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%e develop a general procedure for estimating the effective constitutive behavior of nonlinear dielec-
trics. The procedure is based on a variational principle expressing the effective energy function of a
given nonlinear composite in terms of the effective energy functions of the class of linear comparison
composites. This provides an automatic procedure for converting well-known information for linear
composites, in the form of estimates and bounds for their effective dielectric constants, into correspond-
ing estimates and bounds for the effective behavior of nonlinear composites. Further, the procedure is
easily implemented, and leads in some cases to exact results. Thus, exact estimates are given herein for
isotropic weakly nonlinear composites with general nonlinearity, and bounds of the Hashin-Shtrikman

type are given for the class of two-phase, isotropic dielectric composites with strongly and perfectly non

linear constitutive behavior. The optimality of the bounds is addressed briefly.

I. INTRODUCTION

An important problem in classical physics is that of es-
timating the effective transport properties of composite
materials. For materials with linear constitutive behav-
ior, and negligible interfacial effects, there exists a well
developed theory, which is reviewed, for example, in the
article by Landauer. ' However, there are numerous phe-
nomena where nonlinear constitutive effects are very im-
portant. These include dielectric breakdown, burning out
of fuses, and nonlinear optics. Further, it is anticipated
that the coupling between nonlinearity and inhomogene-
ity may lead to potentially important new applications.

This paper is concerned with the theoretical prediction
of the effective constitutive behavior of nonlinear inho-
mogeneous dielectrics, although the resulting theory will
also be applicable (with appropriate reinterpretations) to
nonlinear inhomogeneous conductors, ferromagnetic ma-
terials, and lasers. Thus, the emphasis will be placed on
the theoretical aspects of the problem rather than on
specific applications. Although the theory of nonlinear
composites is not nearly as well developed as the corre-
sponding linear theory, significant progress has been
achieved over the past five years. Stroud and Hui made
use of a perturbation expansion to obtain an exact esti-
mate, to first order in the nonlinear (cubic) susceptibility
of the composite, for dilute concentrations of inhomo-
geneities. More recently, this result has been extended to
nondilute concentrations of inhomogeneities. In addi-
tion to these results for weakly nonlinear materials,
Bjumenfeld and Bergman have obtained an estimate for

the effective dielectric constant of a strongly nonlinear
composite, which is exact to second order in the Quctua-
tions (contrast) of the dielectric coefficients in the com-
posite. %'hile the previous authors concerned themselves
with specific types of nonlinearities (cubic susceptibilities
and pure-power-law nonlinearities, respectively), and per-
turbation expansions (in the weak nonlinearity and con-
trast, respectively), Willis considered composites with
general types of nonlinearity and isotropic microstruc-
tures to obtain bounds of the Hashin-Shtrikman type for
the effective energy functions of these nonlinear compos-
ites.

In this paper, we use a variational procedure for es-
timating the effective behavior of nonlinear composites in
terms of the effective properties of the class of 1inear com-
parison composites. The distinct advantage of the
method is that well-known bounds and estimates from the
linear theory may then be used to generate corresponding
information for nonlinear composites. Additionally, the
method is straightforward, and of great generality, not
being limited to special perturbation limits nor to special
types of nonlinearities. In Sec. II, we briefly define the
effective behavior of a general nonlinear composite, and
develop a variational principle, from which the effective
behavior of the nonlinear composite may be estimated.
In Sec. III, the method is applied to two-phase, nonlinear
composites with overall isatropy, and compared to the re-
sults of previous authors in the special cases considered
by these authors. Finally, in Sec. IV, we summarize our
findings, and provide some comments concerning future
directions of research.
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II. EFFECTIVE PROPERTIES

The nonlinear constitutive behavior of an inhomogene-
ous dielectric, occupying a region in space (of unit
volume), 0, may be characterized by means of an electric
energy-density function, w(x, E), depending on the posi-
tion vector x and the electric field E(x), such that the
electric displacement field D(x) is given by

iU(x, E)= max [wo(x, E)—u(x, eo)],
co~0

where

(8)

Note that the function f has the same dependence on x as

P and w. Then, assuming convexity of f, we have the fol
lowing representation for m, namely,

D(x)=B w(x, E),
U(x, eo)= max two(x, E)—m(x, E)],

E
(9)

where BE denotes differentiation with respect to E. We as-
sume further that the dielectric is locally isotropic, so
that

iv(x, E)=P(x,E), (2)

where P is taken to be convex in the magnitude of the
electric field E.

It can be shown that the effective constitutive behavior
of the inhomogeneous dielectric may be expressed in
terms of the spatial averages (over Q) of the fields, D and

E, via the relation

D=B-W(E), (3)

where the effective energy-density function of the com-
posite, F, is in turn given by the minimum-energy princi-
ple

W(E ) = min f ic [x,E(x ) ]dx,
EeE 0

(4)

where E is the set of admissible electric fields, specified by

E = [E~E=—Vp(x) in 0, and y= —E x on BQ] .

(5)

This variational formulation of the electrostatics problem
for the composite is completely equivalent to the stan-
dard boundary-value-problem formulation in terms of
Gauss's and Faraday's laws (V.D=O and VXE=O, re-
spectively), together with the uniform boundary condi-
tion

|p= —E x on BQ,

where q is the electrostatic potential. The main advan-

tage of the variational formulation is that the effective be-
havior of the nonlinear composite is then characterized in

terms of only one scalar variable, namely, 8'.
In practice, the difficulty associated with the computa-

tion of the effective energy function of the composite (4)
is that the exact admissible fields are usually difficult to
determine in general for typical microstructures. Howev-
er, numerous methods —both approximate and exact—
have been devised to address this problem in the context
of linear constitutive behavior for the composite. Next,
we develop a variational principle that will allow us to
make use of these known linear results to obtain corre-
sponding estimates for nonlinear composites.

Our variational principle centers around a change of
variables u =F. , defining a function f, such that

and where wo(x, E)=—,'so(x)E corresponds to the local

energy-density function of a linear comparison composite
with arbitrary non-negative dielectric coefficient (not con-
stant) so(x). This representation is based on Legendre
duality for the function f; in fact, v (x, so) =f '(x, —,'co),
where f" denotes the Legendre transform of f, as given

by

f"(x,p)= max [up —f(x, u )] . (10)

Relations (8) and (9) form the basis for this variational
principle, which is obtained by making use of (8) in the
context of (4) to obtain the result

W(E) = max [ Wo(E) —V(so) j,
co(x) ~0

Wo(E)= min f wo(x, E)dx
EEK 0

(13)

[cf. (4)]. Thus, prescription (11), together with (12) and
(13), provide an alternative way of determining the
effective energy function of the nonlinear composite in
terms of the effective energy function of a suitably opti-
mized, linear, inhomogeneous, comparison material We.
emphasize that the dielectric coefficient of the compar-
ison material in (11) [eo(x)] is a non-negative function of
position.

The assumption that the function f in (7) is convex is
essential in the above derivation. However, it can be
demonstrated that a dual result exists for concave f.
Otherwise, the equality in (11) must be replaced by a
strict inequality. Here, for simplicity, we will consider
only examples for which f is convex.

III. APPLICATIONS TO TWO-PHASE
ISOTROPIC COMPOSITES

In this section, we consider the application of the gen-
eral variational principle to two-phase composite dielec-
trics with nonlinear constitutive behavior characterized
by

(14)

where V is the functional generated by the function
v (x, co),

V(E,)=f U[x, so(x)]dx, (12)

and where 8'0 denotes the effective energy function of
the linear comparison composite, with local energy func-
tion mo, so that

f(x, u)=$(x, E)=w(x, E) . (7)
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2

8'(E) ~ max Wo(E) —g c'"'U'"'(e'"')
)0(t) r=1

(16)

where 8'p now corresponds to a linear comparison com-
posite with the same microstructure as the nonlinear
composite, that is, with dielectric constants cp" in volume
fractions c". Also, the functions v'"' are obtained from
relation (9), specialized to phase r, i.e., U (x, Eo }

g2 g(r)( X )U (r)( &(r) )

Finally, if we limit our consideration to the class of iso-
tropic nonlinear composites, we are justified in writing

Wo(E) =
—,'TOE, where Zo is a function of the comparison

dielectric constants cp"', the volume fractions c'"', and any
other available information about the specific microstruc-
ture, or class of microstructures under consideration. Of
particular interest in this connection is the Maxwell-
Garnett approximation for particulate composites with a
distinct matrix phase (say, phase 2) and an inclusion
phase (1). This estimate, which may be expressed in the
form

where P'")(E) and 8(")(x) (r =1,2} are, respectively, the
energy function and the characteristic function (which
vanishes, unless x is in phase r, in which case it equals 1)
of phase r. We assume further that the corresponding
volume fractions c",given by

c"=f e"(x)dx, (15)

are fixed, and such that g~ ic'"'= l.
Next we recall that even though the properties of the

nonlinear phases are homogeneous [as assumed in (14)],
the solutions for the comparison dielectric coefficients
eo(x) in the variational principle (11}will not, in general,
be constant over the individual phases, unless the actual
fields happen to be constant over the phases. However,
we can obtain a lower bound for W by restricting the
class of admissible comparison dielectric coefficients to be
constant within each phase, i.e., eo(x)=g„=)8"(x)so"'
(with constant eo(")). This follows from the fact that the
minimum over any set is in general larger than the
minimum over a subset of the original set. Therefore, we
have that

where the first term corresponds to linear dielectric be-
havior, and the second to a nonlinear susceptibility func-
tion (if f" is quadratic, and e(") is set equal to the permit-
tivity of free space, then y(") is the standard dielectric sus-
ceptibility of phase r}. Finally, in the last subsection, we

consider briefly the question of optimality of the bounds
for the perfectly nonlinear composite.

A. Estimates for weakly nonlinear composites

We define the weakly nonlinear composite as one for
which y(")&(1 in relations (18}. Then, the case con-
sidered by Zeng et al. corresponds to the special case of
(18) with quartic f(") (i.e., cubic susceptibility). Thus,
given a specific isotropic microstructure for the nonlinear
dielectric, if we assume that we have an estimate for the
effective dielectric constant of a linear comparison com-
posite with the same microstructure (as the nonlinear
composite), specified by

E =F(e()"',c'"'),0 (19)

where the function I' depends on the properties of the
linear comparison composite cp" and the volume frac-
tions c'"' [e.g., (17)], then we can determine a correspond-
ing estimate for the nonlinear composite. Such an esti-
mate may be obtained from relation (16), by making use
of (9), which leads to

(r)( (r)} +(r)(g(r))e( ) 5&(r)} (20)

also to second order in the contrast (as
5E=eo(' —eo(' —+0). Other linear estimates, such as the
effective-medium approximation, ' and bounds, such as
the Beran bounds, " are also available, but the corre-
sponding nonlinear estimates and bounds will be con-
sidered elsewhere.

In the next subsections, we will limit our consideration
to three cases: general estimates for weakly nonlinear
composites, and Hashin-Shtrikman bounds for strongly
and perfectly nonlinear composites, respectively. We wi11

assume the following constitutive behavior for the phases:

y(r)(E) ( &(r)E2++(r)y(r)(E}

2 C(r)
Ep &(r)+ (d 1 )&(2)

(17)
where g'"'(u)=P'"'(E) (u =E ) and 5e"=(e'"'
—e'"')/g'"', and of a Taylor-series expansion of F about
c.p"=e.'"', given by

(where d stands for the dimension of the underlying Eu-
clidean space), has alternatively been shown to be a
bound for the class of two-phase, linear isotropic compos-
ites by Hashin and Shtrikman [it is a lower (upper)
bound if co(")Eo )(eo( ') Eo ')]. This bound is further
known to be optimal (i.e., no better bound is possible for
this class of materials). Additionally, the above estimate
is exact to first order in the dilute limit (as c' )~0), and

l

dF—F( (r) (r))+ g (r)
(

(r) (r))5 (r)

ac."
(21)

This calculation yields the following result for the
effective energy function of the weakly nonlinear compos-
ite, namely,

2
gr(E) ~ (F(&(r) c(r))E2+ y +(r)c(r)y(r) aF

( () ())() g~()

' 1/2

E +0[(X ) ] (22)

where we have assumed (for simplicity} that BF/()E" 0.
By specializing this result for general weak nonlinearity

l

to the case of a quartic weak nonlinearity, we recover the
specific results of Zeng et al.
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B. Hashin-Shtrikman bounds and estimates
for strongly nonlinear composites

As mentioned earlier, Hashin and Shtrikman deter-
mined optimal bounds for the class of two-phase, linear
isotropic composites with prescribed volume fractions.
In this section, we will make use of these results to obtain
a corresponding lower bound for the effective energy of
the class of two-phase, nonlinear isotropic composites.
We note that such a nonlinear Hashin-Shtrikman bound
can also be given the interpretation of a Maxwell-Garnett

approximation for nonlinear composites with particulate
microstructures. In order to achieve a simple form for
the nonlinear bound, we make use of the following identi-
ty:

2 (r)

(r)
r ——] Eo

= min [c"'E()"(1—c"' )

+c (2)s(2)( 1 +c (1)~
)2] (23)

Then, application of (23) to (17), together with (16), leads
to

W(E)) (
~

[
(1)[ ) (1)( (1))2 (1)( (1))]+ (2)[1 (2)( (2))2 „(2)(s(2))]])

(l) (2) 0 0 0 0
~o ~o ~0

where
s"'= ~1

—c(2)co~E

and

f'"'(E)=E"+'/(n + 1) (n ~ 1) in (18)] in the small-
contrast limit (5y~O, where g"'=g' ', y( ) =y( '+5y).
Their result may be expressed in the form ( with d =3)

or

and

s' )=v (1+c"'co) +(d —1)c"'oi E,

s(')=Q(1 —c( )
) +(d —1)c( )oi~E

n + 1 sin 'i/(n —1)/n1'= ~X~
2(n —1)y( ' v'n —1

X ( & y') —
& y ) ')+ 0(5y'), (25)

W(E) ~ min [c")))I)("(s'")+c()(t( '(s' ')] (24)

where s"' and s' ' are given by the pair above yielding
the smallest minima in (24). Alternatively, it can be
shown that choosing the pair s'" and s' ' yielding the
largest minima in the right-hand side of (24) results in an

upper estimate for the effective energy function of the
nonlinear composite O'. This Hashin-Shtrikman upper
estimate is not in general a rigorous upper bound for 8'
because the approximation made in relation (16) is strict-
ly one sided. On the other hand, the Hashin-Shtrikman
upper estimate may also be given the interpretation of a
Maxwell-Garnett approximation for particulate compos-
ites with the more conducting phase serving the role of
the matrix phase.

Bounds and estimates of this type for nonlinear com-
posites have also been obtained by Willis by making use
of an extension of the Hashin-Shtrikman variationa1 prin-
ciple (which makes use of a homogeneous comparison ma-
terial) for nonlinear constitutive behavior. However, the
form for the nonlinear bound that has emerged in this
work in terms of a one-dimensional optimization problem
is simpler.

It is interesting to compare the predictions of our
lower bound with the exact second-order perturbation re-
sult of Blumenfeld and Bergman for pure-power-/am

strongly nonlinear composites [i.e., e(")=0 and

s(2) —
~

1+c(1)~~E

depending on whether sI)
) ) sI)

' or eo '(s(o ' [so that (17)
is a lower bound for so]. Finally, noticing that the argu-
ment of the minimum function is convex in co and con-
cave in co(' and co ', application of the saddle-point
theorem, and of result (8) applied to each phase, leads to
a simple bound for 8', given by

where the effective nonlinear susceptibility g of the
pure-power-law composite is defined by
W(E) =gE"+'/(n +1), and where the angular brackets
denote spatial averages over the composite. By compar-
ison, our result (24), in the corresponding liinit, reduces
to (with 4 =3)

(&e&-&~)')+0(5~ )
2(n +2)q(0)

We note that this result is in general exact only to erst or-
der in the contrast 5y. However, in the limits as n~ 1

and ~ (corresponding, respectively, to the linear and
"perfectly"' nonlinear limits), we find that the two re-
sults [(25) and (26)] agree to second order in 5y. In be-
tween these two limits, we find that our bound (26) lies
below the exact result (25). It is important to emphasize
at this stage that result (25) is one of the few exact results
available for nonlinear composites, but also that it is spe-
cial in that corresponding results are not available for
general nonlinearity. On the other hand, our results for
the nonlinear Hashin-Shtrikman bound (24) apply for
general nonlinearity and arbitrary contrast for the com-
posite.

Finally, we note that when the above Hashin-
Shtrikman bound is applied to composites with constitu-
tive behavior given by (18), it leads to a result that agrees,
in the small nonlinearity limit, with our weakly nonlinear
result (22). However, more generally, the weakly non-
linear result is not a good approximation for strongly
nonlinear composites.

C. Hashin-Shtrikman bounds and estimates
for perfectly nonlinear composites

In this section, we are concerned with the determina-
tion of Hashin-Shtrikman bounds and estimates for the
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effective behavior of the class of two-phase, isotropic per-
fectly nonlinear composites. As we have seen, this class
of composites is a special case of the class of strongly
nonlinear composites, where the constitutive behavior of
the phases is of the pure-power type with n ~ Do. How-
ever, the function g'")(E)=E"+'/(n+I) needs to be
properly interpreted in the limit as n ~ 00. This can be
accomplished rigorously via convex analysis, but in the
interest of brevity, we will simply introduce some ap-
propriate notation. Thus, we define the "threshold" elec-
tric field E„'"' (analogous to the "yield stress"'2) from the
relation

n+1
y(r)(E) E(r) (27)

tl +1 E(r)

Note that, with this definition, E„'"'=(y'")) ' " in (18).
Then, in the limit as n —+ 00, the corresponding constitu-
tive relation (1) is given by E=O and D=O; or E=E'„'
and D is parallel to E, but otherwise indeterminate. We
continue by formally applying the general expression for
the lower bound (24) to the perfectly nonlinear composite
to obtain an upper bound (lower bound for W) for the
corresponding threshold electric field for the composite
E„,namely,

dc"' (2)
E & c E'"+ Q(c~ )+dc"')(E' ') —(d —1)c"'(E'„")2

c(2)+dc(1) dc(1)
(28)

where we have assumed that E'„" E'„'. We note that,
for d=3, in the small-contrast limit (5E„=E'„"—E'„'
~0), this result (28) is consistent (to second order) with
results (25) and (26), as n ~~. However, the bound (28)
for perfectly nonlinear composites is valid more genera1-

ly, with no restrictions placed on the concentration of the
inhomogeneities, nor on the contrast between the phases.

Correspondingly, a lower estimate may also be estab-
lished for the effective threshold electric field E„ofthis
class of composites. The result is obtained in the same
way as (28), and is given by the right-hand side of expres-
sion (28), with superscripts 1 and 2 interchanged if

(1—1/d )+1+c' '/(d —1)E'„'~E'„"~E'„',

or alternatively, by

E„=+I+c' '/(d —1)E'„"

the corresponding plots for the threshold electric fields

E„ofthe pure-power-law nonlinear composite [cf. (27)],
as functions of the contrast, for n =10 and 3, respectively.
These plots are given for comparison with the perfectly
nonlinear results of Fig. 1(a) (n = ao ). The results for the
Hashin-Shtrikman upper bound and lower estimate are
obtained by evaluating numerically the minima implied
by relations (24). The corresponding Weiner lower and
upper bounds are given by E„=[c"'(E'„")
+c' '(E'2') "] ' " and E„=c"'E'„"+c''E'„', respec-
tively. Finally, in Fig. 1(d), again for the purpose of com-
parison with the previous results, we depict the corre-
sponding results for the linear composite (n =1). In this
case both the upper and lower Hashin-Shtrikman esti-
mates are rigorous optimal bounds.

D. On the optimality of the bounds
for perfectly nonlinear composites

E'„"~(1—I/d) t/I+c' '/(d —1)E'„' .

Figure 1(a) is a plot of the upper bound (HS+) and
lower estimate (HS —) for the effective threshold electric
field of the perfectly nonlinear composite, E„(appropri-
ately normalized by E'„', as a function of the contrast be-
tween the two phases E'„"/E'2', for c"'=c' '=0 5 Ad-. .
ditionally, the classical bounds of Weiner, ' obtained
directly from the minimum-energy principle (4) and its
dual, the complementary energy principle, are shown for
comparison. These are given in this case by E„=E'"
and E„=c'"E'„"+c''E'„', respectively, for the lower
and upper bounds. We note that the rigorous Hashin-
Shtrikman upper bound (HS+) is a significant improve-
ment over the classical Weiner bound (W+), which gets
progressively better as the contrast between the phases
increases. On the other hand, the Hashin-Shtrikman
lower estimate (HS —) is stronger than the Weiner lower
bound (W —), but the Hashin-Shtrikman estimate gets
progressively weaker (relative to the Weiner bound) as
the contrast increases. We also give in Figs. 1(b) and 1(c)

The fact that the small-contrast bound (26) for the
effective nonlinear susceptibility of the pure-power com-
posite reduces to the corresponding linear result in the
limit as n~1 is, of course, expected. More surprising,
however, is that the bound (26) also appears to be exact in
the limit as n~~ (to second order in the contrast).
Motivated by this finding, we investigate next the possi-
bility that the more general bound (28) [obtained from
(24)] may, in fact, be optimal for the class of two-phase,
isotropic perfectly nonlinear composites This is. accom-
plished by applying the exact version of the variational
principle (11) to a sequentially laminated material (Fig.
2), ' which we will show has an effective energy function
attaining the bound (24), at least for certain special load-
ing conditions.

A sequentially laminated material (or laminate, for
short) is an iterative construction obtained by layering
laminated materials (which in turn have been obtained
from lower-order lamination procedures) with one of the
homogeneous phases that make up the composite, in such
a way as to produce hierarchical microstructures of in-
creasing complexity. One important property of this con-
struction is that the length scale of the embedded lam-
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inates is assumed to be small compared to the length
scale of the embedding laminates (for example, in Fig. 2,
5, «52 « l). This assumption derives from the fact that
the effective properties of simple laminates can be com-
puted exactly, and hence, by treating the sequential lam-
inate as a simple laminate (where the embedded laminate
is replaced by a homogeneous material with the effective

properties of the embedded laminate), the effective prop-
erties of the sequential laminate can also be computed ex-
actly. This property, together with the fiexibility with
which their microstructure can be controlled (by varying
the proportion of the phases within each elemental layer,
as well as the orientation of the layering directions),
makes them useful theoretical tools, and they have been

0.8 0.8

0.6

E
E(2)

04

0.6

En
E(2)

n

0.4

0.2 0.2

0.2 0.4 E-'" 0.6E''
0.8 0.2 0.4 En 0.6

E(2)
n

0.8 0.8

0.6

E„
E(2)

n

0.4

0.6

En
E(2)

n

0.4

0.2 0.2

0.2
I I

0.4 E~ 0.6
E(2)

n

0.8 0.2 04 En' 06
E(2)

n

0.8

FIG. 1. Plot of the effective threshold electric field (E„/E„' ') as a function of the contrast (E„"'/E„' ') for (a) the perfectly non

linear composite (n = ~), (b) the pure-pozoer-laze composite (n =10), (c) the pure-pozaer-law composite (n =3), and (d) the linear

composite (n = 1). The proportions of the two phases are identical (c"'=c"'=0.5).
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FIG. 2. A sequentially laminated composite material of rank

two.

used extensively' in the linear theories of composites to
demonstrate optimality of bounds.

In the interest of brevity, we will not discuss sequen-
tially laminated materials in any further detail, and we
will simply borrow a result from the linear theory, which
is needed in our investigation of the optimality of the
nonlinear Hashin-Shtrikman bound for two-phase, isotro-
pic, perfectly nonlinear composite dielectrics. This result
is' that there exists a sequential laminate of rank d (the
rank is the number of layering operations) attaining the
Hashin-Shtrikman lower bound (17) for two-phase,
linear, isotropic composite dielectrics in d dimensions.
Figure 2 is a schematic representation of the pertinent
rank-2 laminate in two dimensions. We note that, to ob-
tain the lower bound for Zo, the weaker phase (phase 2),
with the smaller dielectric constant eo ', must play the
role of the matrix, and correspondingly, the stronger
phase (phase 1), with the larger dielectric constant ez ',

must play the role of the inclusion.
The above result suggests that the same rank-d,

sequentially laminated microstructure (with the material
with the larger threshold electric field occupying the ma-
trix phase) may attain the Hashin-Shtrikman upper
bound (28) for the class of two-phase, perfectly nonlinear,
isotropic composite dielectrics in d dimensions. Indeed,
if we assume that all the phases in the perfectly nonlinear,
rank-d laminate become simultaneously active (E=E'„"'
in each part of each phase r), we can show that the corre-
sponding expression for the energy function of the lam-
inate is precisely the same as the expression for the
Hashin-Shtrikman nonlinear bound (28). To see this, we
make use of the exact version of the variational principle
(11). Because the fields within the perfectly nonlinear
sequentially laminated composite are constant, it follows
that the inequality in (16) may be replaced by an equality
for such a microstructure. Then, the effective energy
function of the nonlinear iterated laminate W is given by
(16), with Wo corresponding to the efFective energy func-
tion of the two-phase, 1inear comparison laminate. But,
the expression for 8'0 is precisely the same as that for the
corresponding linear Hashin-Shtrikman bound, and
therefore the energy function of the nonlinear sequential
laminate is the same as that for the nonlinear Hashin-

Shtrikman bound (28).
It is important in the above construction to note that

there are only two optimization variables eo" and Eo '.
This is because the magnitudes of the electric fields in the
perfectly nonlinear phases can only take on two values in
each phase r: 0 or E'„'. For a general nonlinear compos-
ite, we would require more optimization variables (one
for the inclusion phase, and one for each lamination
operation in the matrix phase). Then, the above pro-
cedure for a rank-d sequential laminate would not result
in the nonlinear Hashin-Shtrikman bound. Thus, the
bound (24) for general nonlinearity is not expected to be

optimal.
However, even for perfectly nonlinear composites, the

above argument does not allow us to conclude that the
Hashin-Shtrikman upper bound for E„ is optimal. This
is because the assumption that al/ parts of the phases that
make up the rank-d laminate become simultaneously ac-
tive, under all possible loading conditions, is not valid.
Thus, for example, for the rank-2 laminate of Fig. 2, ap-
plication of an electric field in the horizontal direction
would lead to an overall electric displacernent for the
composite as soon as the part of the matrix phase, within
the embedded rank-1 laminate, becomes active (this does
not require the other portion of the matrix phase, outside
the embedded rank-1 laminate, to become active). Thus,
the effective threshold electric field for the rank-2 lam-
inate in the horizontal direction is less than that predict-
ed by the Hashin-Shtrikman bound (28). In the context
of the minimum energy principle (4},defining the effective
properties of the laminated composite, both solutions (the
solution with the fully active matrix phase and the solu-
tion with the partially active matrix) are stationary points
of the minimum principle, but the second solution yields
the minimum energy, and is therefore preferred.

Hence, the above simple example demonstrates that
the rank-d laminate does not, in general, attain the
Hashin-Shtrikman bound (in fact, it is not even isotropic,
essentially for the same reason that it is not extremal).
Therefore, we cannot conclude that the Hashin-
Shtrikman bound (28}is optimal, although it may well be.

IV. CONCLUDING REMARKS

We have shown that the method proposed herein for
determining the effective properties of nonlinear compos-
ite dielectrics is not only capable of reproducing the re-
sults of particular asymptotic expansions in the weakly
nonlinear and small contrast limits for specific types of
nonlinearities, but it is also able to deliver results for gen-
eral types of nonlinearities, without limitation to dilute,
weakly nonlinear, or small-contrast limits. Further, it is
found that the results of the method, either in the form of
estimates or rigorous bounds, are in some cases exact,
and in other cases allow the possibility of investigating
the optimality of the bounds. A more exhaustive treat-
ment of the applications considered here, as well as appli-
cations to higher-order bounds and other types of esti-
mates, will be given elsewhere. Applications to the non-
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linear mechanical behavior of solids has also been con-
sidered elsewhere. ' Extensions to anisotropic behavior
and multiple phases are also under consideration. How-

ever, many issues, including the determination of upper
bounds (for the e6'ective energy functions), and the op-
timality of the bounds, still remain unresolved.
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