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Energy levels in quantum wells with capping barrier layer of finite size:
Bound states and oscillatory behavior of the continuum states
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The problem of a quantum-well structure in the vicinity of a high potential was studied theoretically.
This problem corresponds to real devices with a finite-size capping layer. Results are obtained for the
bound and the continuum states of a single quantum well, the continuum states of a multiple quantum
well (MQW), and the continuum states with an electric field applied to the structure. For the bound
states with no electric field, an equation including the cap-layer thickness (i.e., the distance of the well

from the high potential) as one of its parameters is derived, and solved numerically for various well

widths and cap-layer thicknesses, showing that significant deviations from the "regular" quantum-well

levels are only expected for very thin cap layers (of the order of about 10 nm). The wave functions of the

continuum states are found analytically, and used to calculate the probability of finding the carriers in

the various regions of the device [cap layer, well(s), or buffer]. The theory predicts large energy-

dependent oscillations in these probabilities for energies ranging up to more than 100 meV in the contin-

uum; their periods depend on the cap-layer thickness and the carrier effective mass. Carrier segregation

is then expected among the various regions for energies above the confining barriers. The contrast in

probability between the regions increases for thin wells, deep potentials, and small effective masses, and

is also enhanced by the presence of additional wells in the case of MQW's. For MQW's, the theory also

predicts that the well(s) nearest to the surface will be more energy selective in capturing carriers in the
continuum. This may result in different capture efficiencies for the various wells of a MQW structure. lf
an applied electric field lowers the potential away from the surface of the structure, the probability peaks
shift linearly in energy with the magnitude of the field, and for small energies above the continuum edge,
the probability of finding carriers in the well region increases.

I. INTRODUCTION

Recent experimental evidence' has shown that the
ideal quantum-well potential in which a quantum well is
considered to be surrounded by barriers of finite height,
but infinite in extent on each side, must be modified to
take into account the finite thickness of the cap layer
when a thin cap layer is used in actual semiconductor
quantum-well devices. If the carriers disuse coherently
throughout the device, remote interfaces can become an
important part of the potential configuration. Thus, if a
thin cap layer is used, the energy distribution of carriers
around the well may be rnodified by the presence of the
external surface, which represents a high potential for the
carriers inside the semiconductor. The inhuence of the
surface potential will be more important for the continu-
um states than for the bound states because their wave
functions are not restricted to the well region. These
continuum states play a crucial role, because when ener-
gies larger than the barrier are used, they are the energy
levels in which the carriers are first excited before they
relax to the fundamental levels in the well(s).

The inhuence of a high potential in the vicinity of a
quantum-well structure will be considered theoretically.
Such a configuration would represent an actual
quantum-well device having a cap layer of finite size. It
will be assumed that the external surface of the cap layer

will represent an infinitely high potential (see Fig. l).
This will be a good assumption for energies up to a few
hundred meV in the continuum, given that the actual
height of the surface potential is of the order of several
electron volts (the work function of the carriers in the
semiconductor). The envelope function will be required
to vanish at the surface. This will be valid for the treat-
ment of an ideal free surface, and merely illustrates the
fact that for the energy range of interest, the carriers can-
not escape the semiconductor crystal. The model
developed here would also apply to quantum-well struc-
tures terminated with a material having a band

gap much larger than the barriers (such as
Al„Ga, „As/GaAs/In„Ga, „As/GaAs), even though
these structures will not be discussed specifically in this
paper. The presence of surface states would change the
problem, but once these localized states are filled, this
problem could also be solved by assuming that the en-
velope wave function vanishes at the surface, taking into
account the resulting band curvature. For simplicity,
this paper will consider only the potentials depicted in
Fig. 1, but band curvature could be considered in more
elaborate calculations by approximating the curved po-
tential with a series of small linear potential segments.

The theoretical predictions are illustrated with exam-
ples for an In„Ga& „As/GaAs system. The theory is in
no way restricted to that system, but since the barrier is
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the GaAs, the samples are naturally barrier terminated,
and chances of getting a nearly perfect external surface
(GaAs cap layer) are greater than if an alloy is used for
the barrier, as in the Al„Ga, As/GaAs system, for ex-
ample. The Al Ga& As/GaAs samples often have a
GaAs cap layer on top of the Al„Ga, As barrier, and
this would correspond to a different potential
configuration.

The theory uses parabolic bands for simplicity; and the
envelope-function approximation reduces the problem to
solving the one-dimensional (1D) Schrodinger equation
for the given potential, by matching at the interfaces the
wave function and its derivative divided by the effective
masses of the material (i.e., the particle current density).
Results are presented first for the bound states of a single
quantum well (SQW) at a distance t from a high poten-
tial. An equation is derived and solved numerically giv-
ing the well-width dependence of the energy levels for

various cap-layer widths (i.e., the distance from the high
potential). Then, the continuum-state wave functions are
found, and the probability density is integrated to calcu-
late the probability of finding the carriers in the various
regions of the device. The theory is then generalized for
the continuum states of multiple quantum wells

(MQW's}. Finally, the continuum states are studied with

an applied electric field which lowers the potential away
from the surface of the structure.

II. THEORETICAL RESULTS

A. SQW bound states (E & 0); no applied field ( ~F ~
=0)

Figure 1(a) shows the band diagram for a SQW with a
finite cap-layer of width t. The potential is assumed
infinitely high for x 0, and so it is required that
4(0)=0. Therefore the solution of the Schrodinger
equation in the cap layer takes the form 4r(x ) ~ sinhyx,
and the condition for the bound states is readily obtained:
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FIG. 1. SQW with capping barrier layer of finite size; cap of
width t, well of width L and depth V, and thick buffer layer. (a)

Band diagram showing the high potential at the surface at x =0.
(b) Band diagram when an applied electric field lowers the po-

tential away from the surface. E,«, is the energy at which the

continuum states start.

mb' and m' are the barrier and well effective masses, re-

spectively.
Equation (1) has two limiting cases of interest: (a) for

large t (i.e., a regular SQW), it reduces to the well-

known equations for regular SQW's, g= tankL/2 and
—g=cotgkL/2, for the even- and the odd-parity levels

respectively; (b) t~0, i.e., a semi-infinite SQW, leads to
—g=cotgk(2L )/2, which gives the odd levels only of a
regular SQW twice as wide. This is expected since the
odd levels of a regular SQW twice as wide will always
have a node at their center, just as the semi-infinite SQW
will have a node (the wave function is terminated) at the
surface. Since only the odd levels are present, there will

be no bound states for L &(mA'}/2(2m„'V)' (i.e., until

the second level appears in the regular well of twice the
width having the same potential depth).

Between these limiting cases, Eq. (1) was used to calcu-
late the inhuence of the cap-layer thickness t on the
bound-energy levels of SQW's. Figure 2 gives an example
of results for a system having confining energies V'= 121
meV and V""=60meV for the electrons and heavy holes,
respectively, for well widths ranging from 0 to 10.0 nm.
The effective masses were taken to be m ' =mb'

=0.0665m p for the electrons and m ' =0.37mp,
m b* =0.4 1m p for the heavy holes. Those values corre-
spond to an Inp, 66ap 84As/GaAs system. The solid lines

are for the regular SQW (i.e., t~~). The dash-dotted
line is for the semi-infinite QW (i.e., t =0). The two lines
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here, g=kbm„/k mb'. After the integration of the
probability density [~4(x ) ~ ] found from Eq. (2), we get

FIG. 2. Well-width dependence of the bound states of a SQW
as in 1(a) for various values of cap-layer thicknesses. The sys-

tem chosen has for the electrons (top part of the figure) V'= 121
meV; m*=m& =0.0665mo and for the heavy holes (bottom
part of the figure) V""=60 meV; m„*=0.37m 0 and

mq =0.41mo. The horizontal line at E=O represents the bot-
tom of the wells (the electrons and heavy holes are separated by
the heavy-hole band gap E~"). The horizontal lines at the Vs
represent the onset of the continua. Two electron levels (e& and

e2) and three heavy-hole levels (hh&, hh~, and hh3) are shown by
the curves, for four cap-layer thicknesses: The solid line is for
the regular SQW (t~ ~ ), the dash-dotted line is for the semi-

infinite quantum well (t =0), the other two curves in between
(often superposed to the solid line) are for t =10.0 and 5.0 nm.
(These values of potentials and effective masses would corre-
spond to an Ino &6Gao 84As/GaAs system at 4.2 K.)

in between are for t =10.0 and 5.0 nm. For t ~ 10.0 nm,
there is practically no deviation from the regular SQW
results, because unless the well width is such that the lev-
el is just below the confining potential V (i.e., small y),
the e r' term of Eq. (1) will be small (i.e., the wave func-
tion in the barrier dies off fairly quickly for typical values
of ~V~

—s and mb'}. One also notes that the effect is
smaller for the heavy holes because of their larger
effective mass. For small t, however, the shifts in the en-

ergy levels are quite significant and one could not neglect
this effect if such a device were to be built.

+max sin2kb x mgx(C2+D2)+(D2 C2}Pb 2kbx, „
kb+ max+2CD

kb+ max
(3c)

where p„p, and pb are the unnormalized probabilities
of finding carriers with an energy E in the cap, well, and
buffer regions, respectively. p„ is sometimes referred to
as the wel/ occupancy [Eq. (3b}], and x,„ in Eq. (3c} is
the upper bound at which the integration is truncated.
The truncation of the integral will not reduce the accura-
cy of the results if x,„»t+L. Since the buffer layer
will be much thicker than the cap layer, the thickness of
the buffer layer can be taken for the value of x,„. The
substrate region (i.e., the material beneath the first-grown
barrier} is not considered in the calculations because it is
often doped or of poorer quality. Hence, the coherence of
the wave function will be lost after a short distance,
and/or the difFerent doping level can result in the pres-
ence of a barrier at the buffer-substrate interface.

The normalized probabilities of finding carriers of en-

ergy E in the various regions are obtained by dividing the
Eq. (3) by the total probability of finding carriers of ener-

gy E in the whole device, i.e., p, =p, +p +pb. Another
quantity of interest, which could be associated with the
density of states in the device induced by the presence of
the well, is p, /pb, „,where pi „ is the unnormalized prob-
ability of finding carriers with energy E in the corre-
sponding box without the quantum well:

B. SQW continuum states (E &0); uo applied field (~F ~
=0)

e,(x }~ sinkbx,

4»(x)=A sink (x t)+B cos—k (x —t), (2a)

4tn(x ) =C sinkb [x (t +L )]+D coskb [x —(t +L—)],
where fi kb/2mb'=E, trt k /2m*=E+

~ V~, and the
coefficients of Eq. (2a) are

To understand the behavior of the carriers in the con-
tinuum states, the wave function is constructed by also
requiring 4(0)=0, so that here

+max ~ 2kb+max

2 ikb+ max
(4)

Calculations show that p, /pb, „behaves like the probabil-
ities of finding the carriers in the various regions given by
Eq. (3}. Consequently, the following examples will use
only the latter quantities.

Of the three terms in Eqs. (3b) and (3c), the first term is
usually dominant because of the large denominators in
the second and third terms [especially in Eq. (3c)]. Sub-
stituting Eqs. (2b) into the first term of Eq. (3c), one ob-
tains
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C +D = cos k L+ sin k L(1/(2sin k&t+$2coskbt)

+2cosk L sink L coskbt sinkbt(g —1/j) .

The well width L is usually relatively small compared to
the cap-layer thickness t, and so the above term will osci-
late with energy as kbt changes, giving peaks of probabi i-

ty at certain energies in the various regions. When the
energy E~O, $~0, and as E increases, )~1 and
C +D ~1, so that the oscillations of probability with
energy disappear at higher energy; then, the system
behaves classically. In this situation, the classical proba-
bility of finding carriers in any specific region is given y
the ratio of the width of the region to the total width o
the device.

The best contrast in the probabilities of Eq. (3b) or (3c)
is obtained if k L is equal to an odd multiple of n. /2 at
an energy slightly above the barrier. For that energy,
cosk L =0, sink L =1, and for energies around this
value, the unnormalized probability in the buffer region
becomes pb = 1/g sin k&t+g cos kbt, so that for small

E, (~0 and pb varies as sin kbt which has its extrema
(maxima or minima) given by

mA
(5)

st'mb*

where n is an integer. If the buffer layer is thick (large
) p usually dominates p, because of the x,„ factor+max & b

in Eq. (3c). Therefore, carriers will usually occupy the
buffer region except around the minimum of pb, i.e.,
when sin kbt has a zero; then p, is dominated by p„so
that P, =p, /p, is close to unity. This is illustrated in ig.
3 which shows the normalized probabilities of finding
electrons in the cap [Fig. 3(a)], in the well [Fig. 3(b ], and
in the buffer [Fig. 3(c)] regions for a cap-layer width of
50.0 nrn, a buffer of 1.0 pm, for the system of Fig. 2 (i.e.,
V'=121 meV m'=rrtb =0.0665m0) with a well widthmw mb
of 3.5 nm. The dashed horizontal lines represent the
values of the classical probabilities. In Fig. 3(a) one notes
that P, has sharp probability peaks, especially for small

E, and outside these "resonance" peaks the probability
goes back down close to zero, as explained above for the
case k L =m /2 for small E. The values for the first three
maxima of probability are 73%, 42%, and 26%, com-
pared to 50.0 nm/1053. 5 nm=4. 7%%uo for the classica
probability of finding the carriers in the cap. This is a re-

k bl energy segregation of the carriers among the
various regions induced by the presence of t e sg po-
tential at the surface.

Probability peaks similar to those of Fig. 3(a) are also
observed for the well region, see Fig. ( . ei . 3(b). The well is
narrow compared to the cap and bub ffer so that the max-
imum values of probability in the well are relatively

11. As opposed to the situation for the cap, the en-sma . s opp
velo e of the oscillation pattern decreases slow yveope o e
smoothly increasing background to reach the vahe value of the
classical probability (3.5 nm/1053. 5 nm=0. 33%%uo) as E in-

creases. Figure 3(c) (the probability in the buffer) is ap-
of Fi . 3(a) since theproximately one minus the values o ig. a sin

for the robability in the well are small
(P +P +Pb =1). As long as the thickness of e u

C LU

layer is kept large compared to the size of the cap and
well regions, the choice of the buffer layer size will only
affect the values on the vertical axis of the graphs; indeed,
for buffer layer sizes larger than a few times that of the
cap layer, the shape of the oscillations is essentially in-
dependent of the buffer size. The ratio of the probabili-
ties of finding the carriers in the various regions with the
classical probabilities would be independent of the buffer
size under these conditions.

Considering the wave function for various values of en-
ergy, it is easy to visualize what is happening with the
probabilities. Figure 4 depicts the wave function, calcu-
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(like Fig. 3, first example), for the system of Fig. 2, will be
obtained for the heavy holes at L =2.0, 6.2, 10.3 nm, etc.
(i.e., k L =rr/2, 3'/2, and 5n/2, respectively). For the
electrons, good contrast is obtained for L =3.4, 10.2 nm,
etc (.i.e., k L =rrl2 and 3ir/2}. For larger well widths
however, the argument k L changes more rapidly with
energy, reducing the energy range in which good con-
trasts are observed. A situation of open channel or reso-
nant continuum states like Fig. 5 (second example), will
be observed if the well width is slightly smaller than the
width at which a bound state appears.

The depth of the potential well will infIuence the way
in which g reaches unity as E increases. For a shallower

otential g is closer to unity for a given energy, and t e
1-system behaves more classically (as expected for a sha-

low potential), giving less probability contrast. The spac-
ing between the extrema of probability is determined
mainly by sin (kbt ) which has its extrema given by Eq.
(5). Consequently, if the product of the square root of the
carr'rrier effective mass and the cap thickness is large, t e

ofenergy difference between two consecutive extrema o
probability becomes small, approaching classical behav-
ior in the limit of "high quantum numbers. "
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The case of a double quantum well will be investigated
to illustrate the changes in the continuum states induced
by additional wells for a MQW structure having a thin
cap layer. Two wells like the one of the first example of
the preceding section (well width 3.5 nm; V'= 121 meV;
m*=mb =0.0665mo', the cap layer is 50.0 nm, the buffer
1.0 pm) are separated by d=5. 0 nm. The normalized
probabilities have been calculated for the various regions
(Pca~, P, ,P, ,Pz, Pb). Figures 6(a)—6(c) show the proba-
bilities of finding the electrons in the cap layer (P, p),
over the first well (P, ) and over the second well (P2 ), re-
spectively. Comparing with Fig. 3 for the SQW, one sees
that the probabilities peak at around the same energies,
but the peaks are sharper and higher, giving even better
contrasts. A remarkable feature in the first well of the
DQW (the one closer to the cap) in Fig. 6(b) is that the
probabilities at their peaks are higher than the classical
prorobability, in contrast with the SQW in Fig. 3(b), or
with the second well of the MQW in Fig. 6(c). And so
the first well, closer to the surface, will be more energy
selective in capturing carriers in the continuum. This
may result in different capture efficiencies for the various
wells of a MQW structure. Trial calculations with values
other than d =5.0 nm indicate that the sharpest contrasts
in the probabilities (sharp peaks with high maxima and
low minima) were obtained with small values of kbd (i.e.,
kbd smaller than m for E 5 100 meV). Whenever kbd is
equal to a multiple of m, extra features are observed with
the probabilities. However, a detailed analysis of all the
parameters involved in MQW's in the vicinity of a high
potential (or other structures such as the double-barrier
potential) is beyond the scope of this paper. Calculations
with more than two wells have indicated that the trend
described above continues as the number of wells is in-
creased.
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D. SQW continuum states with an applied electric field
(E & 0, IF I +0)

The problem studied in this section is depicted in Fig.
1(b). An electric field (F) is applied to the SQW potential
0 1g.f F 1(a) the polarity of the field is chosen such that

Thethe potential away from the surface is lowered. e
problem with the other field polarity reduces to that of a
quantum well in a triangular potential, and will not be
studied here. As before, the cap wave function must
vanish at x =0, and so

4„~[z(x)]~ Bi[z(0)]Ai[z(x )]—Ai[z(0)]Bi[z(x )],
4„,»[g(x ) ]=azAi[g(x ) ]+P2Bi[g(x ) ], (6)

4»„rr„[z(x ) ] =a3Ai[z(x ) ]+P3Bi[z(x )],

FIG. 6. Energy variations of the normalized probabilities of
finding the electrons in the various regions of a double well
separated by a barrier of width d =5.0 nm, for the structure of
Fi . 3. (a) is for the cap-layer region, (b) is for the first well, and
(c) is for the second well. Compare with Fig. 3 for a single we .11.
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where Ai and Bi are the Airy functions with the argu-
ments

z(x )= x—(2mb' IF le /Iri )' [ I+E/( IFle»],
and

g(x) = —x(2m'IF le/&')' '[1+(E+
I &I)/(I+lex )] .

To illustrate the inQuence of an applied electric field on
the probabilities of finding the carriers in the various re-
gions, calculations were performed for the SQW structure
of the example of Fig. 5. Results in Fig. 7 show the evo-
lution of the probabilities for the heavy holes as the ap-
plied field F is changed, curves i to xi are the normalized
probabilities of finding the heavy holes in the cap layer
[Fig. 7(a)], and in the well [Fig. 7(b)] for electric-field
values between 0.0 and 10.0 kV/cm, in steps of 1.0
kV/cm. The horizontal axis represents the energy mea-
sured from the lower edge of the well [see Fig. 1(b)]. The
probability peaks are found to shift monotonically to
higher energies as the electric field is increased. To gain
more knowledge on these shifts, Fig. 8 compares the 0-
kV/cm (curve i) and the 5.0-kV/cm (curve vi) spectra of
Fig. 7(b). Curve vi of Fig. 8 was shifted in energy to show
that the peaks at positive energies (those to the right of
the vertical dashed line, labeled 7—15) correspond to
those of the zero-field situation; that is, the spacing be-
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FIG. 8. Comparison between curve i (0 kV/cm) and vi (5.0
kV/cm) of Fig. 7. Curve vi has been shifted in energy to align
the peaks which were labeled from 7 to 15. The horizontal
dashed line is the classical probability of finding the carrier in
the well, and the veritical dashed line indicates the position of
the Eo line for curve vi, as illustrated in 1(b).

III. DISCUSSION AND CONCLUSION

tween the peaks is preserved, but their positions are shift-
ed in energy with the applied electric field. There are two
contributions to that shift: the edge of the well is moved
down in energy with increasing electric field, displacing
the peaks upward by the same amount [here +5.35
meV/(kV/cm)], and the peaks are shifted because now
Eq. (6) determines the oscillations in probability instead
of Eq. (2). For the present example, the latter shift is
found to be —2.49 meV/(kV/cm), giving a net shift of
+2.86 meV/(kV/cm). For E ~0, the vertical potential
limits the structure near the surface, and this is why the
peaks in probability are very similar to those found for
the zero-field situation: the separation between the extre-
ma increases as the energy is increased; however for
E &0, the structure is limited near the surface by the tilt-
ed potential, and the peaks in probability get closer to-
gether as the energy is increased, as can be seen in Fig. 8,
curve vi, to the left of the vertical dashed line. Another
remarkable feature induced by the applied electric field is
the overall increase in the probability of finding the car-
riers in the well region at small energies. The zero-field
probabilities of finding the carriers in the well were small-
er than the classical probability (horizontal dashed line),
but as shown in Fig. 8 for 5.0 kV/cm, for example, the
probabilities of finding the carriers in the well region for
small energies are on average higher than the classical
probability.
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FIG. 7. Normalized probabilities of finding the heavy holes
in (a) the cap layer, and (b) in the well for a SQW similar to the
one of Fig. 5, for applied electric field from 0 to 10 kV/cm in
steps of 1.0 kV/cm corresponding to curves i to xi.

Moison et al. have studied the effect of the cap layer
on the bound energy levels in Ga Al& „As/GaAs quan-
tum wells. The blueshift in transitions involving bound
states, predicted in Sec. II A for a thin cap layer, was not
observed, supposedly because of surface states. The
efFects of the cap-layer thickness on the continuum states
could not be verified since luminescence techniques were
used, and luminescence favors the lowest available bound
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states. Experiments which are probing preferentially a
specific region of the sample (such as modulated
reflectance which would be most sensible to the energy
variations of the density of carriers in the cap or well lay-
ers near the surface) could be more suited to the observa-
tion of the carrier segregation among the various regions
of the QW structures induced by the finite size of the cap
layer. Such experiments could reflect the predicted ener-

gy variations of the well occupancy. Oscillatory behavior
at above-barrier energies has been observed recently in
GaAs/In„Ga, „As SQW's (Ref. 1) in photorefiectance
experiments. These results are in agreement with the
theory described in Sec. II 8 for the continuum states of
SQW with the finite cap layer and no applied field. Also,
the literature contains examples ' of results which
show structures at above-barrier energies in spectra ob-
tained with MQW. If thin cap layers have been used, it is
possible that some of these results may incorporate cap-
layer eifects like the one discussed in Sec. II C for MQW's
with a finite cap layer. Experiments have been carried
out to verify the effects of an applied electric field on the
continuum states of SQW's with thin cap layers.
Electroreflectance results" at various biases show shifts
of the above-barrier peaks with applied field similar to
the one predicted in Sec. II D.

In conclusion, the effects on the energy levels of a high
potential in the vicinity of a SQW have been studied
theoretically. The shifts in energy for the bound states
are small for a quantum well at a distance larger than
about 10.0 nm (depending on the penetration depth of the
wave function) from the high potential. However, the

continuum states are strongly affected by such a poten-
tial. For the continuum states, oscillations with energy in
the probabilities of finding the carriers in the various re-
gions of the device are expected. If there is no applied
electric field, the spacing between the extrema of these os-
cillations is determined mainly by sin (kbt), where t is
the cap-layer thickness; kb contains m&*, the semiconduc-
tor effective mass in the cap layer, and E the energy
above the barrier. The best contrasts in probabilities are
obtained for deep, narrow wells and small effective
masses. The contrast in probability is enhanced by the
presence of additional wells in the case of MQW's in the
same configuration. It was also found that the well(s)
nearest to the surface were more energy selective in
capturing carriers in the continuum. This may result in
different capture efficiencies for the various wells of a
MQW structure. If an electric field is applied to the
structure, the probability peaks shift linearly in energy
with the magnitude of the field when the polarity of the
field is such that the potential away from the surface is
lowered, and at small energies above the continuum edge,
the probability of finding the carriers in the well region
increases with the electric field.
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