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Temperature dependent electronic structure and magnetic behavior of Mott insulators
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We investigate the temperature-dependent electronic and magnetic properties of transition-metal
monoxides by use of a theoretical model that takes into account the 3d subbands of the transition metal
and the oxygen 2p subbands. Characteristic properties of these Mott insulators are caused by strong 3d-

electron correlations, described by intra-atomic Coulomb interactions and characterized by three
di6'erent coupling constants: U, U, and J. The intraband coupling U turns out to be decisive for the ap-
pearance of spontaneous antiferromagnetism. U is a direct interband Coulomb interaction responsible
for a nonuniform occupation of the 3d subbands, and therewith decisive for the insulator properties of
these materials. The interband exchange J describes an eftective electron-magnon interaction and polar-
izes magnetically inactive subbands. The self-consistent solution of our model yields a quasiparticle den-

sity of states that contains three nonconnected energy regions with predominantly 3d character: two

below, and one above, the chemical potential p. The insulator gap is practically temperature indepen-

dent, persisting for arbitrary T))T&. A necessary condition for the insulating behavior is an integral
number n3d ~ 5 of 3d electrons. The antiferromagnetism is caused by 10—n3d exactly half-filled 3d sub-

bands, while n, d
—5 subbands are completely filled. The magnetic moment remains stable for arbitrarily

high temperatures. The temperature dependence of the sublattice magnetization is caused by a "kinetic
Heisenberg exchange. " The 2p-3d hybridization plays only a minor role with respect to the magnetic
and insulating properties of Mott insulators, but becomes decisive for the nature of the band gap and the
interpretation of photoemission data. Our model calculation correctly predicts MnO, FeO, CoO, NiO,
and CuO to be antiferromagnetic insulators, while VO turns out to be a nonmagnetic metal.

I. INTRODUCTION

The electronic structure and the magnetic properties of
3d-metal monoxides (NiO, CoO, FeO, MnO) have been
the target of immense research activities for about 50
years, ' and simultaneously the subject of rather contro-
versial discussions. They are commonly called "Mott in-
sulators, " although there is obviously up to now no gen-
eral agreement upon how to define this term. Are they
simply to be identified with ordinary "magnetic insula-
tors, " as put forward by Brandow, ' or do they represent
a completely different class of insulators?

Normal magnetic insulators (EuO, EuTe, CrBr3,
GdC13, KzCuF~, . . . ) are well described by the Heisen-
berg model as far as their purely magnetic properties are
concerned. This model presumes strictly localized mag-
netic moments, as realized, e.g., by partially filled 4f
shells in certain rare-earth compounds. According to
photoemission experiments, there is, however, little evi-
dence that the 3d electrons in transition-metal monoxides
are strictly localized. But insulation does not necessarily
mean localization. It may also be caused by the existence
of excludingly filled or empty energy bands. On the other
hand, in such a case conventional band theory cannot jus-
tify the appearance of permanent magnetic moments.
Nevertheless, prototypical Mott insulators like NiO evi-
dently take their permanent moment from completely
filled subbands with dispersions as large as some 2 eV. '

This is explainable only if correlation effects account for a
splitting of the Bloch band into several quasiparticle sub-

bands, which may produce a nonzero moment even if
they are completely filled.

Some authors discuss the insulating state of Mott ma-
terials without any reference to (antiferro)magnetism. In
our opinion this is not suScient. A convincing model for
Mott insulators must also explain the simultaneous ex-
istence of an insulator gap and a magnetic moment, both
persisting for temperatures T &&Tz. Conventional band
calculations, ' which implicitly use Slater's theory of an-
tiferromagnetism, put the Fermi edge into the so-called
Slater gap, caused by the antiferromagnetic structure
which halves the Brillouin zone of the chemical lattice,
therewith predicting, for T =0, MnO and NiO as antifer-
romagnetic narrow gap semiconductors. Such an ex-
planation of the Mott insulation implies, contrary to ex-
periment, that MnO and NiO would become metals
above Tz. Applied to FeO and CoO, this model fails,
even for arbitrarily low temperatures, to predict the insu-
lating state.

Although such a reference of Mott insulation to anti-
ferromagnetism does not work, there is another link be-
tween electronic and magnetic properties of these materi-
als. De Boer and Verwey' point out that the insulating
behavior of transition-metal oxides like NiO, CoO, MnO,
Fez03, Mnz03, . . . is necessarily bound to an integral
number of 3d electrons per cation. Small deviations from
stoichiometry make these oxides metallic.
Fe304=FeO-Fez03 is metallic, although FeO as well as

Fez03 are insulators. The reason is the valence mixing
(Fe +,Fe +) which leads to a nonintegral number of elec-
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trons n3d per cation. On the other hand, if n3d is an in-
teger ( ( 10), then there is a chance that one or more of
the five 3d subbands is just half-filled, a situation which
favors antiferromagnetism in highly correlated electron
systems.

Combined photoemission and inverse-photoemission
spectroscopy *" for NiO has revealed that there exist
three energy regions in which 3d states appear. One part
lies some 9 eV below the chemical potential p. The
second part overlaps with the oxygen 2p subbands, there-
with strongly hybridizing with them. The third 3d ener-

gy region can be detected by inverse photoemission, being
some 4 eV above the occupied part of the spectrum, '
which agrees with the optically determined NiO gap. '

The important point is that the insulator gap is stable for
arbitrary temperatures T))Tz. The nature of this insu-
lator gap has attracted intensive research work in the
past. Fujimori, Minami, and Sugano' ' performed
local-cluster calculations (e.g. , Ni + ions octahedrally
coordinated by closed-shell 0 ions), within the
configuration-interaction (CI) formalism, and compared
their results to x-ray photoemission spectroscopy (XPS)
experiments. ' They found that, at threshold, the final
state should be predominantly due to a 3d hole which is
strongly screened by a ligand-to-3d charge transfer. In
the language of spectroscopy, this final state is mainly of
3d L ' character, where L ' stands for a ligand hole.
On the other hand, the lowest excited electron state is un-
doubtedly of 3d type. NiO is therefore called a charge-
transfer insulator. ' ' This picture has been taken up
and confirmed by other authors. ' ' The low-energy 3d
part near 9 eV of the photoemission spectrum is ex-
plained by d final states. ' ' Small-cluster calculations
like those of Fujimori, Minami, and Sugano' ' or the
more recent ab initio calculations of Janssen and
Nieuwpoort' have the advantage of offering full insight
into multiplet structures of the various transitions. The
connection of the electronic structure to the insulator
problem and antiferromagnetism is, however, largely
suppressed.

As already mentioned, conventional band calculations,
performed within the local-spin-density approximation
(LSDA) fail to describe in a physically correct manner
the insulator properties of the transition-metal monox-
ides, but they can reproduce rather well the antiferro-
magnetic structure of these materials. In order to judge
the merits of band calculations based on density-
functional theory (DFT) for such systems, one must bear
in mind that DFT is strictly a ground-state theory in
which only the ground-state energy Eo(N) of the N
electron system and the corresponding spin densities have
physical importance. In particular, the one-electron ei-
genvalues and wave functions of DFT have, in general,
no strict physical meaning at all. Thus, DFT, in princi-
ple, should be able to describe the antiferromagnetism
and the insulating ground state of Mott insulators at
T=O, where the band gap of an X-electron system is
rigorously given in terms of ground-state energies by

EG=EO(N+1)+Eo(N —1)—2Eo(N) .

In a strict sense, however, DFT provides no information

on the orbital character of the gap or the spectrum of
other excitations in these systems. %'ithin these limita-
tions of DFT, the recent proposals for an ab initio type
description of Mott insulators at T =0 in a "self-
interaction corrected" (SIC) or "unoccupied-states po-
tential corrected" ' (USPC) formulation of density-
functional theory represent interesting theoretical devel-
opments. They may complement our present work.

Let us now summarize some of the most important
questions and problems provoked by the above-discussed
phenomena of Mott insulators: (1) Why do the 3d
transition-metal monoxides represent insulators in con-
trast to elementary band theory'? (2) Why are they anti-
ferromagnets? (3) What kind of theoretical model is ap-
propriate'? (4) What is the physical reason for the appear-
ance of three nonconnected 3d quasiparticle energy re-
gions'? (5) Why is obviously the integral number of 3d
electrons per cation a necessary condition for the insulat-
ing behavior of transition-metal oxides? (6) How does an-
tiferromagnetism manifest itself in an electronic band
structure? Is there any possibility to get the characteris-
tic magnetic data like the Neel temperature Tz, the mag-
netic T =0 moment, etc. , as self-consistent solutions of a
proper theoretical model? (7) What is the reason for the
remarkable failure of standard high-quality band-
structure calculations'? (8) Can a Mott insulator be fer-
romagnetic? (9) What is the reference to "normal"
Heisenberg antiferromagnets? (10) How do the proto-
types NiO, CoO, FeO, MnO differ from one another? Is
there any systematic trend in the physical data? (11)
What is the role of the 3d-2p hybridization? (12) Is the
insulator gap of 3d-3d or of 2p-3d character'? (13) Is there
any systematic when going from NiO to NiS? It is the
aim of this paper to demonstrate by use of a properly
defined theoretical model that all these problems and
questions find a natural explanation as direct conse-
quences of strong electron correlations.

In previous studies we have investigated the Heisen-
berg ferromagnet EuO (Ref. 23) and the band ferromag-
net Ni (Refs. 24 and 25) by use of a technique which we
called a "renormalized" many-body procedure. The
main goal was to derive a theory which permits a quanti-
tative comparison to the experiment. For this purpose
we first constructed a proper theoretical model. In the
one-particle part of the model Hamiltonian, we then im-
plemented the results of a full self-consistent band-
structure calculation. In the final step we applied to the
total Hamiltonian a reliable many-body procedure in or-
der to get information about the temperature dependence
of fundamental quasiparticle quantities like self-energy,
spectral density, and quasiparticle density of states. A
similar approach is intended here for the Mott insulators.
In such a procedure the most important step is to find a
reasonable model. The main part of our proposal, which
we present in the next sections, is the intra-atomic
Coulomb interaction between the Ni 3d electrons, while
the oxygen 2p bands turn out to be not decisive for the
magnetic and insulating properties of typical Mott insula-
tors like the transition-meta1 monoxides. %e shall show
that the Ni 3d Coulomb correlations may be divided into
three characteristic portions, one intraband and two in-
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terband contributions. The intraband term has exactly
the operator structure of the Hubbard model with a
coupling constant U of some 12 eV. It is the most de-
cisive part that concerns the origin of the spontaneous an-
tiferromagnetism. ' One of the two interband terms has
the structure of the well-known s fm-odel with an ex-
change constant Jof some tenth of an eV, and may be in-
terpreted as an effective electron-magnon scattering. The
other interband interaction looks like a normal Coulomb
interaction between charge densities, which belong to
different subbands. The respective coupling constant U is
of the same order of magnitude as the intraband constant
U. We shall show that a certain interplay between U and
U explains the Mott insulation and the antiferromagne-
tism in systems like NiO, CoO, FeO, and MnO.

In Sec. II, we present a detailed discussion of the
theoretical model which we shall apply to the antiferro-
magnetic transition-metal monoxides. Section III is then
devoted to our rather sophisticated many-body approach,
the results of which are discussed in Sec. IV.

II. THEORETICAL MODEL

and MnO we need a model which contains as essential in-
gredients the cation 3d and the oxygen 2p subbands:

H3d +H3d-3d +H2p +H3d-2p (2.5)

The spontaneous antiferromagnetism originates exclud-
ingly from the 3d bands of the transition metal. H3d 3d is
therefore the most important part of the model Hamil-
tonian. The 0 2p subbands are magnetically inactive.
Nevertheless, they cannot be neglected because they
inhuence the relevant 3d bands by a more or less strong
hybridization H» 2 .

The one-particle operator 83d describes the kinetic en-

ergy of the 3d electrons and their interaction with the
periodic lat tice potential:

03d= g T; ~(m)c; c
& (2.6)

~) j~o~
a, P, rn

c; (c, ) is the creation (annihilation) operator of a
3d electron with spin 0. at site R; in the mth subband
(m =1,2, . . . , 5). T;.~(m) is the hopping integral be-
tween R, and R &, being related to the k-dependent
Bloch energies by

A. General formalism sf(k)=(1/N) g T; ~(m)exp[ —ik (R;—RJ)] . (2.7)

The four transition-metal monoxides NiO, CoO, FeO,
and MnO all crystallize in the rocksalt structure, i.e., the
metal ions and the oxygen ions, respectively, occupy lat-
tice sites of a fcc structure. In order to be able to de-
scribe simultaneously antiferromagnetism as well as
paramagnetism and ferromagnetism, we further decom-
pose the fcc structure into two chemically equivalent sub-
lattices A and 8. The (111) planes shall belong in alter-
nating sequence to A and 8, respectively. We refer to the
total (Ni, Co, Fe, Mn) lattice or to the 0 lattice as a Bra-
vais lattice (R, ) with a two-atom basis (r ). The space
vector of any lattice site is then given by

R, =R, +r (i=1,2, . . . , N, a=A, B), (2.1)

is R; independent but may depend on the sublattice index
n, as far as antiferromagnetic phases are considered.
Fourier transformations between real space and k space
are restricted to the Bravais lattice and its corresponding
Brillouin zone:

0; =N '~ +exp(ik R, )Oq
k

(2.3)

X is the number of sites in the Bravais lattice, 2N in the
cation (anion) fcc lattice, and 4N in the full rocksalt
structure. The thermodynamic average of any site-
dependent operator 0;,

(2.2)

In a tight-binding approximation we restrict the electron
hopping to nearest [T&(m)] and next-nearest neighbors
[T2(m)] in the chemical lattice. The resulting Bloch
density of states po (E) (8-DOS) of the noninteracting
electrons in the mth subband (Fig. 1) is then determined
by three parameters, the center of gravity To(m), the
bandwidth W, and the ratio T2(m)/T&(m). Details of
the explicit derivation of the B-DOS are presented in Ap-
pendix A. It should be emphasized, however, that the
tight-binding approximation is not a necessary ingredient
of our theory. In fact, the Bloch energies (2.7) could also
have been taken from more realistic band-structure calcu-
lations as, e.g., exemplified in Ref. 23 for EuO.

The striking phenomena of the transition-metal

N
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Oz =N ' +exp( —ik R,. )O, (2.4)
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Energy (ev)
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B. Model

For a proper description of the electronic and magnetic
data of the prototypical Mott insulators NiO, CoO, FeO,

FIG. 1. Tight-binding version of the 81och density of states

po for a fcc lattice, including nearest and next-nearest hopping,
as function of energy. Bandwidth 8'=1 eV, center of gravity
To(m) =0 eV.
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Her
—g Tij (p)b;a„abjpqa . (2.9)

The corresponding Bloch energies s„~(k) are defined in
strict analogy to those in (2.7) of the 3d bands. The cat-
ion and anion lattices are completely identical, only rigid-
ly shifted against one another by one-half the lattice con-
stant. This manifests itself in an unimportant phase fac-

I

monoxides may be traced back rather excludingly to
strong electron correlations within the 3d subbands of the
transition metal. We refer to them by the Hamiltonian
H3d 3d in (2.5}. This operator represents the electron-
electron Coulomb interaction which we consider as so
strongly screened that only intra-atomic contributions
will be of importance. To keep the model Hamiltonian as
simple as possible, but without losing the essential in-
gredients for band magnetism, we restrict the Coulomb
matrix elements to so-called direct ( U ) and exchange
terms (J .):

H3d-3d 2 ~ L ~mm CiamcrCiam'o. Ciam o Ciamo
Ii, a, o,o

m, m'

+ mm' iama iam'cr' iamcr' iam'a)

Because of its decisive importance, we present a further
detailed inspection of the operator H3d 3d in the next sec-
tion.

The 2p energy bands of the oxygen are fully occupied.
We thus can restrict the inhuence of the respective
electron-electron interaction simply to a proper renor-
malization of the one-particle energies:

We consider the Ni 3d bands and the 0 2p bands, respec-
tively, as completely equivalent with respect to the hy-
bridization, so that the p, m dependence of V will be
neglected. If necessary, this simplification may easily be
removed. Hybridization effects between different 3d sub-

bands or between di8'erent 2p subbands are thought to be
sufficiently accounted for by a proper renormalization of
the one-particle energies.

C. Transition-metal-electron correlations

Let us now inspect in detail the interaction part H3d 3d
which is responsible for the decisive electron correlations
in the 3d subbands. Introducing the spin-independent oc-
cupation number operator,

etiam ~ iamcr iaido ~ iamo (2.11)

the interaction term (2.8}may be rearranged as follows:

tor for the hopping integrals, so that we may formally
consider the 2p electrons moving in the same fcc lattice
as the 3d electrons. b; „(b,. „)is the creation (annihila-

tion} operator of a 2p electron with spin 0. at site R, in

the subband with index p (p= 1,2, 3).
H3d 2p expresses the hybridization between Ni 3d and

0 2p subbands, for which we use the k representation

aP
3d 2p -g g I. ~kpmbkair, cr kPma

p, , mt, o,
a,P

(2.10)

Ii, m, m, a

(mmmm')

( Umm' TJmm')etiam etiam'+ 2 X ( mm +Jmm iamaniam —a
i,a, m, o

mm' I~ ZoZo' iamo iamo'+C;amoCiam —cr iam' —o iam'o
I Ii, m, m, a, o o'

(mmmm')

(2.12)

n; =c; c; is the occupation number operator,
and z is a sign factor: z&=+1 and z&= —1. We con-
sider the various 3d subbands as completely equivalent,
and thus suppress as far as possible the band index depen-
dence of the matrix elements:

U=U +J
U= U —

—,
' J ~ (mAm'),

J=J ~ (mAm') .

(2.13}

Equation (2.12) then implies that the interaction Hid 3d
consists of three characteristic partial operators:

~3d-3d ~3d +~3d +~3d(U) (J) (U) (2.14)

Hid'= U g n; .n;
&, a, m

(2.15)

The first operator represents an intraband interaction
which has exactly the structure of the multiband Hub-
bard Hamjltonjan:

I

We recognize that the Hubbard model, frequently used
for describing electron correlations in narrow energy
bands, is one part of our more generalized model of
magnetism. H3d' turns out to be of crucial importance
for the possibility of spontaneous magnetic order. ' In
highly correlated electron systems (U»Bloch band-
width), Hid' splits each nondegenerate energy band into
two quasiparticle subbands separated by an energy
amount of order U. ' ' This splitting does not change
very much with temperature, in particular, it is not
bound to any magnetic order. Under certain conditions,
mainly on the Coulomb coupling U, on the lattice struc-
ture, and on the degree of band filling, each of the two
quasiparticle subbands splits once more into two spin
bands ("exchange splitting" ) producing therewith spon-
taneous (anti)ferromagnetism. ' Because of its decisive
importance, the partial operator H3d' is further discussed
in the next subsection.

The second term in (2.14) represents an interband ex-
change interaction. After introducing electron spin
operators,
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z I
iam p ~ o iamo

+~i am C- ~etiamiam (2.16)

etiam iam iam

S; is an efFective, localized spin, which interacts at site
R; with an electron from subband m. It is built up by
the electron spins of all other subbands m'Am:

S,", = g o,"i,, g=+, —,z .
m' (Am)

(2.18)

The first term in (2.17) represents an Ising-like interaction
between electron spin and effective spin, which accounts
for more or less rigid band shifts. The second term de-
scribes spin-exchange processes of the band electron with
the effective, localized spin system, which may result,
e.g., in an effective electron-magnon scattering.

The third term H3d' in (2.14) represents another inter-
band coupling which may be interpreted as a direct
Coulomb interaction between charge densities belonging
to different subbands:

3d 2 X etiam

etiam

i, a, m, m'

(mmmm')

(2.19)

The electron from the mth subband interacts with the
electrons of all the other subbands, but not with those
from its own subband. Because of its spin independence,
H3d' will be rather unimportant for magnetic phenome-
na. It plays, however, a non-negligible role with respect
to the insulator properties of the transition-metal monox-
ides. As we shall demonstrate, H3d' may provoke situa-
tions where it is energetically more favorable for the sys-
tem to distribute its 3d electrons nonuniformly over, in
principle, equivalent subbands. That leads to different
fillings of the 3d subbands and therewith to a decisive or-
bital polarization.

It is worthwhile to stress once more that the basic pos-
sibility for the appearance of spontaneous
(anti)ferromagnetism is excludingly due to the intraband
interaction H 3d'. As soon as spontaneous
(anti)ferromagnetism does appear, the interband ex-
change H3d' can, however, strongly modify the magnetic
data (transition temperature, T =0 moment, . . . ).
The third term H3d' may have substantial inhuence on
conductivity properties (metal or insulator' ?), but is unim-
portant for magnetic features.

D. Kinetic exchange

In Eq. (2.14), the decisive interaction operator H3d 3d is
decomposed into three partial operators with very clear

H 3d has exactly the same structure as the interaction
term of the well-known s f(d-f-) model which is there-
fore also one part of our generalized model:

Hi3d'= —J g [o'; S + ,'(c—r,+ .S; +o, S;+ )] .
i,a, m

(2.17)

&r Jr a~P~ o

+Up n ,n;.
l, a

which enters our model via

(2.20)

H 3d +H 3d g H p ( rri ) (2.21)

In the zero bandwidth limit ( W —+0; W, width of the
mth subband of the noninteracting electron system), the
operator Hp(m) produces two quasiparticle levels at en-

ergies To( m ) and To ( m ) + U with temperature, carrier-
concentration, and spin degrees of degeneracy
[1—(n; )]N and (n, )N. , respectively. For the
case of finite hopping probabilities, the degenerate levels
will be spread to quasiparticle subbands with finite
widths, which, however, remain well separated in the
strong-coupling regime U && 8' . The physical meaning

of these two quasiparticle subbands can be understood in

very simple terms. %hen an electron jumps excludingly
onto sites, which do not contain any other electron of the
same subband m, then it will never perform an intraband
Coulomb interaction U, being therefore surely within the
lower subband centered around To(m). Analogously, an

electron, which always chooses places, where it meets
another electron with opposite spin, is moving, of course,
in the upper quasiparticle subband. These are the unam-

biguous cases. Not so uniquely to be classified are, how-

ever, intersublevel transitions as those schematically plot-
ted in Fig. 2. They are the less likely the larger U and
must be interpreted as "virtual transitions. " Neverthe-
less, they may possess, even in the strong-coupling re-

gime, a non-negligible inhuence on the quasiparticle ener-

gy spectrum, as we shall recognize below.
We decompose the operator (2.20} into two parts

Hp(m) Hpi'(m)+Hp"(m) . (2.22}

HP'(m) shall describe the "pure" quasiparticle propaga-
tion in one of the two subbands. It shall contain all those
terms which, in the last analysis, may be interpreted at
least as an "effective" hopping in the lower or upper

physical meanings. As to the magnetic properties, the in-
traband interaction H3d' plays a dominant role and must
therefore be handled with special care. In the following
we try to get further insight into the physics mediated by
this term. For this purpose we reformulate H3d' by a
suitable canonical transformation in order to extract cer-
tain terms which will give rise to collective spin excita-
tions. These turn out to be especially important in the
case of exactly half-filled bands (n =1) in the split-band
regime ( U)) W ) when normal one-electron excitations
become rather unlikely. %'e follow very closely a previ-
ous proposal of Chao, Spalek, and Oles, which has re-
cently experienced a dramatic upsurge in connection with
the so-called t-J model for the description of high-T,
superconductors. %e modify the procedure in a proper
way for our purposes.

The starting point is the following single-band Hamil-
tonian:

Hp(iri)= y TJ~(m)c; &Jp
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FIG. 2. Effective electron hopping in the (a) lower and (b)
upper quasiparticle subband.

FIG. 3. Elementary processes for the kinetic exchange (a)

without and (b) with spin flip.

quasiparticle subband. This includes, e.g., even processes
like those in Figs. 2(a) and 2(b). Figure 2(a) can be as-
cribed to an "effective" hopping in the lower, Fig. 2(b) to
an "effective" hopping in the upper quasiparticle sub-
band. The transient virtual intersubband transitions lead
to a certain renormalization of quasiparticle energies and
lifetimes. There are, however, special intersubband tran-
sitions, which are by no means ascribable to an effective
intraband hopping. Such processes are sketched in Fig.
3. A 0 electron jumps erst from the otherwise unoccu-
pied site R; to site Rj&, which is already singly occupied
by an electron with opposite spin —cr. In the next step
one of the two electrons, which are now at Rj&, hops
back to R; . In Fig. 3(a), the cr electron comes back, so

I

that the initial situation is restored. In Fig. 3(b), a spin
exchange between R; and R occurs.

We decide to restrict HU'(m) to processes such as
those in Fig. 3, which finally will provide an effective spin
coupling between particles at R; and R &. We extract
such terms by a canonical transformation, details of
which are elaborated on in Appendix A. We restrict our-
selves here to a listing of the final equations:

H„+H'„"=yH, (m)

(2.23)

As required, the operator H3d' describes the quasiparticle
propagation within the two Hubbard-split bands:

H(0)
i j,cr, a, p, m

ij ( } i am —o'} iamo jpmo( jpm —o +( ij ( }+
2 U~ij ~ap) iam —oeiamo jpmanjpm a)—

(2.24}

The other terms in (2.23) result from virtual intersubband
transitions leading to effective exchange integrals of the
form

I

highly unlikely in strongly correlated systems, and that
independently of the actual degree of band filling:

J;"P(m) = ——(TfjP(m)) (1—5,"5,p) .1
(2.25)

H3d 3 P ij (m)( niamo iam —o'
0

l,j,CT, Nf,

a,P

The partial operator H3d' provides a spin-independent in-
teraction between singly occupied lattice sites. However,
because of its spin independence, this term will be rather
unimportant where magnetic phenomena is concerned: X CJpm —oejpmo 1 . (2.28)

X(1—
nip )(1 nip o)—

+ ~iamcr~iam —o

(1) aPH3d 4 y ij ( )viam vjPm
i,j,a, p, m

(2.26) )presides H3od', which is defined in (2.24), the most decisive
part of (2.23}is H3d"'.

The operator v, may be considered, correspondingly,
as a spin-independent number operator for singly occu-
pied sites:

H3d X Jij (m)etiam ~jPm
i,j,a,p, m

(2.29)

v; =g(1 n; )—n; (2.27)

The third partial operator H3d' in (2.23) contributes
only if the system contains simultaneously doubly occu-
pied and completely empty sites, a situation which is

It represents an efFective exchange coupling between lo-
calized spins, which may give rise to the above-
mentioned collective spin excitations. The spin operators
o are introduced in Eq. (2.16).

Since we are excludingly interested in the strong-
coupling limit U)) 8', not all parts of the Hamiltonian
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and renormalize the hopping integrals in (2.24),

&,)~(m)= rj~(m)(1 5,J5 p—)+ To(m)5, ,5 p,
by replacing the old center of gravity To(m) by

To(m) = To(m)+ —,
' (6' ) [Jo(m)+Eo(rn)],

and change the Coulomb matrix element U into

U = U —[Jo(m)+Eo(m)]—= U,

(2.32)

(2.33)

(2.34)

then H3d' and H3d' are completely absorbed by H3d' in
(2.24).

Eventually we get the following final version of the 3d
partial system in our model Harniltonian (2.5):

H3d 3d 3d 3d 3d 3d H3d
' . (2.35)

The interband interactions H3d' and H3d' are given by
(2.17) and (2.18), respectively. H'3d' expresses the quasi-
particle propagation within the Hubbard-split bands
(2.24), while H3'd"' brings into play collective spin excita-
tions via kinetic exchange (2.29).

(2.23}are of the same importance. All terms in H&z
' are

of order W /U and thereby small compared to those in
H 3d . Furthermore, we already recognized that they are
of only minor relevance to the interesting magnetic and
electronic properties of the Mott insulators. We there-
fore simplify them from the very beginning in a Hartree-
Fock manner. If we define

1Jq~(m)= —g J; ~(m)exp[ —iq (R,. —R, )],
l, J

Jq(m)=Jq (m), Eq(m)=J (m)

(a= A, B~a=8, A), (2.31)

the moment that all self-energy parts except for
[M;J~ (E;m ) ]'"' are already known, so that we can define
the following effective one-particle energies,

T~~(E;m}]'»'=7.PIi(m)+ y [M~p(E;»»i)]
(wx) (3 2)

by which an effective-medium Hamiltonian is introduced:

83d' = p [ T'J' (E;m ) ]'"'c; c,&
+H3d' . (3.3)

This Hamiltonian is energy dependent and possibly non-
Hermitian, since the self-energy parts [M~~ (E;m ) ]'»' in
(3.2) may be complex functions. However, the decisive
one-electron Green function (3.7), from which we shall
get all needed information about the underlying physical
s stem, does not change at all when (2.35) is replaced by

3d'(E). On the other hand, the remaining many-body
problem posed by (3.3) is formally simpler than the origi-
nal one because only one of the four interaction terms ap-
pears explicitly. For x = U we have to solve an
"effective" Hubbard problem, for x =J an "efFective" sf-
problem and so on. The corresponding models of magne-
tism have been studied intensively in the past, so that re-
liable approaches are available. Applying such an ap-
proach to the "effective x problem" given by 8&d'(E) pro-
vides us with the general structure of the corresponding
self-energy part [M~~(E;m)]'"', and that in terms of the
other self-energies [M; ~(E;m)]' ."'. Furthermore, the
result will contain various expectation values, among
them, e.g. , the important spin-dependent average occupa-
tion numbers ( n ):

III. EFFKCTIUE-MEDIUM APPROACH

A. Formal solution

with y=0, ex, J, or U . (3.1)

The superscript y numbers in an obvious way the contri-
butions of the four partial operators. Let us assume for

Our theoretical model for transition-metal monoxides
such as NiO, CoO, FeO, and MnO is established by the
operators (2.5) and (2.35). It goes without saying that the
corresponding many-body problem cannot be treated
rigorously. Approximations must be tolerated. Special
complications are due to the physically decisive 3d-
electron interactions in (2.35). Their inhuence results in a
rather involved self-energy contribution M,~g (E;»»i) for
the band electrons. The operator (2.35) is composed of
four partial operators. All, except for H3d', are well
known from simpler models of magnetisrn (Hi3d', split-
band Hubbard model; H&'d"', Heisenberg model; II'3d', sf-
model). Each of the four partial operators contributes in
a special manner to the self-energy M, ~(E;I), which"
thus can be decomposed accordingly:

M;J.~(E;m)=$ [M, ~(E;m)]'»', "

=9'„(E;m~[M; ~(E;m }]" (3.4)

Dg (k,E)=E5 Ii s~(k) Mi,~(E;m—), —

F„~(k,E)=E5 ii s„~(k),—
(3.5)

(3.6)

where Mi,~(E;m) is the Fourier transform of the self-

energy (3.1). The total Green-function matrix for the al-

together eight subbands in two sublattices may be
represented in the following compact form:

It is a key point of our theory that all these expectation
values must be exactly expressable by the one-electron
Green function (or by the respective spectral density) of
the full system. This procedure is repeated for all four
self-energies [M, ~(E;m)]'"' leading finally to a closed
system of equations which can be solved self-consistently.
The actual approaches we used for the various self energy
parts are discussed step by step in the subsequent sec-
tions.

As soon as we have approximately derived in the
above-described manner the self-energy (3.1), we can ex-
press without further simplifications the basic one-
electron Green function in terms of this quantity. For
this purpose we first write, for abbreviation,
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[[Gi.«))]
G AA(E)

GBA(E)

p AA(E)

pBA (E)

G AB(E)
' —i

G"(E)
p AB(E)

'

pBB(E) (3.7)

A B(E) O'B

P PE=k(r
( t)aP)T BaP(E) (3.8)

A PB(E) and B&B(E)are diagonal matrices:

P[~(E) is an 8 X 8 matrix which consists of four blocks

They indicate the appearance of spontaneous magnetism

by (n )X(n ). For the self-consistent solution of
our model, the stability of any magnetic configuration
mainly depends on the relative strength of the Coulomb
coupling constants U, U, and J. Very important parame-
ters are furthermore the 3d-electron density, the tempera-
ture, and the lattice structure. In this paper we shall con-
centrate on parameter constellations which are relevant
for the transition-metal monoxides. In the following sub-

sections we explicitly derive the self-energy parts
[M iB(E 'm ) ]'"'.

B. Interband self-energy contributions

AkB(E)=[D~P (k;E)5 „] (3.9)

Bfp(E) = [F„B(k;E)5„,]„
n = 1, . . . , 5

(3.10)
v=1,2, 3

P'zB is a 5 X 3 matrix which provides the influence of the
3d-2p hybridization:

1 1 1

1 1 1

f'„B=—V„B 1

1 1 1

1 1 1

(3.11)

3

+ g [Gq (E +i0+ )]„„

5 3= g p (E)+gp„(E). (3.12)

It is our main task to determine this important function
for all temperatures and band occupations. We notice
that the decomposition of the chemical lattice into sub-
lattices still allows different magnetic configurations,
namely, paramagnetism, ferromagnetism, and antifer-
romagnetism:

p„(E)=pB (E), paramagnetism, ferromagnetism,

A matrix inversion in (3.7) finally yields the Green-
function matrix, the diagonal elements of which deter-
mine the quasiparticle density of states (Q-DOS). For
sublattice a and spin o holds

p (E)=——Im —g g [G„(E+iO+)]
k m=1

m'a'

+ ,'J F B(E)—. (3.16)

F B (E) is a very complicated functional of energy, which
stems from spin-exchange processes between the band
electron and the efFective localized spins, defined in (2.18).
For details of the mathematical derivation, the reader is
referred to Ref. 25. In that paper it is shown for the band
ferromag net Ni that this effective electron-magnon
scattering gives rise to some kind of irregular tempera-
ture behavior of the quasiparticle band states with a non-
neglible influence on important magnetic data as, e.g., the
Curie temperature. In the case of Mott insulators, how-
ever, we have to assume that the interband exchange cou-
pling is at least 1 order of magnitude smaller than the in-
traband matrix element U and the direct interband
Coulomb interaction U, respectively. We therefore be-
lieve that H3d' is only of minor importance with respect
to the striking phenomenon of Mott insulators. In a
Hartree-Fock approximation, we therefore restrict the
corresponding self-energy part to the first term in (3.16):

(MfB(E;m)]' '=——
—,'z J5 p g z, (n, , )

m'o'

In Ref. 25, a self-consistent Green-function decoupling
is used for an approximate solution of the many-body
problem posed by the Hamiltonian 03d', which is identi-

cal to the interaction part of the s-f model. This
method correctly reproduces all exactly solvable, non-
trivial limiting cases of the s fmodel-. Furthermore, it
contributes to an astonishingly realistic description of the
band ferromagnet Ni. The resulting self-energy consists
of two parts:

m'Am

[Mi,B(E;m)]' '= —
—,'z J5~B g z (n, ,~ )

pA (E)=pB (E), antiferromagnetism .

(3.13)

(3.14)
=M' '(m)5 B . (3.17)

All expectation values which enter the above-discussed
self-energy parts (M;.B(E;m)]'"' are rigorously express-
able by the Green function (3.7) or the Q-DOS leading
thereby, together with Eqs. (3.1)—(3.12), to a closed sys-
tem of equations, which we evaluate, e.g. , for the spin-
dependent average occupation numbers per site:

(n ) =f dE p (E)[exp[P{E—p)]+1] ' . (3.15)

We intend to investigate the detailed consequences of the
electron-magnon scattering for the Mott insulators NiO,
CoO, FeO, and MnO in a forthcoming paper. Addition-
ally, it should be acceptable to simplify, in the same
Hartree-Fock manner, the contribution of the direct in-
terband interaction 03d'. That is, of course, not to be
justified by a smallness of the coupling constant U, but
rather by its irrelevance with respect to magnetic phe-
nomena:
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m'Wm

[M„~(E;m)]' '= ,'U5., y &n,..., )
m'o'

=M' (m)5, (3.18)

The expectation values in (3.17) and (3.18) are calculated
self-consistently within the full model.

C. Intraband quasiparticle propagation

The contribution of H3&' to the electronic self-energy
incorporates the "pure" intraband quasiparticle propaga-
tion. For its approximate determination we use a self-
consistent spectral density approach (SDA), which we
developed in previous papers ' ' for the single-band
Hubbard model. The general idea of this method is easily
explained: The SDA starts from a two-pole ansatz for
the one-electron spectral density, which is surely accept-
able for pure intrasubband hopping in the strong-
coupling regime U)) 8' . The ansatz contains four at
first unknown parameters, two quasiparticle energies with
two related spectral weights. These four parameters are
fitted to four exactly calculated spectral moments, there-
by guaranteeing that even processes such as those in Figs.
2(a) and 2(b) are properly taken into account. As already
mentioned, both sketched situations may be interpreted
as an "effective" electron propagation in the lower [Fig.
2(a)] and upper [Fig. 2(b)] quasiparticle subband, leading
to a certain renormalization of quasiparticle energies and
lifetimes.

The self-energy element [Mi, (E;m)]' ' belongs to an
electron hopping within the a sublattice. We determine
the structure of this function by the just-mentioned self-

consistent SDA, but refer the reader, for details of the ac-
tual evaluation, to our previous papers. ' The nondi-
agonal elements of the self-energy matrix are obviously
unimportant. They are exactly zero for paramagnetic
and ferromagnetic systems, and thus unequal zero, if at
all, for antiferromagnets below the Neel temperature T~.
According to Refs. 9 and 27 we therefore use

[M ~(E m)]' '

U (n, )(E —(B ))
E —(B ) —U (1 —(n ))

(3.19)

With the aid of the one-electron spectral density

S„~(E;m)= ——1m[6„~(E+i0+ )] ~1
(3.20)

and the general spectral theorem, ' we get, for the aver-
age spin-dependent particle numbers, the well-known ex-
pression

(n ) =—g —f dE f (E)S|, (E;m) .
k

(3.21)

f (E)=[exp[P(E —}u)]+1] ' is the Fermi function,
and p the chemical potential. Of decisive importance for
the possibility of spontaneous ferromagnetism or antifer-
romagnetisin is the second expectation value (B )
in the self-energy expression (3.19), which has the physi-
cal meaning of a spin-dependent band shift. It consists of
higher correlation functions, '

i,j,p
[(i,a)~(j,p)]

[T;,~ (E;m)]' '(c,t c,Ii (2n; —1)),

(3.22}

which may lead, under certain conditions, to a relative shift of the spin subbands. Here we have written, for abbrevia-
tion,

To (m)=To(m)+M' '(m)+M'J'(m}, (3.23)

To(m) is defined in (2.33). Fortunately, the higher correlation functions in (3.22) can rigorously be expressed by the
one-electron spectral density (3.20), guaranteeing therewith a closed system of equations. The detailed recipe of how to
do this has been presented in Refs. 9 and 27 so that we can restrict ourselves here to quote only the final result:

(n )(1—(n ) )[(B ) —To (m}]=—g [Ef(k) —To(m)5 &)
—f dE f (E)

N

X [E5r [e$ (E;m)]—' '] —5r SPr (E;m) .
U

(3.24)

[E$ (E;m)]' ' are the Fourier transforms ("effective Bloch energies") of the "effective ' hopping integrals defined in
(3.2). The same derivation, which led to (3.24), may also be used for the average number of singly occupied sites ( v )
(2.27), a quantity which is, of course, not really sublattice dependent:

(v )=(v )=g&n, (1 n, ))=&8 ) —2&n —n ) . (3.25)
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We need this term at a later stage of our procedure. The higher expectation value on the right-hand side of (3.25)
(n n ) can be recognized as a special case of the correlation functions in (3.22):

(v ) =—g —f dE f (E)(5 r (1—/U )[E5r —[Er (k)]' '] )S&r(E;m) .
k, o, r

(3.26)

L, (E;m)=«o,+..;~;,.)&, . (3.27)

This magnon part will be responsible for the appearance
of collective spin excitations within our model. By use of
the spectral theorem ' we can derive with the magnon
Green function the expectation value ( o ~& o,+ ) and
therewith the magnetization of the effective moment sys-
tem:

D. Collective spin excitations

The final task is now to treat the kinetic exchange H3d"'
in (2.35). For this purpose we define the following retard-
ed commutator Green function: '

=2 g [Jo(m') —Eo(m')](o' ),
m' (Wm)

(3.29)

by which we extend the exchange Hamiltonian (2.29):

consequence of the fairly crude Hartree-Fock
simplifications of H3d'(m) and H3d'(m) in Sec. III B is
the unrealistic neglect of any influence of the "other d
bands" on the "localized" spin in the mth subband cr;
We approximately reintroduce this influence by the stag-
gered molecular field produced by the "other subbands, "

8; (m)=8 (m)

&=-,'&v &
—&o,. c+ (3.28) +QB (m)o', (3.30)

Like the electronic self-energy parts, we determine the
magnon Green function in its respective partial system,
which is defined by the exchange term (2.29). A direct

i, a

The equation of motion of L,. ~ is straightforwardly de-
rived:

[E B(m)]L—,J~(E;m)=25;15 &(o' ) —2g J;Ir(m)(((o'; o~r , o~& ')).E
—((orr o;+;o~& ))z) .

lr
(3.31)

[E B(m) —2—(cr' ) [Jo(m) —Eo(m)]]L; ~(E;m)

=2(cr' ) 5; 5 &
—g J,lr(m)Lf~(E;m)

7 rI

(3.32)

This equation is easily solved by Fourier transformation.
With the abbreviations

Eq (m)=2(o' ) Yq(m),

Y (m)= [ [X (m)] —~E (m)~ ]'

X (m)=J (m) —Jo(m)+Eo(m)+8 (m)/2(o' ),

(3.33)

(3.34)

(3.35)

we get, for the diagonal elements of the Green-function
matrix,

2(o' ) [E—2(o' )X (m)]L; (E;m)= ' . (3.36)[E—E (m)][E+E (m)]

The related magnon spectral density is obviously a two-
pole function:

We simplify this equation by a random-phase approxima-
tion (RPA) decoupling similar to the so-called Tyablikov
approximation for the ferromagnetic counterpart,
which is known to lead in that case to rather convincing
results for low as well as high temperatures:

I

Sq (E;m)=(o' )[ [1—Xq(m)/Yq(m)]5(E —Eq (m))

+ [1+X (m ) /Yq(m ) ]

X5(E+E (m))] . (3.37)

The spectral theorem yields, in this case,

Inserting (3.38) into (3.28) finally leads to the magnetiza-
tion of the effective spin system:

' —1

(o:.) =-,' & v. & 1+—y [y,'+. '(m)+y,'-. '(m) ]X

(3.40)

The expectation value (v ) is determined via (3.26) by
the one-electron spectral density. Self-consistency is
finally established via (2.16) which connects (cr' ) to the
average particle numbers per site, (n; ).

(o, o,+ . ) =—g f dE S (E;m)[exp(PE) —1]
q

=(o' )—g [P'+'(m)+P' '(m)],
q

(3.38)

P~ +—~(m)=[1+X (m)/Y (m)][exp[+PEq (m)] —I]
(3.39)
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IV. DISCUSSION OF THE RESULTS

Our present study aims specifically at the 3d
transition-metal monoxides NiO, CoO, FeO, and MnO,
which are known as prototypical Mott insulators. The
other first-row transition-metal monoxides are not so in-
teresting or not as appropriate for our model calculation.
CaO (n3d =0) and ZnO (n3d=10) are ordinary nonmag-
netic insulators, VO (n3d =3) is a nonmagnetic metal,
while CuO is an antiferromagnetic Mott insulator, which,
however, does not possess the rocksalt structure. There-
fore, we shall restrict ourselves to some brief comments
on VO, CuO, and ZnO at the end of this section. From
the experimental point of view, MnO, NiO, ' ' as well
as CoO (Refs. 35—37) have been studied rather intensive-
ly, while the thermodynamically unstable FeO (Ref. 38)
appears much less investigated.

The antiferromagnetic and insulating monoxides, ex-
cept for CuO, all crystallize in the rocksalt structure, i.e.,
the M + ions (M =Ni, Co, Fe, Mn) as well as the 0
ions occupy lattice sites of an fcc structure. As described
in Sec. II A, as well as in Appendix A, we consider the fcc
structure as built up by two chemically equivalent sublat-
tices A and B in such a way that the (111)planes are as-
cribed in alternating sequence to A and 8, respectively.
For paramagnetic, ferromagnetic, and nonmagnetic sys-
tems this decomposition is meaningless [(A,o)=(B,O)],
while for antiferromagnets [(A,o)=(B,—o)] the so-
called AF II type of transition-metal monoxides is real-
ized. The Bloch density of states po (E), exhibited in
Fig. 1, has been calculated in tight-binding approxima-
tion by an explicit k-space summation over the first sub-
lattice ("Bravais lattice" ) Brillouin zone, including
nearest- and next-nearest-neighbor hopping. This holds
for all k summations needed for the self-consistent solu-
tion of our model. Somewhat arbitrarily we have as-
sumed that all 3d Bloch band have the same width
( W = W Vm), where the centers of gravity To are
shifted against one another by 0.2 eV. The width 8' is
derived from the magnetic data of the MO as described
below. This arbitrariness will be removed in a forthcom-
ing paper when we fix the Bloch energies by a full LSDA
band-structure calculation. Here we are mainly interest-
ed in the general physical mechanism which causes the
striking phenomena of the Mott insulators.

The Coulomb coupling constants have been estimated
by Kanamori for systems like NiO. In accordance with
his findings, ' we used, for all calculations,

U=13 eV, U=11 eV, J=0.1 eV . (4.1)

U is larger than that from the local-cluster calculation of
Fujimori, Minami, and Sugano, ' (U=8 —10 eV), being,
however, of the same order of magnitude. In any case, a
direct comparison of the so-called "Hubbard U" must be
problematic because of the use of different models. There
does not appear in Ref. 14, e.g. , a direct analogue to our
U. The comparatively small interband exchange J may
be a little bit surprising. However, it turns out that J is
rather unimportant for the striking phenomena of Mott
insulators. A choice of J =0.5 eV, e.g., yields practically
the same features. One has, additionally, to bear in mind
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FIG. 4. (a) Neel temperature as function of Bloch bandwidth
W' (8' = 8' 'tt'm in our model), for various integral values of
band occupation n 3d (8, NiO curve; 7, CoO curve; 6, FeO curve;
5, MnO curve). {b) Sublattice magnetization as function of tem-

perature for the transition-metal monoxides.

that J describes the exchange between two single 3d sub-
bands. We shall see that the altogether effect of inter-
band exchange in the degenerate 3d complex may
amount to =1 eV.

A first general result of our self-consistent model evalu-
ation is the fact that the characteristic properties of the
Mott insulators are due to strong M + —3d-electron
correlations. The oxygen 2p subbands partially overlap
with some of the 3d quasiparticle subbands, therefore hy-
bridizing with them. They are, however, in all cases com-
pletely filled and thus totally inactive with respect to the
magnetism as well as to the conductivity properties of the
monoxides.

As a further important general result, we find that, for
the chosen set (4.1) of parameters and the assumed rock-
salt structure, the ground state of the model systems is
indeed antiferromagnetic for all 3d-electron numbers per
site n3d in between 5 (MnO) and 9 (CuO). As will be
demonstrated below, this is due to the fact that, for such
electron densities, at least one of the five 3d subbands is
exactly half-filled. As is well known from previous model
calculations, ' such a situation strongly favors antifer-
romagnetism.

For fixed model parameters U, U, J, and lattice struc-
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ture, the magnetic and electric properties of the model
system are decisively influenced by the band occupation
n3d and the Bloch bandwidth W. Figure 4(a) shows the
8' dependence of the Neel temperature T& for four
different integral numbers:

n3„=5 ( MnO), 6 ( FeO), 7 ( CoO),

8 (~NiO) . (4.2)

We have used the experimental values for the critical
temperatures,

Tz = 122 K ( MnO), 175 K ( FeO), 289 K ( ~CoO), 523 K ( NiO),

to read off from the TN Wcu-rves in Fig. 4(a) the following Bloch bandwidths:

W=0.96 eV ( MnO), 1.28 eV {~FeO), 1.91 eV {~CoO), 3.18 eV (~NiO) .

(4.3)

(4.4)

Figure 4(b) shows our results for the temperature depen-
dence of the sublattice magnetization of the four 3d
transition-metal monoxides. They are normalized to the
number of 3d holes, i.e., to get the total sublattice mo-
ment behavior we have to multiply the respective curve
in Fig. 4(b) by (10—n3d)ps. All curves look like Bril-
louin functions. The magnetizations for the sublattices A
and 8 are, of course, different in sign but equal in magni-
tude, so that the total magnetization vanishes for all tern-
peratures. As usual, for antiferromagnets the sublattices
are not ferromagnetically saturated at T =0, i.e., the so-
called "Neel state" with totally polarized sublattices is
not the true ground state. The calculated T=0 moment
of NiO, e.g., is, however, with 1.96pz very close to that
expected for a pure 3d (Ni +) configuration. The experi-
mental value appears not very well established:
p(T =0)lps =1.64, 1.77, ' 1.90. ' In our self-
consistent theory, the T =0 moment depends very sensi-
tively on the molecular field B (m), defined in (3.29).
Switching off tentatively, this field suppresses the NiO
moment to some 1.65pz.

All these magnetic data are caused by a respective tem-
perature behavior of the sublattice quasiparticle density
of states (S-QDOS), which we are now going to discuss in
detail. As already mentioned, the 3d-2p hybridization
plays only a minor role as to the magnetic and insulating
properties of the transition-metal monoxides. To illus-
trate as clearly as possible the decisive interrelations, we
therefore discuss the S-QDOS first without hybridization.
Figure 5 shows the S-QDOS p (E) as function of ener-

gy for a parameter constellation valid for NiO„ i.e., in
particular n3d=8, and that for various temperatures.
The latter are chosen so that they belong to sublattice
magnetizations which decrease step by step by about
20%. The solid lines are for the Ni 3d subbands, while
dotted lines mark the 0 2p subbands. There are three en-
ergy regions which are occupied by Ni 3d states, the
lower two below, the uppermost above the chemical po-
tential p. The gap between the uppermost and the inter-
mediate Ni 3d part appears rather temperature indepen-
dent, guaranteeing that NiO is insulating for all T. The
three intermediate Ni 3d subbands are fully occupied,
each with two electrons per site. Each of the two low-
energy 3d quasiparticle subbands contains only one elec-
tron per site. The two unoccupied, high-energy 3d sub-
bands are similarly built up by one quasiparticle state per
site. This band structure, which simultaneously takes
care for a permanent magnetic moment as well as for in-

I

sulating behavior, can be understood as follows: The in-
traband Coulomb interaction H3d'(m), which enters our
model via (2.15), takes care for a splitting of each nonde-
generate Bloch subband of the highly correlated electron
system into two quasiparticle subbands. The energetic
distance between the two subbands is roughly given by
the intraband coupling constant U. This band separation
turns out to be rather temperature independent. Each
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quasiparticle subband has a spectral weight, which may
simply be interpreted as the area under the respective Q-
DOS curve. The total Q-DOS per spin and sublattice is
normalized to one:

J dEp (E)=1 . (4.5)

The spectral weight of a quasiparticle subband depends
on temperature T, band occupation ( n ), and electron
spin 0.. The cr dependence is responsible for magnetic
phenomena (see below), while the ( n ) dependence
gives rise to two special cases. For empty Bloch bands
((n ) =0) the upper, and for completely filled Bloch
bands ( ( n ) =2) the lower quasiparticle subband disap-
pears. Transferred to the NiO case exhibited in Fig. 5,
this means the following: three Ni 3d subbands are filled
and thus do not have a lower quasiparticle subband.
They are closely located to the also fully occupied oxygen
2p states. The other two Ni 3d subbands are exactly
half-filled, and therefore splitted by an energy amount of
order U. The two lower quasiparticle bands are below
the chemical potential p, the two upper bands above. We
conclude, that the unoccupied high-energy and the occu-
pied low-energy part of the Ni 3d spectrum belong to-
gether, arisen out of an electron-correlation-caused quasi-
particle splitting. They are often denoted in literature as
"Hubbard subbands. " In the language of photoemission
spectroscopy, ' the lower Hubbard band is built up by
3d states, observable by XPS, while the 3d states form
the upper Hubbard subband [bremsstrahlung-isochromat
spectroscopy (BIS)j. In addition, photoemission experi-
ments reveal so-called 3d L ' states ' in the
intermediate-energy range. The self-consistent solution
of our multiband model ascribes these 3d L ' states to
the three intermediate, fully occupied, Ni subbands,
which strongly hybridize with the oxygen subbands. The
optical gap of NiO is therefore not identical to the so-
called "Hubbard gap. " It is the energetic distance be-
tween the three fully occupied Ni bands and the two
unoccupied upper quasiparticle subbands of the half-filled
Ni bands. The frequently discussed nature of the insula-
tor gap (d-d or p-d?) is of only minor importance with
respect to antiferromagnetism and Mott insulation. The
2p-3d hybridization, of course, exists and may take care
for a sizable amount of p character in the highest occu-
pied states (see Fig. 13), but, in any case, this hybridiza-
tion is not a necessary ingredient for an explanation of
the basic mechanism in the transition-metal monoxides.

There remain two essential questions. What is the
reason for the extraordinary "orbital polarization, '* i.e.,
why are the eight Ni + electrons per site not homogene-
ously distributed over the five Ni 3d subbands? Why are
the three fully occupied bands not located in the same en-

ergy region as the two unoccupied upper quasiparticle
subbands, but rather some 4 eV below them? Both
answers are given by the interband Coulomb interaction
H~3d'(m), which enters our model via (2.19). This term

may be interpreted as a somewhat "classical" Coulomb
interaction between an electron from the mth subband
and the charge densities of all the other subbands m'Wm.
According to (2. 19) the corresponding coupling strength

is mainly given by U. A Ni + electron in one of the fully
occupied, intermediate subbands (Fig. 5) interacts via U
with six electrons per site in other subbands, but not with
the other electron in its own band. On the other hand, an
electron in one of the two half-filled subbands "sees"
seven electrons per site in other bands. The difference re-
sults in different subband positions. For U and U values,
as those in (4.1), it is energetically more favorable for the
system to distribute the Ni 3d electrons not uniformly
over the available subbands. It is this "classical" inter-
band Coulomb interaction U which is decisively responsi-
ble for the insulating behavior of the transition-metal
monoxides. The positions of the three energy regions,
where Ni 3d are observable, hardly shift with tempera-
ture, thus guaranteeing the Mott insulation for arbitrary
temperatures.

We note in passing that rather slight changes in the rel-
ative magnitude of U and U can remove the above-
mentioned "orbital polarization" resulting in a transition
from an insulating to a metallic state. We speculate that
this is the mechanism that causes the strikingly different
behavior of transition-metal-oxides and transition-metal
sulfides. There is no need to assume that the so-called
"Hubbard U" changes from more than 10 eV to less
than 2 eV when going from NiO to NiS. A detailed in-

spection of this interesting problem is in preparation.
The magnetic properties of the Mott insulator NiO are

caused by an explicit spin dependence of the spectral
weights below a critical temperature T~. The three fully

occupied Ni bands are magnetically inactive; they are
only slightly spin split below Tz because of the weak in-

terband exchange J with the magnetically active Ni
bands. For very low temperatures (Fig. 5) the spectral
weights of the lower quasiparticle subbands of the two
half-filled Ni subbands are strongly spin dependent,
namely, very close to one for o = $ and very close to zero
for cr = J, . Exactly the opposite is true for the unoccupied
upper quasiparticle subbands. With increasing tempera-
ture the weights of the lower J, bands as well as the upper
L bands become greater, leading to an increasing sublat-
tice demagnetization. So the magnetization curve in Fig.
4(b) is not due to a firstly partial and finally complete
overlap of respective spin bands, which, by the way,
would make the insulator metallic, but rather by a
temperature-dependent shift of quasiparticle states from
an occupied low-energy to an unoccupied high-energy re-

gion and vice versa. One important consequence of this
mechanism is that the insulating gap remains rather
unaffected by the antiferromagnetic-paramagnetic phase
transition, resolving thereby one of the most controver-
sially discussed problems of the Mott insulators. It is

worthwhile to point out that, in principle, the same
mechanism helped us in Ref. 24 to understand the so-

called "localized Heisenberg ferromagnetism" of the pro-
totype EuO. We therefore agree with Brandow's formu-
lation that, in principle, Mott insulators can be classified
as normal "magnetic insulators, " in spite of the fact that
the moment-carrying low-lying energy bands have a
dispersion of up to 2 eV.

While Fig. 5 shows the NiO-sublattice quasiparticle
density of states p (E) separately for each m, we have
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FIG. 6. The same as in Fig. 5 (NiO) but for the total sublat-
tice QDOS p„(E), which has been folded with a Gaussian
(F%'HM =0.2 eV).

summed up in Fig. 6 the partial S-QDOS to a total sub-
lattice quasiparticle density of states as it should be ob-
servable in an appropriate neutron-scattering experiment.
Unfortunately, a normal photoemission experiment is not
capable to resolve the sublattice QDOS. Because of
(3.14), however, the temperature effects in the sublattices
A and B mutually compensate, so that the total Q-DOS
of the antiferromagnets appears practically T indepen-
dent, as is exemplified in Fig. 7 for NiO. The relative or-
der of the band states, however, agrees quantitatively
with the available XPS and BIS data.

Some LSDA band-structure calculations ' are able to
predict MnO and NiO as insulators at T =0 K by locat-
ing the Fermi edge within the Slater gap. Apart from the
fact that this is a physically misleading interpretation of
"Mott insulation, " these calculations fail to reproduce
the insulating behavior of CoO and FeO. Figure 8 shows
that our model calculation yields, for all transition-metal
monoxides, quite similar quasiparticle band structures.
In the sequence NiO=MnO, the number of fully occu-
pied, intermediate 3d subbands decreases step by step by
one, from three for NiO to zero for MnO, while the num-
ber of half-filled bands increases in the same direction
from two to five. In any case, we find an insulator gap of
some eV. Its origin is for all MO exactly the same as ex-

FIG. 7. The same as in Fig. 6 but now for the total quasipar-
ticle density of states p (E)=pq (E)+p~ (~).

plained above for the special case NiO. Since the mag-
netic moment, produced by the (10—n3d) half-filled

bands, increases from NiO to MnO, the exchange (J)
caused spin splitting of the (n3d —5) fully occupied bands
grows up in the same direction. We have used in Fig. 8
for all the transition-metal monoxides the same values for
the Coulomb coupling constants as in (4.1) for NiO be-
cause here we are interested only in demonstrating the
physical mechanism. In reality they may differ, being,
however, for all monoxides surely of the same order of
magnitude.

As already mentioned, CuO does not fit exactly our
model assumptions because of a different crystal struc-
ture. However, when we disregard this fact, we find
CuO, too, in agreement with the experiment to be an an-
tiferromagnetic insulator (n3d=9). Quite interesting is
the case of VO with n 3d

=3 electrons per site. All the five

3d subbands are less than half-filled. There do not appear
completely filled quasiparticle subbands as for NiO, e.g.,
and therewith the intermediate 3d band region vanishes,
so that the above-discussed orbital polarization, typical
for the other MO, cannot occur. Furthermore, no mag-
netic ordering for less than half-filled energy bands is pos-
sible for a lattice with rocksalt structure (see the phase di-
agram in Ref. 9). The self-consistent solution of our
model therefore predicts VO to be a nonmagnetic metal.
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FIG. 11. Quasiparticle sublattice density of states as function
of energy for various average numbers of 3d electrons per site
between n =8 (~NiO) and n =7 (~CoO). The bars mark
the position of the Fermi edge. Plotted are only the cation 3d
subbands, and that for T=O K. Parameters as in Fig. 5. The
dotted lines are for the 3d subband, which decisively reacts on
the change in band occupation. The system is an insulator for
n =7 and 8 and becomes metallic for n X7,8.

enhances the T =0 depolarization [see Fig. 4(b)]. As
soon as total polarization happens ((ne ) r=o=i,
(n ) r o=0), the respective subband shows an addi-
tional "Slater splitting" (Fig. 11). We shall not comment
on this splitting in more detail since it disappears im-
mediately when the kinetic exchange is "switched on"
again. We learn from Fig. 11 that, for the integer n3d 8,
the system consists of three fully occupied and two half-
filled subbands consistent with the NiO case in Fig. 5. If
we now slightly diminish the band occupation to
n 3d =7.8, then the spin-$ part of one of the intermediate
bands, marked in Fig. 11 as a dotted line, shifts partially
above the Fermi edge. In the same moment a lower
spin-1 quasiparticle band arises because the correspond-
ing Bloch band is no longer completely filled. There is
now a finite probability that a spin-1 electron of this band
may jump onto a lattice site which is not preoccupied by
a spin-1 electron of the same band. This fact manifests
itself in the appearance of the lower "Hubbard band, " the
spectral weight of which is a direct measure of the just-
mentioned probability. The latter increases with further

decreasing band occupation. Analogously, the probabili-
ty for a spin-t' electron to meet a spin-$ electron becomes
smaller. As a consequence, the spectral weight of the
lower spin-1 quasiparticle subband increases with de-
creasing n3& at cost of the weight of the upper spin-1'

quasiparticle subband. The total area under the
sublattice-QDOS is normalized to one (4.5). For n3d =7,
the spin-1 subband has moved completely above the Fer-
mi edge, being, therefore, empty. This means that a
spin-1 electron of the considered subband cannot meet a
spin-1 electron to perform the intraband Coulomb in-
teraction U. The upper spin-f quasiparticle subband
therefore disappears. For nod=7, the sublattice QDOS
again exhibits a broad insulator gap of a few eV and be-
comes consistent with the CoO case represented in Fig.
10. For all noninteger values of n3d, however, the Fermi
edge falls into the band region provoking metallic behav-
ior. Our model therefore confirms the experimental ob-
servation that "Mott insulation" is strictly bound to an
integral number of 3d electrons with 5 & n3d ~9. Figure

TEMPERATURE-DEPENDENT ELECTRONIC STRUCTURE AND. . .
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APPENDIX A

po or noninteractingThe Bloch density of states (E) f
e ectrons in the mth subband, represented in Fig. 1, is
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calculated in the tight-binding approximation. The elec-
tron hopping T; p(m) is restricted to nearest (h, p) and
next-nearest neighbors (62P) in the chemical lattice

H~P(m)=g [ T; P(.m)(c; c p +H. c. )

+Un; n; 5;~5 p] . (B1)

To(m) if R,. =R,p,
T,P(m) if R; =R p+ba)P,

T&A

0 otherwise .

This means, for the Bloch energies s p(k) defined in (2.7),

(A 1)

"(k)=8 (k) = To(m)+ T) (m)f) (k)

+T, (m)f, (k)=E (k), (A2)

E" (k)=[a "(k)]'=T)" (m)g((k)+Tz" (m)g2(k)

=& (k) . (A3)

f, (k)=2[ cos[(k„—k )a/2]+cos[(k —k, )a/2)

+cos[(k, —k„)a/2)),
f2(k)=0,

(A4)

(A5)

For the sublattice structure (AF II), explained in Sec.
IIA, the k-dependent functions f, 2(k) and g, 2(k) are
given by

At the end we simply have to sum over all indices i,j,a,p:

HU(m)= —,
' g H, P(m) .

i,j,a,p

(B2)

+~jpm0. jpm —o (B4)

It is easy to check that the so-defined projection opera-
tors fulfill the following conditions:

p„(ia,jp) =p„(ia,jp}, (B5)

We try to decompose the two-site Hamiltonian (Bl) in

complete analogy to (2.22). For this purpose we intro-
duce projection operators P„(iaj13), r =1,2, which map
the electron propagation onto the lower (r =1) and

upper (r =2) quasiparticle sublevel. P, (ia, jP), e.g., pro-
jects out situations, for which R; and R p are, at most,
singly occupied:

P) (ia, jP)=(1 n;— n; )(1 njp
—
nIp ) . (B3)

P2(ia, jp), on the other hand, picks out the cases for
which at least one of the two sites is doubly occupied:

g, (k}=2[cos[(k„+k )a/2]+cos[(k„+k, )a/2]

+cos[(k, +k„)a /2] ), (A6)

gz(k)=2[cos(k„a)+cos(k a)+cos(k, a)],

2

g p„(ia,jp)=1,

p)(iaj p)p2(iaj p)=p2(iaj p)p)(iaj p)=0 .

(B6)

(B7)

a is the Bravais lattice constant. The resulting Bloch
density of states po (E) of the noninteracting electrons in
the mth subband,

po (E)= g [5(E—s (k) lr (k)l)
k

+5(E —e (k)+lt (k)l)], (A8)

is plotted in Fig. 1 by use of To(m)=0,
T2 (m)/T, (m)=1, and a bandwidth of W =1 eV.

APPENDIX 8

For the explicit derivation of the partial Hamiltonian
(2.23), we use a slight extension of the method proposed
in Ref. 28. Since only two sites R; and R.p are involved,
we can restrict our considerations first to a respective
two-site model:

These projection operators are now used for the formal
decomposition of the two-site Hamiltonian:

H P(m)="(H P)( )(m)+(H P)("(m") . (B8)

(H,"P)' '(m)= P) (iaj P)H,. P(m)P2(ia, j"P)

+Pz (iaj P)H,', (m )P) (i aj P) . (B10)

In the next step we apply a canonical transformation to
(B8):

The first term aims at quasiparticle hopping within the
lower or within the upper levels,

(HJP)' '(m)= P)(iaj13)H; P(m)P)(iajP. }

+P2(i aj P)H~P(m )P2(i aj i3), (B9)

while the second term brings into play intersublevel tran-
sitions:

HaP(m )
—e sHaP(m )e S

(H P)(o)(m)+ [(H"P)(')+ [(HaP)(0)(m), $]
+—,'(2[(H~ } (m), $] +[[(Hip)' '(m), $],S] )+higher order terms .- (Bl 1)

The higher-order terms in the expansion may be neglected in the strong-coupling regime because (H; p)'" as well as S
turn out to be of order W' /U. S is chosen in such a way that the first bracket in (Bl 1) vanishes:

[(H,',P)'"+[(H;,.P)'"(m), $] ) =0. (B12)
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This xneans, for the transformed Hamiltonian,

H,,~(m}=(H, ~}.' '+ —,'[(Hf )"'(m), S] (813)

Equation (812) is used to fix the operator S. Multiplying from both sides with P„(ia, jp), and exploiting Eqs. (85)—(87),
(89},and (810},yields

P, (ia ji3)HJ~(m)[P„(i,a j 13)SP„(iajP)]=tP„(iajP)SP„(iaj13)]H;,~(m)P„(ia jP) (r =1,2) .

This equation is solved by

P„(iaj13)SP„(iajP) =yP„(iaj P) (r = 1,2)

(814)

(815)

with an arbitrary constant y. Multiplying (812) from the left with P, and from the right with P„with r Xr leads to

P, (i a,jP)H; (m )P„(ia,j 13)= [ P„(ia,jP)S [P„(ia,jP)H, (m )"P„(ia,j 13) ]

—[P„(iaj 13)H; (m)P, (iaj P)]SP„.(i aj 13)] . (816)

The expressions in the curly brackets correspond to an effective quasiparticle propagation in the lower (r =1) and
upper (r =2) subband, suggesting, therefore, the following ansatz:

P, (iaj P)H J~(m)P„(i aj 13)=E~~(r)P„(iajP),

where Fv~(r) is a characteristic energy from the rth subband. From (816) then follows

P, (iaj P)SP, (iaj P) =b, ,j~(r, r')P, (iaj P)H; ~(m)P„(iaj P),
g ~(r, r ) =[g P(r) g~—(r ))

With (815}and (818},inserted into (813), the transformed operator now reads

H,,P(m) =(H~~}' '+b;,~(1,2)[ P, (iaj P}H;;~(m)P2(iaj 13}HJ~(m)P, (ia, jP)

P2 (i aj P)—H, ~(m )P, (iaj P)H Jp( m )P2 (i aj P) ] .

(817)

(818)

(819)

(820)

We finally insert the explicit expressions (83) and (84) for the projection operators P„(ia,j13) and perform at the end ac-
cording to (82) the summations over all indices i,j,a, 13 After ted. ious, but straightforward, manipulations, we arrive at
the expression (2.23) for H3d +H3d'= g HU(m ).
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