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Valence subband structure of [100]-,[110]-,and [111]-grown GaAs-(A1, Ga)As quantum wells

and the accuracy of the axial approximation
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Block diagonalization of 4X4 Luttinger Hamiltonians, to be applied for hole-state quantization in

[100]-, [110]-,and [111]-grown semiconductor quantum wells, is discussed and the accuracy of the axial

approximation is analyzed.

Most work on semiconductor quantum wells (QW's)
has been devoted to the [100] growth direction. Oc-
casionally, however, other growth directions, specifically
[110] and [111],are employed, resulting in remarkably
different electronic structure in both the valence and con-
duction bands (e.g., Refs. 1-4). The valence-band struc-
ture is usually analyzed within the four-component
envelope-function approximation, i.e., with heavy and
light holes taken into account, and the split-off band
neglected. Due to the double degeneracy of the resulting
4 X4 Hamiltonian, it may be block diagonalized into two
2 X 2 blocks, which is particularly simple within the so-
called axial approximation. In this paper we analyze the
block diagonalization of 4 X 4 Hamiltonians to be applied
in calculation of bound states in [100]-, [110],and [111]-
grown QW's, and discuss the accuracy of the axial ap-
proximation.

Starting from the Luttinger 4X4 bulk Hamiltonian
with j~, m, ) basis
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where in the [100]case

T+ y)(k +ky+k )+y2(k +k 2k )

R =(&3/2)[(yz+y3)(k, ik )—
+(y~ —y3)(k +ik ) ],

while real J and imaginary J lead to a slightly different,
but otherwise equivalent form used, e.g. , in Refs. 8—10.
In this paper, we used the second option. Concerning
cases other than [100],setting the new (rotated) x, y, and
z axes along (1,0,—1), (0,1,0), and (1,0,1) directions of the
initial system in the [110] case, and along (1,1,—2),
(
—1,1,0), and (1,1,1) in the [111]case, and, as convention-

al in this choice, ordering the states as
~

—'„—,' ), g, —
—,
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—'„—,'), and
~

—'„——', ), the 4X4 bulk Hamiltonians have

the common form in all three cases, and read

where J;.=(J;J +J,J, )/2, i,j =x,y, z are the crystal cell
axes, I4 is the 4X4 unity matrix, J; are the spin- —,

' ma-

trices, k =k +k +k„and y, 23 denote, here and
throughout the paper, the Luttinger parameters with
A /2m o factors absorbed. Hamiltonians for various
directions may readily be derived by expressing J, and

k„„,in terms of their projections in the new coordinate
systems, chosen so that one axis (e.g. , new z, the quanti-
zation axis) is along the chosen direction, and the other
two perpendicular to it. However, the exact forms of H
(including the [100]case) depend on the phase convention
adopted for J . If J is chosen to be imaginary and J
real, the form used, e.g., in Refs. 6 and 7 for [100],Ref. 3
for [111],or Ref. 4 for all three directions, is obtained,

S 2/3y3k (k ikr )

in the [110]case

T+=[2y, (k„+k )+y2k +2y2k +3y3k,

+(2y, + y2+ 3y3)k, ]/2,
R =(v'3/2)[ —2y3(k„ik )—
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S =2v'3[y3(k ik )+(yz——y3)k ]k, ,

and in the [111]case

(4)
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T~=(y, +y3)(k +k )+(y, +2y3)k, ,
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They have slightly different forms from those of Ref. 4
due to different phase conventions for the J we adopt-
ed. It is also of interest, when finding states in asymptoti-
cally ffat confining potentials, to give the k, (E,k„,k )

dispersion in these cases. The secular equation H% =ET
in the [100] and [110] cases gives a biquadratic fourth-
order polynomial in k, , with solutions

k, =(a+v' b)/c t

where in the [100]case

a =y,E —(k„+ky)(y, +2y~ —6y3),
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and in the [110]case
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In the [111]case, however, the secular equation gives an
eight-order polynomial, with odd powers of k, present as
well, but it may be recast as a square of a fourth-order
polynomial

—(dldz){y](d/dz), where the symbol {y] denotes that
particular combination of y& 23 that stands by k, or k, .
The boundary conditions at interfaces are easily written
following the prescription of Ref. 11: writing the Hamil-
tonian matrix as H= A d /dz +B d/dz+C, the com-
ponents of the state vector %[fi, f2, f3, f~] and

[A d/dz+8/2]% are continuous across the interfaces
(f, , f2, f„and f4 are the z-dependent amplitudes of the
above spin states). The procedure for finding bound
states is described in Ref. 6. The Hamiltonian (2) may be
block diagonalized by a unitary transform matrix U
(Refs. 8 and 12)

—iP p

0 e '" —e'"
U=(1/ 2)

e '" e'"
—i re p p

—e'&

0
eiP

(10)

where P and g are chosen so that H'= UHU is block di-
agonal, the new set of states being given as
[F„F2,F3,F4] =U[f„f2,f3,f~] . The block diagonal-
ization is in the literature usually used together with the
axial approximation (y2= y3 in off'-diagonal terms), but in
fact there is no relation between the two, and the choice

&"~=—(ZS)/(~'S'), e' = —(&/&')e '" (»)

leads to block diagonalization of H, whatever values y2
and y3 may have. However, P and ri now depend on yz
and y3, as well as on k„and k . Within the axial approx-
imation the difference between y2 and y3 is neglected,
and Eq. (11) reduces to the familiar result

P = 3rr/4 —38/2, ri = n/4+ 0/—2, .and 0=arctan(k /
k„), independent on yz 3. Applying this unitary trans-
form to (2), we find that in the [100] and [111] cases
blocks of the new Hamiltonians H' depend on
kt kz + ky only, making them axial ly symmetric. In the
[110] case, however, the diagonal terms of H' have
different coeKcients multiplying k, and k, unless

p 3 If the axially symmetric Hamiltonian is to be ob-
tained, diagonal terms have to be modified, e.g. , by taking
the average of coeScients standing by k and k as the
multiplier of k, . Thus, there is no strictly axial approxi-
mation, as distinct from the spherical approximation in
the [110] case. Now all the three Hamiltonians may be
conveniently written in the common form, with the upper
2 X 2 block reading

For nonzero k„and k, it is not biquadratic; hence its
solutions are not of the +k, type, unlike those in [100]
and [110]cases. Eigenvectors of the above Hamiltonians
are analogous to those in Ref. 6.

To make the envelope function Hamiltonians from
Eqs. (2)—(5), where in principle the y's depend on z,
one makes the usual substitution {y ] k, ~
(
—i/2)[{y](dldz)+(dldz){y]] and {y]k,'

r,
r,
r„
r,

[100]

yl —y2
ye+ 2

&3(y2+ y3)/2
2&3y,

[110]

(4y I+y 2—+3y 3)/4
(2y I+ y2+ 3y3) /2

v'3y,
2&3y,

y I+y3
1
+ 2y3

(y2+2y, )/&3
2(2y, +y, )/&3

TABLE I. 1 coefficients of the Hamiltonian (12) for [100],
[110],and [111]orientations.
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X+ Y

U Yf

Xy =r,yk, +r, k, ,

Y=I,k, —r'I,.k, k, ,

(12)

and the lower one having analogous form. The expres-
sions for I coefficients are given in Table I.

The k, (E,k, ) dispersion are again given by Eq. (6} in all
three cases (solutions are now of the +k, type for [111]as
well), where

a =E(r, +r, )+k,'(r', —r„r, —r, r„),
b=E'(r„—r, )'+2Ek,'(r,'r, +r', r„—l„r2 +r„r, r„+r, r, r„—r, r,', )

+k,'(r', —21',.r, r, —2r', r, r„+4r'„r, r„+r'„r,' —2r„r, r„r, +r', r,', ), (13)

c =2r„r,

Boundary conditions at the interface are the continuity of
wave function components, and of

I, d/dz

I,k, /2

I;k, /2 F,
—I, d/dz F (14)

To test the accuracy of the axial approximation in the
three cases, we made numerical calculations for GaAs
QW's embedded in Aio 3Gao 7As bulk. Luttinger parame-
ters are taken as y&=6. 85 (3.45}, y2=2. 10 (0.68), and
y3=2. 90 (1.29) for GaAs (A1As), and are linearly inter-
polated for the alloy. Barrier height at the interface is
UO=150 meV. The dispersion for the first three bound

states in d = 120 A wide QW's grown in the [100], [110],
and [111]directions is given in Figs. 1—3. The errors in-
troduced by the axial approximation are larger for lower
levels and for larger k, . While the errors in the [100]and
[111]cases may be considered as acceptable, those in the
[110]case are rather large. Calculations for thinner wells
show that all these errors tend to decrease, but, for the
[110]QW's, remain high enough to rule out the use of the
axial approximation in reasonably accurate calculations,
as has also been found in Ref. 4. This high error may be
ascribed to the fact that this case is not distinct from the
spherical approximation, which is known to give larger
errors than the axial approximation in the [100] case as
well. In Fig. 4 we give the level's angular dispersion
(with k, fixed, but its orientation varies), together with
the nondispersive results of the axial approximation. Os-
cillations with periods reAecting the structure symmetry
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FIG. 1. Dispersion of the first three bound states of a
d =120 A wide GaAs QW in Alo, Gao ~As bulk, grown in the
[100] direction. Full lines correspond to the exact calculations,
with k, along k„(( 10) ), or midway between k and k ( ( 11 ) ),
and broken lines to the axial approximation results.
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FIG. 2. Same as Fig. 1, but for the [110] growth, and k, is
along k„((10))or k» ((01)). The relation between the new
(x,y, z) axes and the unit-cell cube axes is given in the text.
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FIG. 3. Same as in Fig. 2, but for the [111]growth.

for the corresponding growth directions are clearly visi-
ble.

In conclusion, the accuracy of the axial approximation
is best in [111]-grown, slightly less so in [100]-grown
QW's, but is quite low in the [110]-grown case, for which
the exact Hamiltonian (2) and (4) should be used instead,

10080

possibly with block diagonalization (10)—(11).

The authors would like to express their thanks to Dr.
E. P. 0 Reilly and Dr. A. Ghiti (University of Surrey,
U.K.) for very helpful discussions.

0 20 40 60
0 (deg)

FIG. 4. The angular dispersion for the lowest two bound
states of [100]-, [110]-,and [111]-grown QW's, with parameters
given in Fig. 1. The magnitude of k, is fixed at 0.016 A, and
its direction angle varies, 8= arctan(k~ /k ).
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