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High-field magnetoresistance in a periodically modulated two-dimensional electron gas
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We have extended earlier measurements of the magnetoresistance in a periodically modulated two-

dimensional electron gas to high magnetic fields, where the cyclotron radius, r„is much smaller than

the period, a, of modulation. A giant nonoscillatory magnetoresistance was found to arise beyond the

range of low-field (Weiss) oscillations periodic in I/B. Its value in a magnetic field of a few tesla may

exceed the zero-field resistance value, po, by l to 2 orders of magnitude. This result is in agreement
with the semiclassical theory by Beenakker, if a modulation of the electron mobility is taken into ac-
count.

The recent observation of low-field magnetoresistance
oscillations in two-dimensional electron gas (2DEG) sys-
tems with submicron periodicity' has already generated a
considerable interest of several groups. " Currently, at-
tention has been paid to the oscillations periodic in 1/8
and other features in low magnetic fields, where the
condition 2r, &a holds. However, even the curves em-

phasizing low fields, which are presented in many publica-
tions hint a pronounced positive magnetoresistance in

fields higher than the region of the low-field oscillations.
This magnetoresistance, however, is usually concealed by
the Shubnikov-de Haas (SHdH) oscillations. The high-
field magnetoresistance in a modulated 2DEG has not
previously been discussed in the literature, presumably be-
cause it has not been considered an intrinsic property of
the system. However, its existence follows directly from
expressions obtained in Ref. 10, which were used to de-
scribe the Weiss oscillations. It is the main purpose of this

paper to show how this magnetoresistance is a direct
consequence of the density and mobility modulation of the
2DEG.

For two diA'erent geometries [one-dimensional (I D)
and two-dimensional (2D) modulations] and increasing
the degree of modulation, we observed a pronounced in-

crease of the longitudinal resistance in high magnetic
fields, 2r, &a. A square magnetoresistance in our 1D
geometry and a nearly linear one for the 2D case contin-
ues up to the quantizing fields, where the quenching of the
longitudinal resistance due to a transport along the edge
states is obviously essential. If the 1D modulation poten-
tial is weak the magnetoresistance can be described by the
semiclassical theory. ' The magnetoresistance in Ref. 10
has been attributed to a formation of drifting electron or-
bits in regions with a rapidly varying density of the 2DEG,
so that the Fermi velocity, i F, changes significantly on the
scale of r, In high fields this extended (drifting' or
streaming ) motion leads to a magnetoresistance analo-

gous to the motion along the open orbits occurring in some
normal metals. ' '

The first kind of structures used in the experiment was a
conventional Hall bar device fabricated from a GaAs/
Ga07A103As heterostructure with a 2DEG having a mo-

bility of p=30 m V 's ', a concentration of n=5. 1

x10' m, and a distance from the surface of 70 nm.
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FIG. l. Magnetoresistance traces at 4 K for a GaAlAs het-

erostructure with a one-dimensional grating gate. Different
curves correspond to an increase of the negative gate bias, which

modulates the two-dimensional electron gas. A schematic pic-
ture of the sample is shown in the inset. The modulation period
is a =l pm.

Using electron-beam lithography a one-dimensional
periodic pattern with a period of a =1 pm was formed in a
negative resist providing a nearly ful) modulation of its
thickness. This resist then served as a dielectric for a met-
al gate evaporated on top of the device. In Fig. 1 the mag-
netoresistance of the 2DEG subjected to an increase of the
1D modulation by applying a negative gate bias is shown.
The low-field oscillations periodic in I /B were small in this
relatively low-mobility device since the condition pB» I

does not hold for the needed magnetic field range,
2r, . & a. ' On the curves with the nonzero gate voltage

V~ applied, we observed the last two minima of these
oscillations in accordance with the condition, 2r„=(m
——,

' )a with m =1,2. ' These minima are hardly seen on

the scale of Fig. 1 at the relevant magnetic fields less than
0.5 T. In higher fields a square magnetoresistance is seen,
which rapidly increases with increasing gate voltage. A
similar behavior may be found on draft curves of Ref. 4.
A further increase of the magnetic field leads to a more
complicated magnetoresistance behavior due to the for-
mation of edge states and the subsequent quenching of the
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longitudinal magnetoresistance.
A similar high-field magnetoresistance shown in Figs.

2(a) and 2(b) has been also observed for high-mobility
samples with a 2D modulation. A square array of metal
spots was fabricated on the heterostructure surface by
electron-beam lithography [spot diameter d= 100 nm

with a period a =250 nm; see Fig. 2(a), inset]. For com-
parison, samples without a pattern and with a complete
metal gate cover were fabricated during the same techno-
logical processes. The unpatterned sample had a mobility
p=100 m'V 's ' and a sheet concentration of elec-
trons n =2.8 x 10' m . Two samples with the spot pat-
tern were measured. They had a 4% smaller concentra-
tion and a 30% lower mobility (in zero magnetic field)
while the sample totally covered by metal (aluminum)
had n=2. l x l0' m and p=l8 m V 's '. Applying
a negative gate voltage Vg

—0. 1 V to the latter sample
we found a conductance pinchoff, while a positive bias
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rapidly increased the mobility when the 2DEG increased
its concentration. The above data convincingly show that
regions with the latter characteristics are formed under-
neath the metal spots in the patterned sample. The de-
crease of concentration in the gated regions is caused by
an additional band bending at the boundary between
GaAs and Al.

Figure 2(a) shows two magnetoresistance traces; one
for an unprocessed high-mobility sample and the other for
the same sample with a two-dimensional array of spots. A
practically linear magnetoresistance between 0.2 T
(r„=a)and the onset of ShdH oscillations is seen in the
modulated structure. The magnetoresistance curves for
samples with a 2D modulation exhibits some weak
features at low magnetic fields, which correspond to the
commensurability between the cyclotron radius and the
superlattice period. ' These features cannot be dis-
tinguished in a scale of Fig. 2, and they are not the matter
of the following considerations. The magnetoresistance
behavior becomes clearer at higher temperatures, since
the Shubnikov-de Haas oscillation amplitude decreases
(Fig. 3). The fact that the positive magnetoresistance was
not infiuenced by temperature indicates that we are deal-
ing with a classical transport phenomenon. We could
change the modulation of the 2DEG by illuminating the
sample. A light-emitting diode was placed far from the
sample surface providing a diAuse illumination. Since the
spot diameter of the two-dimensional array was smaller
than the wavelength of the light used, almost no shadows
were expected. Thus, illumination increased the concen-
tration of electrons almost evenly over the 2DEG. Yet a
slight modulation of n is expected to remain after a full il-
lumination as a consequence of the different GaAs band
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FIG. 2. (a) Magnetoresistance in a sample with a periodic
two-dimensional array of submicron spots (upper curve). A mi-

crograph of the pattern is shown in the inset, the period is
a =0.25 pm. The lower curve shows the magnetoresistance for
the same heterostructure without a pattern on the surface. (b)
Magnetoresistance of the two-dimensional modulated sample
shown in the inset of (a) under illumination with red light. The
illumination time increases from the top and decreases the
modulation of the electron mobility and concentration. Curve
No. l, unilluminated sample; No. 2, O. l sec of illumination; No.
3, 0.5 sec; No. 4, 3 sec; No. 5, 300 sec.
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FIG. 3. Magnetoresistance traces for samples with two-
dimensional (upper panel) and one-dimensional (lower panel)
modulations at two diAerent temperatures. For the l D sample
Vg = —0.18 V.
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FIG. 4. A comparison between experiment (solid curve; the

l D modulated sample at 20 K and Vg = —0.18 V) and theoreti-
cal expression (p„„—pa)/ps —Jo(qr„) Ijp(qr, ) —I l (dashed
curve). In the upper inset the experimentally determined mag-
netoresistance coeScient (per square tesla) is shown as circles
for dilferent modulation strengths (gate voltages). The crosses
are the calculated magnetoresistance coeScient using Eq. (l ) in

the text without any adjustable parameters. The tower inset

shows the skipping elorbits along the boundary between regions
with diAerent electron concentrations. Scattering of the skip-

ping orbit is dominated by the side of the interface with the

highest scattering rate.
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bending conditions due to the Al spots. A set of curves for
increasing the illumination dose (in the sequence 1 to 5) is
shown in Fig. 2(b) demonstrating a permanent decrease
of the linear magnetoresistance. There was a rapid de-
crease of the magnetoresistance during the first few
seconds of illumination [curves 1-4 in Fig. 2(b)], and then
the magnetoresistance changed very slowly reaching its
saturation (curve 5) after about 5 min of illumination.
The rapid decrease of the magnetoresistance magnitude
with illumination indicates that the original strong (6
times) modulation of the mobility is at first affected. Ac-
tually, the slight increase of the electron concentration
after the first seconds of illumination mainly even out the
mobility modulation. The further increase of concentra-
tion is expected mainly to aA'ect the magnetoresistance
due to the density modulation. Some small magnetoresis-
tance (about one zero-field resistance, po, per tesla)
remained even after the full illumination and is attributed
to the remaining modulation caused by the band bending
in the GaAs introduced by the metal spots.

To explain the Weiss oscillations, Beenakker derived
the following expression, valid for a small modulation of
the electron density, bn/n, 'and for ro, r» 1, '.

"" =1+0.5 " (qI)'J,'(qr„)[1—Jj(qr, . )] ', (1)
po n

where q =2m/a and I is the mean free path. If r„«a,this
formula turns into p„/po =1+(Bn/n) ro, . r . The experi-
mental curves in Figs. I and 3 (lower panel) fit well to the
square law up to the quantizing magnetic fields. The ab-
solute magnitude of the magnetoresistance also fits Eq.
(1) well. For the sample shown in Fig. 4, we have deter-

mined the threshold voltage V„where the modulation of
the electron density goes to zero, to be V, = —0.4 V. At
Vg =0 V there is no modulation. bn/n in Eq. (1) repre-
sents the relative root-mean-square (rms) modulation,
which is 242 times smaller than the peak to peak value

Vs/V, . Also the prefactor (qI) depends on the modula-
tion, since we find that the conductance and thus the mean
free path decrease rapidly with the negative gate voltage
as seen in Fig. 1. For the experiment shown in Fig. 4 the
zero-field resistance has increased by a factor 2.5 relative
to the unmodulated case and the mean free path is there-
fore I=—1 pm for V~ = —0.18 V, in contrast to I =3 pm
for Vg=0 V. It is important to take into account the
mean free path l in Eq. (1) to explain the experiments. In
the upper inset of Fig. 4 we show the coefficient of the
magnetoresistance (per square magnetic field measured in

tesla) plotted as a function of the gate voltage calculated
by Eq. (1) with no adjustable parameters. The experi-
mentally found magnetoresistance exceeds the theoretical
results by about a factor of 1.5. This is hardly surprising
since Eq. (1) assumes a sinusoidal modulation of the elec-
tron density, whereas the experiment diA'ers significantly
from this assertion. The calculated fit to the magne-
toresistance versus the ro, rcurve . in Fig. 4 uses Eq. (1)
with hp/p proportional to Jp(qr„) [1 Jp(qr) ] ' and
gives a very good fit to the experimental curves below
cur =40, where we can neglect the Shubnikov-de Haas
oscillations.

The modulation of the mobility can be introduced simi-
lar to Beenakker's considerations but in the following
more transparent way. First, let us rephase the way of ob-
taining the magnetoresistance from the modulation of n. '

The drifting motion of electrons along the boundary be-
tween regions having diA'erent concentration, n —Bn and
n+ Bn, is shown in Fig. 4 (lower inset). A distortion of the
circular orbit due to the difference in cyclotron radii,
6r„=r,(8n/n), 'lead's to a drift of the guiding center with
the velocity tq=28r, ru„/2'=(tF/rr)(bn/n) (here we im-

ply Bn«n). For the unmodulated 2DEG, the diffusion
coefficients are D„=D~~,=Do[1+(ro„r)] ' and D„,,

= —D~, =(ru, r )D,„,where Dp p vFr. The drift of
electrons along the 1D modulation potential causes the
additional term, BD~~ = T: i d. Employing the Einstein
relation, p=(h /4rrme )D ' [p,„=(h/4rrme )D~~/
(D„,D~~+D„~)]one can calculate the resistivity. For in-
stance, it is easy to obtain p „/po=(bn/n) ro„r in the
ru„r»1 case, i.e., the same as derived from Eq. (1). For
electrons drifting along the density boundary, the relaxa-
tion rate is determined roughly by the rate in the region
with the 1owest mobility, i.e., ~ =rdz, where id~ is the
mean free time in the depleted region. Values of id~ can
be found directly from the increase of the zero-field resis-
tance po, when the gate vo1tage is applied. Taken into ac-
count the mobility changes, we calculated the magne-
toresistance as a function of Vg as shown in the inset of
Fig. 4.

For a regular fourfold symmetric 2D modulation, which
is the result of the metallization shown in the inset of Fig.
2(a), the magnetoresistance is expected to differ essential-

ly from the 1D case, since in this case there is no guiding
of the electrons in one direction. Unless the electrons can
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follow open orbits at the Fermi surface in k space in high

magnetic fields or there is an exact compensation of elec-
trons and holes, it is well known'' that there will always
be a saturation of the magnetoresistance at high magnetic
fields. However, we cannot simply use a two-band model
to calculate the magnetoresistance because we have first
to take into account the two-dimensional periodic poten-
tial in the properties of the electrons. A semiclassical
model in which the electrons are trapped in skipping orbit
around each spot in the two-dimensional array gives a
qualitative answer, however. Since BD„„=8D~~both sat-
urates for a 2D modulated sample and largely exceeds

D„y-(to„r) ', it is expected that the p„,-D~y/
(D,„Dy,+D„s) should saturate in high magnetic fields.
The expected fields correspond to to, r » (bn/n), which

coincides in our case with the range of the edge state
transport. Employing the above model, which has already
been used for the 1D modulation, we obtained a reason-
able correspondence to the experimental behavior. The
linear magnetoresistance shown in Figs. 2 and 3 corre-
sponds approximately to a region where the magnetoresis-
tance goes from a square law to saturation. However, the
detailed behavior for the 2D modulated sample cannot be
explained in this simple model. The experiment shows
that removing the mobility modulation by shining light on
the sample decreases the magnetoresistance, as expected.
Another qualitative view on the magnetoresistance for a

two-dimensional modulation is that the electrons cannot

go all the way to infinity along a concentration boundary
like in the one-dimensional case, but moves around the
spots if I/a is large and a/r„~. So, some relaxation
rate is needed to provide the diffusion of electrons along
the sample in contrast to the 1D case, where electrons can
go off to infinity without any scattering at all. Thus, one
may expect a nonmonotonic behavior of the magnetoresis-
tance versus co, r for the 2D case. It would be of interest
to expand the semiclassical theory to the 2D case beyond
the low-field oscillation region.

In conclusion, we observed a large magnetoresistance in

a laterally modulated 2DEG, at fields higher than corre-
sponding to the low-field oscillations periodic in I/B. This
magnetoresistance results from drifting motion of cyclo-
tron orbits in regions of the 2DEG, where the electron
concentration varies. For the strongly modulated 2DEG,
an additional modulation of electron mobility was found
to change essentially the value of the magnetoresistance.
Taking into account both the modulation of mobility and
density, good agreement between the experiment and
theory was obtained for the 1 D modulation potential.
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