we have made no approxi-
mations and our solutions are the exact eigenstates of (I).
In this respect our work is different from that of Johnson
and MacDonald, who considered quantum dots with
more electrons than we do in the present finite-size calcu-
lation. However, they used a severe truncation method
to restrict the single-particle Hilbert space, and their

For the v= 1 case, when the many-particle wave function
is given by one Slater determinant, n (m) is one for m & N
and zero otherwise. At filling factors v&1 the many-
particle wave function is a linear combination of several
Slater determinants, and n (m) acquires a more compli-
cated structure.

In Fig. 2(a) we display the occupations of single-
particle states for the lowest energy eigenstate of eight
electrons with excess angular momentum M=14. At
particular filling factors, for large N, it has been suggest-
ed that the ground states are given by the particle-hole
symmetric counterparts of Laughlin states '

v= 1 —1/q
NPq (Zl, . . . , ZN)

P
2 (v=1)II d

LLLL%
(3.3)

hLLLLLi

v=i
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v=2/3

(2, 1)
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FIG. 3. Ground states of E-electron systems as a function of
B in units of mcoo/e. The shaded regions correspond to v=1
and v= —,. The notation (P, q) denotes a state which is well de-

scribed by P holes in the 1/q state in the background of elec-
trons in the v=1 state.

A. Conductance through a weakly coupled dot

The conductance peaks arise because electrons can
enter and leave the dot through the weak links to the
leads. Throughout this paper we limit the discussion to
the weak-coupling case, when the elastic broadening of
states in the dot is much less than the excitation gap
(I „«b, ). We describe the coupling between the dot and
the leads with the tunneling Hamiltonian

Hr = g(tkmc ck +tk c ck )+H.c. ,
k, rn

where c creates an electron in a single-particle state
with angular momentum m in the dot and ck or ck an-

nihilates an electron in a free single-particle state k in the
left or the right lead, respectively. In discussing the con-
ductance it is useful to introduce the elastic coupling ma-
trix y ', which is defined by

—eff 7 V

y L+ —R
(7)

solutions are not exact. It turns out that although the
truncation does not appreciably change the energies of
the lowest-lying states, it does significantly affect the con-
ductance properties of the system, at least for the r in-
teraction.

In Fig. 3 we show the ground states of systems with
3—8 electrons as a function of the magnetic field. All but
two of them can be identified using particle-hole syrnme-
try. [For compactness, the notation (P, q) denotes a state
with P holes in the l/q state. ] The stability of the v= —,

'
states (shaded in Fig. 3) increases with the number of par-
ticles as expected, and we see the appearance of a v=4
state for N=8. The v= —,

' states that we refer to later
occur at stronger magnetic fields and do not appear in

Fig. 3.

V. CONDUCTANCE IN LINEAR RESPONSE
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where

with y"„defined analogously. Here c.k is the energy of a
single-particle state in the left lead. Provided that the
couplings to the left and right leads are proportional,
y =A,y, the linear-response conductance through the
dot is given by

o(p, B)= 2~f de[ —fFD(s}]

X ——Im[Tr I y '~G„,] ]

The retarded Green's function 6„,is a matrix with ele-
ments given by

6„=—ie(t}([c„(t},c (0)I ),
where the expectation value is evaluated for the interact-
ing system including the leads.

The linear-response conductance through a quantum

dot changes in an interesting fashion as a function of tem-
perature. We can identify three different temperature re-
gimes. At very low temperatures the elastic broadening
of conductance peaks is more important than the thermal
broadening, kz T« I,&, and a true resonant-tunneling be-
havior is expected. At intermediate temperatures the
thermal broadening is larger than the elastic broadening,
but less than the excitation gap in the dot,
I „«k~T «A. In this temperature range the transport
is still governed by ground-state properties of the dot, but
the behavior is different from the low-temperature re-
gime, as we will demonstrate later. Finally, if the temper-
ature is larger than the excitation gap, 6 «k&T, trans-
port through excited states is allowed. The low- and
intermediate-temperature regimes are quite similar, so we
will discuss them first, and mostly concentrate on the
intermediate-temperature regime.

B. Conductance at intermediate temperatures

When the elastic broadening is less than the tempera-
ture and the excitation gap, I „«ksT and I'„«b„the
conductance formula can be simplified to

2

o'(p, B)= 2m g g pl st M .[ fFD(EN—st EN i M.— p)][P,q(—N, M, a)+P,q(N 1,M', a)—],
N MM' a, a'

(10}

where the effective couplings between many-particle
states are given by

I'st st. =yzz &L [(N,M, a~et L ~N —1,M', a') [

and y' is a diagonal element of the elastic coupling ma-
trix (7}. In Eq. (11) bL is the difference between the an-
gular momenta of states ~N, M, a) and ~N —1,M', a').
In the subsequent discussion we will often use the quanti-
ties I and I ", which are related to y and y" in the
same way as I' is related to y'. The total elastic
broadening is I,&=I +I ". Here we have made the as-
sumption that the inelastic scattering in the dot is weak,
I;„„«ktiTandI;„„«h.

The expression (10) for the conductance is a product of
three terms. The first term determines the relative
heights of conductance peaks and the second term deter-
mines the positions and shapes of the peaks. The last
term, which is the sum of grand canonical equilibrium
probabilities of the dot being in one of the states that par-
ticipate in a particular transition, reduces to one near the
center of a conductance peak at low temperatures. The
effective many-particle coupling I' consists of a single-
particle contribution y' and a many-particle part, which
measures the overlap between the state of N —1 elec-
trons, plus one additional electron with the appropriate
angular momentum b,L =N —1+(M —M'}, and the
state of N electrons. In the integer regime this overlap is
unity but in the fractional regime it can be significantly
less than one. The single-particle coupling is a smooth
function of hL, and in the following we shall set it equal
to a constant. This choice corresponds more closely to a
vertical geometry, ' where all angular momentum

states are coupled equally strongly to the leads. In the
more common planar geometry "states with larger an-
gular momenta are closer to the leads and couple more
strongly, and y is a monotonically increasing function
of m. The effects of a varying single-particle coupling
have been studied in the integer quantum Hall regime
and can easily be accounted for also in the fractional re-
gime. However, for simplicity we will now concentrate
on the many-body effects which affect the overlap matrix
element.

In the low-temperature regime, k&T «I,I "«6, a
true resonant behavior is expected. In that case the
height of a conductance peak is proportional to
I I'a/[(I ~+I ")2/4+(hE} ], which reduces to one at
resonance for I =I . The linewidth of a resonance
peak at low temperatures is given by (I' + I "), and con-
sequently we expect many-body coherence effects to
reduce the linewidth below the integer regime values. In
the remainder of this paper we choose to concentrate on
the intermediate temperature case kz T &)I,I

1. Finite-size studies

Since the finite-size study is done using first-quantized
notation and the expression (10) for the conductance is in
the second-quantized form, we must establish a connec-
tion between the two formalisms. Let us denote the first-
quantized wave function for N particles by
IiN(zl ' ' zN) ~N [4(zl ' ' zN }], where AN is the
antisymmetrizating operator for N variables. By doing
the explicit calculation it is easy to see that the state
C~fN iS
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—[iz4]iz j'
c Pz(z&, . . . , zz)=(N+1) ' AN+&[(2m2 m!) ' zg+, e " '

P(z&, . . . , zz)], (12)

where the prefactor (N + 1) 'i arises for permutational
reasons.

We first evaluated the overlap matrix element between
v= —,

' Laughlin state with (N —1) and N particles and
found that it decreases as (N —

—,') ' (Fig. 4). We also
evaluated the overlap matrix element between the exact
lowest-energy eigenstates of 8 at filling factor —,'. The re-
sults agree with those obtained for the Laughlin state to
within 3.5% and 2.5% for N=4 and 5, respectively.
This suggests that the Laughlin state is a good approxi-
mation of the exact ground state at filling factor v= 3.

Our numerical results for the overlap matrix element
in the v= —,

' case are shown in Table I. The notation is
the same as in Fig. 3, i.e., (P, q=3) denotes that exact
eigenstate of H (not necessarily a ground state), which
can be identified as a particle-hole symmetric state with P
holes in state —,'. The empty entries are due to the fact
that states with three holes can only be identified for
N =7 and 8. We see that columns (a) and (b) are close to
unity, whereas columns (c) and (d) give smaller overlaps.
Column (a) extrapolates to a constant in striking contrast
to the (N —

—,') '~ behavior in the v= —,
' case. Energeti-

cally favorable transitions are either of the form (I)
N —1,P, q =3)—+iN, P, 3) [columns (a) and (b)], where

the electron is added to the outermost edge as shown in
Fig. 2(c), or of the form (II) ~N —1,P, 3)~iN, P+1,3)
[column (c)], shown in Fig. 2(d). Column (d) describes an
energetically very costly transition in which the v=

3

core shrinks when an electron is added to the system.
Process II can be thought of as process I plus a particle-
hole excitation whereby an electron is transferred from
the inside to the outside edge, thereby expanding the
v =

3 region.
In order to preserve the n (m) structure of the edge re-

0.6.

0.4-

gion and keep the filling factor constant, processes I and
II must alternate as electrons are added to the dot. Thus
in a measurement of conductance versus gate voltage we
expect the heights of successive peaks to be different be-
cause of the different overlap factors. This doubling of
the periodicity with N is expected on the general ground
that for v= —', two added electrons are required to change
the Aux by an integer amount, i.e., it is impossible to keep
the correlations unchanged when only one electron is
added. The I, II ordering of the peaks may switch as a
function of N or the magnetic field as the structure of the
edge region evolves, but its detailed description is beyond
the scope of the present small-N study.

As the magnetic field is varied at core filling factor
v

3
the height and position of a given conductance

peak vary smoothly except at some magnetic-field values,
when the height changes abruptly. These sudden changes
are due to a change of the ground state of either the N- or
(N —1)-particle system (Fig. 5), and the height of a given
peak as a function of the magnetic field should exhibit an
alternating pattern similar to the alternation of peak
heights versus gate voltage. In our numerical study we
see one example of this behavior: the peak that corre-
sponds to 7~8 electrons in the dot is due to process I for
B (5.53 and to process II for B)5. 53 (Fig. 3), so that
the height of the peak is lower by a factor
(0.248/0. 654) =0.14 (Table I) for B & 5.53. The depen-
dence of the single-particle couplings y and y on
angular momentum and geometry may modify this pre-
diction.

2. Analytic results

There is a simple way to understand the above results
for v= —,

' in the thermodynamic limit. We consider a
confining potential that is steep enough so that the width
of the compressible region at the edge of the sample is no
more than a couple of magnetic lengths. This assumption
is valid for the parabolic confining potential at the mag-
netic fields we studied. At the opposite limit of a smooth
confining potential, the simple edge structure is lost and
the discussion needs to be modified.

First we notice that the low-energy excitations of a
FQH system occur at the edge, where the excitation gap

0.2

0.0

TABLE I. Overlap matrix elements between (N —1)- and N-

electron systems for v= 3: (a) ((2,3)~c ~(2, 3)); (b)

((3,3)Ictl(3,3)); (c) &(3 3)lc 1(2,3) ); (d) ((2,3)lc 1(3 3) ). The
notation (P, q) denotes a state with P holes in the 1/q Laughlin
state in the background of N+P electrons in the v=1 state.
Columns (a) and (b) correspond to process I in Fig. 2(c), while

column (c) corresponds to process II in Fig. 2(d).

FIG. 4. Overlap matrix elements between N —1 and N-

particle ground states for v= —,', multiplied by (N ——')' . Filled

dots are for Laughlin states and open dots are for the exact
eigenstates. The convergence to a constant suggests an N
behavior for the overlap matrix elements.

(a}

0.626
0.636
0.654

(b)

0.568

(c)

0.344
0.248

(d)

0.106
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382 G(RH, t)0)=a~ 'R &e

ik(e —st )

k=0
(13)

38.Q. For t (0 we must use a different expansion for the causal
Green's function

G(RH, t(0)=(—1)~a~ 'R ~e

37.Q. X y e ik(8 st—)
k=0

(14)

5.50 5.55 5.80

FIG. 5. Energies of the lowest states of a system of eight elec-
trons as a function of the magnetic field. Energies are given in
units of fuop and the magnetic field is in units of mcop/e. The
lowest three states at B=5.5 can be identified as
lN=8, P=2,q=3), l8, 3,3), and l8, 2, 5); the higher states can-
not be identified using particle-hole symmetry.

vanishes at the thermodynamic limit. The edge excita-
tions of the v= 1/q state all move with the same velocity
u. Thus for large x and t we may assume that the elec-
tron propagator is a function of (x ut ) and has th—e form

G(x, t)=(V t[P(x, t)g (0)]&

=exp(ikzx iEFt )a ~ '—/(x vt )~, —

where a is a cutoff length scale (a =lz ), and x is the dis-
tance along the edge. It has been shown earlier by Wen
that the exponent g is equal to the inverse filling factor,
g=q. We now present a simple argument showing that
this indeed is the case, and in addition we show that there
is a direct connection between the exponent g and the
scaling of conductance peaks.

For a Fermi liquid the exponent g in the electron prop-
agator is equal to one. However, the strong correlations
in a FQH system may change this behavior. We know
that the ground-state total angular momentum of an N-
electron system at filling factor v=1/q is given by
L(N)= ,'qN(N —1). Th—erefore, adding an electron to
the system increases the angular momentum by qN. This
result suggests that, because of strong correlation, every
electron occupies, on average, q single-particle states (in
some sense electrons satisfy a "super Pauli principle" ).
In the following we will use this strong correlation effect
to determine the exponent g.

For a quantum dot, which is large enough so that the
electron propagator on the edge is given by the asymptot-
ic form, we must require that G(x, t) obeys periodic
boundary conditions. Consequently, the propagator can
be written as

G (R H, t ) =exp(imFH —
iEFt )a ~ 'R ~(1 —e' ")

where R is the radius of the charge distribution and
u =0 /R. For t )0 we may expand G(R H, t }as

Another expression for 6 can be obtained from its
definition as a nonequal time-correlation function. To do
this, we first need to identify the ground state. Now we
can evaluate the Green's function for t & 0 by means of
the spectral decomposition

G(RH, t )0)= y y (Nlg(0)IN+1, m, a&

X(N+l, m, alg (0)lN&

X l[m+L(N+1) L(N))e

—i[Em a(N+1) Ep(N)]tXe

where lN + 1,m, a & is an (N +1)-electron state with an-
gular momentum L(N+1)+m and energy E (N+1),
and E()(N} is the ground-state energy. The m =0 term
contains information about the (N+1)-particle ground
state, and by comparison with the k =0 term of Eq. (13)
we can read offboth mF=L(N+1) L(N)=qN —and the
overlap matrix element between ground states
l(Nit|i(0)lN+1&l =a~ 'R ~. Fourier transforming to
the angular momentum space yields a factor of R ', and
we get l (Nlc NlN+1 & l =(a/R }'~ " -N

qN
To determine the value of g we use the spectral expan-

sion for t & 0 to obtain

G(RH, t &0)=—g g (Nl1(t (0)lN —l, m, a)

X(N l, m all('(0)IN—
&

i [L (N) —L(N —1)—m)eXe
—i [E (N) —E (N —1)]t0 m, a

Comparing the lowest energy term of this expansion with
(14) we find L (N) L(N —1)=mz —(and o—btain g=q,
which has to be an odd integer. Furthermore, from the
time dependence we get Eo(N) —E()(N —1)=EO(N+1)

Eo(N) gV, whic—h shows —that for a finite system there
is a gap for edge excitations, which scales as

Thus, we have shown that the edge-wave theory of ex-
citations for FQH effect predicts that heights of conduc-
tance peaks at filling factor v= 1/q decrease as N
as the number of electrons in the dot is increased. In par-
ticular, for the v= —,

' case we see that the absolute value of
the matrix element decreases as N ', which is in agree-
ment with the numerical results for small systems.

At more complicated filling factors there are several
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+2~+ lq1 qz l X wk(P1kP zk +—PzkP —lk )

k &0
(17)

where p& and pz denote charge fluctuations at the inner
and outer edge, respectively, and q, and qz are the inverse
charges of the two excitation branches, i.e., q, =1 and
qz= —3 (for v= —,'). The two edge waves move to oppo-
site directions and consequently vj and vz have different
signs: v& &0 and v, &0. The commutation relations for

p, and pz can be derived by using the classical equation of
motion ((), —VB„)P=Oto identify the canonical coordi-
nates and momenta. We find that the quantum-
mechanical operators p& and pz obey the algebra

k'
[Plk ~pl k']

2
(1k+k' ~

277q i

k'
[Pzk ~pzk']

2
5k +k'

27Tq2

(18)

The Hamiltonian H, ff with commutation relations (18)

branches of edge excitations, which move with different
velocities. In particular, at v= —', there is a holelike
branch on the inner edge and an electronlike branch on
the outer edge. In this case we cannot follow the same
method as for v= —,

' but we have to treat the problem
more carefully. The low-energy edge excitations in the
v

3
case are described by the effective Hami 1tonian

Heff —2&v lql g plkp )k+2&uzqz g p zkpzk
I& &0 k &0

[p, (x), (lit(y)] =n, )Pt(x)5(x —y),

[pz(x), %'t(y) ]=nz%'t(x)5(x —y),
(19)

where n, +nz = 1. At filling factor v= —', both n, and nz
are integers since the particle-hole excitations transfer an
integer amount of charge between the inner and outer
edges. For a general FQH state the edge structure may
be more complicated allowing for a fractional charge
transfer, thus, in general n, and nz may assume fraction-
al values. Different choices of n, and nz correspond to
different ways of adding charge to the system; in particu-
lar, process I corresponds to n& =1, nz=0, and process II
corresponds to n, =2,nz= —1. Following Mattis and
Lieb we find that the commutation relations (19) are
satisfied by the operator

describes a chiral Luttinger liquid with two branches, and
it can be solved using the same methods as the standard
Luttinger model. ' The effective Hamiltonian is diago-
nalized by the transformation e "H,&e ', where

~=2~(v'lq)qzl g k '8k(plkp —zk pzkp )k),
Jc &0

and the angle 8k is given by tanh(28k )=+2wk/(v) —uz).
To describe the propagation of electrons along the edge
we must first write the electron creation and annihilation
operators in terms of p, and pz. An operator 4 creates a
particle with charge one on the edge if it satisfies the
commutation relations

)p (x)=exp —2qrn 1q1 g k '(e '""plk e' p—,k ) exp 2qrqznz —g k '(e '""pzk e'"'p—
zk )

k&0 Ic &0
(20)

which represents a particular way (characterized by n, and nz} of increasing the charge of the system by one unit. Ad-

ditionally, we must require that the operator )p is fermionic, i.e., (p (x))II (y) = —(ll (y)% (x }. This condition is satisfied,

provided that n
&

and n z are chosen so that n, q &
+n zqz is an odd integer.

Using the diagonalizing transformation an expression for the propagator ( T[(p (x, t)%(0)]) can be found in the same

way as it is derived for the standard Luttinger model, and we obtain

G„„(x,t)-exp 2m+k '.[n) Qlq) l scho(8 )+kn +zlq lszi hn(8 )]ke
Ic &0

Xexp 2qt g k '[n)+lq) lsinh(8k)+nz+lqzlcosh(8k)] e
k&0

where V, k and Uzk are the renormalized velocities

u, k=cosh (8k)v, —sinh (8„)uz+cosh(28k)wk,

1)'zk = —sinh (8k )u, +cosh (8k )uz —cosh(28k )wk .
(21)

—[n1 +)q( [cosh(8)+nZV [q2)sinh(8) J

nl np 1xt —x —u t)
—[n&Q)q) [sinh(8)+n&+)q2)cosh(8)]

X(x vzt)—
For a general interaction wk these expressions are quite
complicated, but if the interaction is short range, wk =w,

we obtain a particularly simple result

(22)

The relation between the divergence of the propagator
and the scaling of the overlap matrix element is the same
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for complicated and simple filling factors, as can be seen

by expanding the Green's function in a fashion similar to
(13) and (15). Consequently, we expect that at v= —,

' pro-
cess I gives rise to conductance peaks which decay as

—sinh (8)N """' ' and process II to peaks which decay as
s'+ '" 's'). Qur numerical results indi-

2

cate that the heights of peaks due to process I remain
constant independent of N, suggesting a very small 8
[Table I, columns (a) and (b)]. This implies that the other
peaks should decay as N; however, we do not have
enough numerical data to confirm this behavior.

It is interesting to note that at first glance this effect
resembles the orthogonality catastrophe studied in con-
nection with x-ray absorption in metals (see, e.g., Ref.
30). However, in x-ray absorption the orthogonality ca-
tastrophe arises because the single-particle states, which
make up the Slater determinant, are different. In this
case the single-particle states remain unchanged, but the
linear combinations of Slater determinants that constitute
the ground states are different. In x-ray absorption the
relevant matrix element decreases as N, where a is
between 0.05 and 0.1; in the case of the FQH dot the de-
cay is considerably faster although still algebraic.

C. Conductance athigher temperatures

The results of the previous section are valid at low tem-
peratures (b, »kT»I, I'"), when only transitions be-
tween the ground states contribute to the conductance.
At higher temperatures several channels are active and
carry current. (By a channel we mean the pair of quan-
tum states I ~N, a), ~N l, a—')

J which allows an electron
to be transmitted through the dot. ) The threshold tem-
perature above which thermal excitations are important
depends on the size of the system and the magnetic field.
The gap for edge excitations scales as k-R ', so the
relevant temperature scale decreases as N

We will concentrate on the v= —', regime for 6—8 elec-
trons in the dot and set for definiteness ficoo= 1.6 meV to
fix the energy and temperature scales. In Figs. 6(a) and
6(b) we display calculated conductance versus gate-
voltage curves at two magnetic fields and four tempera-
tures ranging from 40 to 300 mK. The first peak corre-
sponds to the number of electrons in the dot changing
from 6 to 7, and the second peak corresponds to the addi-
tion of the eight electron. In Fig. 6(a) the magnetic field
is 5.1 T (co, =5.5coo), and both ground-state transitions

300. 300

200 200

100.

5.8
r

5.8 6.0
G

8.2

100.
h

5.8 V so6 8.2

50

10.

0.02 0.1 OZ
r

1.0 2.o T(K) 0.02
r

0.1 0.2
r

1.0 T (K)

FIG 6. Conductance as a function of the gate voltage at temperature T=40, 100, 150, and 300 mK (%cop = 1.6 meV): (a) B=5. 1 T,
(b) B=5.2 T. The first peak corresponds to N=6 7 and the second peak to N=7~8. Maximum conductance for the peak
N =7~8 as a function of temperature: (c) B=5. 1 T, (d) B=5.2 T. Conductance is expressed in units of (e'/h )(y lfuup).
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N =6~7 and %=7~8 take place through process I. In
Fig. 6(b) the magnetic field is 5.2 T (co, =5.6roo), so that
the ground-state transition N =7~8 now occurs through
process II, and the low-temperature conductance is con-
sequently lower.

The dependence of the peak heights on temperature is
shown in Figs. 6(c) and 6(d) for the N=7~8 peak at the
two magnetic fields. At low temperatures the heights of
both peaks decrease as 1/T, as is expected if only one
process contributes to the current. At 8 =5. 1 T the ex-
cited channel starts to contribute to the current at tem-
peratures of the order of T =(Es 3 3

—Es 2 3)/ks =130
mK (Fig. 7), but due to the weak coupling of the excited
channel the peak height continues to decrease as 1/T
even at much higher temperatures. At 8 =5.2 T the gap
for the excited channel is Tg =(Es p 3 Es 3 3)/ks =300
mK, but since the excited channel is approximately seven
times more eKcient in carrying current than the channel
involving the ground states, significant deviations from
the 1/T behavior are seen already at temperatures
T, = Tg /logl3= 120 mK. The strongly coupled excited
state also causes the center of the peak to shift to higher
gate voltages as the temperature increases. Thus, an
anomalous temperature dependence of a conductance
peak indicates the existence of a well-coupled excited
state. However, since the relative couplings of different
channels are not known, it is dificult to construct an en-

ergy spectrum from finite-temperature measurements
alone.

Anomalous temperature dependence of peak heights
has been observed in the integer quantum Hall regime in
the planar geometry. In that case the couplings of chan-
nels are different because states in higher Landau levels
are further away from the leads and their single-particle
couplings y are consequently lower. Contrary to the
integer case, in the fractional case we expect anomalous
temperature dependence to be observable also in the vert-
ical geometry, when all single-particle coupling s are
equal.

The experimental systems are expected to have be-
tween 50 and 100 electrons in the dot, reducing the tem-
perature scale below which the many-body effects are
clearly observable from some 100 mK (for eight elec-
trons) to about 30 mK. The gap for center-of-mass exci-
tations is 3.3 K, so their exclusion is well justified at the
temperatures in question. Furthermore, the center-of-
mass gap is independent of the number of particles
whereas gaps for relative excitations decrease as X
making the exclusion of the center of mass even better
justified in larger systems.

V. FINITE BIAS EFFECTS

Until now we have concentrated on the transport of
electrons through the dot in the linear-response regime,
that is, in the limit of zero bias voltage. We have seen
how the many-body coherence effects change the width
and height of conductance peaks, and how conductance
varies as a function of temperature. Now we extend the
numerical study to finite bias voltages. Finite bias effects
have been studied before in the integer quantum Hall re-
gime. '

Current measurements at a finite bias voltage
eV,„=pl—p~ can yield a great deal of information of
the excitation spectrum of the quantum dot. At finite
bias voltage we clearly cannot use Eq. (10), which was de-
rived in linear response. Instead, we assume that the
transport is described by kinetic equations, which is
justified provided that there is no phase coherence be-
tween the dot and the leads (kT »I,1 "), and provid-
ed that inelastic scattering in the dot is negligible. We
first solve for the steady-state occupations n~ and

nz &
~ of quantum levels, and then determine the

current. The steady-state equations are

X~,,, [[f„D(E~, E~, , PL—.)—

X ,'[n~, +—n~ (, ] n~, ]
=—0,

Xr...[[fFD(E„, E~, , OL)— —
a'

+fFD(EN, a EN —l, a' O'R ) ]

X —,'[n~, +n~, , ] n~, ] =0, —

(23)

(24)

where a and a' label the N and (N —1)-elec-tron states,
respectively. These equations are scale invariant, and
they can be solved by matrix inversion after fixing nz
rather than by finding the eigenvector with zero eigenval-
ue. The current in the steady state is given by

FIG. 7. Energy diagram for the states of (N —1) and N elec-
trons in a situation when states below the gap are equally occu-
pied. The transitions "1" and "2" are energetically allow-
ed (pL »E(N, K& —1)—E(N —1,0) and E (N, O) —E(N
—1,K~ 1

—1) &&p&), and the transitions "3" and "4" are
forbidden [E(N,K~) E(N 1,K~, —1) &&pr —and—
O„»E(N,K~ —1) E(N —1,K~, )]. —

a, a'

X[n~ +n~ ) ] (25)

In some cases it is possible to solve the steady-state
equations analytically. The solution is particularly sim-
ple if only a few channels are active (Fig. 7). An (N —1)-
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electron state of the dot is energetically allowed to scatter
into a state of N electrons if it can absorb an electron
with the appropriate energy from the leads, and vice ver-
sa, an ¹lectron state is energetically allowed to scatter
into a state of (N —1) electrons if it can emit an electron
with the appropriate energy to the leads. If the ground
state of the (N —1)-electron system is energetically al-
lowed to scatter into state ~N, KN 1)—but not into
~N, KN ), and if the ground state of the ¹lectron system
is energetically allowed to scatter into state
~N 1,K—N, 1) —but not into ~N 1,—K& &), then all
levels ~N, a =0, . . . , KN —1) and ~N l, a'—=0, . . . ,
K~,—1 ) are occupied with equal probability
1/(K&+K& &), as can be verified by a direct substitution
into Eqs. (23) and (24). These conditions can be met
for a suitable choice of pL and pz,
if E(N 1,K~—)) E(N ——1,KN, —1)&&E(N,K~ 1}—
—E(N, O} and E(N, KN) E(N, Kz——1}»E(N—1},
Kz &

—1) E(N ——1,0), where "»" means that the
difference is much larger than kz T. In other words, there
must be a gap in both the N- and (N —1)-electron sys-
tems, so that for a suitable choice of pL and pz no transi-
tions across the gap are allowed (see Fig. 7}. This case
occurs frequently when the ground state of either the N-
or (N —1)-electron dot is almost degenerate, as is the case
for N =8 and B=5. 1 T.

In Fig. 8(a) we show the current as a function of gate
voltage for several bias voltages ranging from 3.2 to 80
pV at the temperature of 40 mK and magnetic field
B=5. 1 T. If the bias voltage is less than the energy sepa-
ration between the channel involving ground states and
the first excited channel [i.e., less than the smaller of the
excitation energies of the N and (N-—1)-electron sys-
tems], the line shape is given by the derivative of the Fer-
mi distribution and agrees with the zero-bias result.
When the bias voltage is increased, a more complicated
line shape is expected. ' In particular, in Fig. 8(a) at
low gate voltages only the well-coupled ground-state
channel is active, and when then gate voltage is increased
by approximately (Es 3 3 Es p 3)/e =11 pV, the excited
channel opens for conduction. The opening of the excit-
ed channel reduces the probabilities n7 0 and n8 0 from —,

'

to —,', and the current actually decreases from a relative
value of (—,

' +—,
'

) X 1 = 1 to (—,
' + —,

'
) X 1+( —,

' + —,
'

) X —,
' =0.76.

Due to this "blocking eQect, "measurements at finite bias
voltages can be used to detect very weakly coupled chan-
nels, which may be difficult to observe by other means.
Note that in Fig. 8(a) negative differential resistance is
observed over a range of bias voltages when the gate volt-
age is kept fixed and the bias voltage is varied (e.g., for
VG =6.08 V and V,d varying from 50 to 80 pV).

At very low temperatures (but for kz T still larger than
couplings I and I ") the current peak consists of several
plateaus, with the transitions between plateaus indicating
the openings and closings of conductance channels [Fig.
8(b)]. Complicated spectra of excited states can be con-
structed for systems of (N —1), N, and (N + 1) electrons
by studying the line shapes for the transitions (N —1)~N
and N~(N+1). Provided that the criteria for the equal
occupation of states are met, the relative couplings of

VI. CONCLUSION

In conclusion, we have studied conduction through a
weakly coupled dot, I,I &&5, in magnetic fields that
are strong enough so that only the lowest Landau level is
occupied. Here I ~ or I " is the effective coupling to the
left or right lead, and 6 is the excitation gap. We have
studied the problem both numerically and analytically.

In the numerical study we diagonalized exactly the
Hamiltonian describing up to eight interacting electrons
in a parabolic dot in a strong magnetic field. Identifying
the exact eigenstates with particle-hole symmetric coun-
terparts of Laughlin states allows us to extrapolate our
results to larger, experimentally relevant systems. The
numerical solution allowed us to study the conduction
through the dot in two temperature ranges both in linear

0.4

0.3.

0.2.

0.1.

6.02 6.06 y [y] 6.108 6.14

0,6

0.4.

6.02 6.08 y [y] 6.10 6.14

FIG. 8. (a) Current at a finite bias voltage as a function of the
gate voltage at B=5.1 T and T=40 mK (ficoo=1.6 rneV) at bias
voltages pL

—
p& =.3.2, 16, 50, and 80 peV. (b) Current at a

finite bias voltage as a function of the gate voltage at B=5.2 T,
T=0.8 mK, and pL —p, & =160peV. Current is expressed in
units of ey/A. The steps correspond to openings and closings of
conductance channels.

different channels can also be easily deduced from the
line shapes. However, if the eigenstates are not occupied
with equal probability in the steady state, determining
the couplings becomes significantly more difficult.
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response and at a finite bias voltage. We found that in
the temperature range I,I "« kT « 6 the linear-
response conductance through the dot is suppressed by
many-body coherence effects well below the integer re-
gime values. At higher temperatures, we showed how
strongly coupled excited states can lead to anomalous
temperature dependence of the conductance, so that the
height of a conductance peak may actually increase with
temperature in contrast to the normal 1/T behavior. In
the integer case anomalous temperature behavior requires
different single-particle couplings, whereas in the frac-
tional case it is a consequence of many-body coherence.
At a finite bias voltage we demonstrated how the shapes
of current peaks can be used to determine the level spec-
tra and effective many-particle couplings of the quantum
dot. Specifically, we showed how transport through a
weakly coupled excited state may actually decrease the
conductance below the low bias value, leading to a nega-
tive differential resistance.

In the analytic study we concentrated on linear-
response conductance in the intermediate temperature
range (I,I "« kT « b, ). Based on the edge-wave
theory of excitations in the fractional quantum Hall re-
gime, we predicted that the heights of conductance peaks
at simple filling factors v= 1/tl decrease as E
This prediction agrees with the numerical results for

v
3

At more comp licated fi1ling factors we expect to
see peaks due to several processes with different suppres-
sions. In particular, at filling factor v= —', we expect that
the height of every second peak is independent of X,
whereas the other peaks are expected to decay as N
In the lowest temperature range, kT «I,I ", the coher-
ence effects do not change the peak heights, but we ex-
pect the widths of the Lorentzian peaks of decay as
I +I, i.e., with the same exponent as the heights of
the conductance peaks in the higher temperature range.
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