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Spin-fiip relaxation time of quantum-well electrons in a strong magnetic field
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We present theoretical estimates of the spin-flip relaxation time of conduction electrons in a quantum
well subjected to a strong magnetic field 8. %'e 6nd that the spin-flip relaxation time increases as 8' if
the scatterers are pointlike defects.

Several experimental and theoretical studies' " have
recently been devoted to the spin relaxation in semicon-
ductor quantum wells. The experimental evidence, ob-
tained by studying the relaxation of photogenerated
spin-polarized electrons and holes, ranges over a wide
variety of situations. In particular, it is not clear which
species (electrons or holes) relaxes its spin more
effectively in undoped materials. The problem is further
complicated by strong excitonic effects, which may con-
siderably distort the single-particle picture. High-field
magnetoluminescence and magnetoluminescence excita-
tion experiments have been interpreted in terms of an in-
hibition of the spin-flip scattering in a strong magnetic
field. ' The Landau-level spectrum of ideal quasi-two-
dimensional electrons is discrete. However, it is macro-
scopically degenerate (in the sense that the 5-function-
like singularities of the unperturbed Landau spectrum
have a height which is proportional to the sample area, as
a result of the degeneracy of each Landau level with
respect to the center of the cyclotron orbit). When im-
perfections are taken into account the 5-function singu-
larities are broadened. We shall be interested in a situa-
tion of weak disorder where there still exist peaks, of
finite height and width, in the density of states of the im-
perfect material. These broadened peaks are still separat-
ed by energy gaps of the order of Ace, —I, where %co, is
the cyclotron energy and I is a typical Landau-level
broadening. Inside each Landau band one thus deals
with a quasicontinuum. The finite separation between
Landau bands clearly implies a slowing down of any kind
of relaxation (spin conserving or spin fiipping) which in-
volves a change of the Landau-level index or the spin in-
dex when compared to the zero-field situation. The pur-
pose of the present paper is to present a simplified model
of the spin-relaxation time for quantum-well electrons
subjected to a quantizing magnetic field and elastic
scatterers. Thus, because of our weak disorder approxi-
mation, we shall only take into account collisions which
conserve that Landau subband index. However, we shall
allow changes of the spin sublevel, since the spin splitting
is smaller or much smaller than the Landau splitting Ac@,

(unresolved spin subbands).
There are two kinds of difficulty in our problem. First,

it is well known that a parabolic approximation of the
hosts' dispersion relations leads in many quantum-well
structures (say GaAs-like) to conduction-band states
which are eigenstates of the spin operator cr. Since it is

2 2
&» =p»(p, —p„),

a —ae [m 3/2(2E ) I/2] —i

(2)

a' is a dimensionless constant [0.07 in GaAs (Ref. 9)], cr

the dimensionless Pauli spin matrices, and E is the band

gap of the well material (GaAs in the case of GaAs-
Gai „Al„As quantuin wells). In a situation of pro-
nounced two-dimensionality it is possible to simplify Hs„
by replacing p and p, by their averages over the ground
conduction bound state of the quantum well for the z
motion. These averages are equal to 0 and 2m, E„re-
spectively, where E& is the confinement energy of the
ground state. Then Hs„becomes equal to

HsF=a*E, (2m, E )
'

(
—p„o„+p cr ) . (4)

Thus Hs„can be viewed as a Zeeman term due to a mag-
netic field bsF which lies in the layer plane and whose
modulus squared bs„ is proportional to the electron in-
plane kinetic energy. When an external magnetic field B
is applied parallel to the z axis, p is left unchanged while

p» becomes p +eBx /c in Eq. (4) if ones uses the Landau
gauge [ A=(0, 8x,0)]. It happens that the total in-plane
Hamiltonian Ho,

Ho=[p„+(p»+eBx/c) ]/2m +g*p~cr 8+HsF,

fair to assume that there are no localized magnetic mo-
ments in these materials (or at least a negligible amount)
no relaxation mechanism can lead to spin flipping.
Second, since the Landau-level spectrum is discrete, there
is no way to evaluate an kind of relaxation time by using
the regular Born approximation (since the density of final
unperturbed states is either zero or infinite). Broadening
has to be introduced and it has been known for some time
that this is not an easy task. '

To introduce spin mixing in the conduction-band states
of a quantum well (grown along the z direction) we use
the lowest-order correction to the parabolic dispersion
law, which is the anisotropic cubic term

HsF =ao"0/2,
where
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can be exactly diagonalized on the
I n, I &, In, 1 & basis of

the Ho —Hs„eigenstates. This is because Hs„couples
only I

n + 1, 1 & with
I n, l &. Specifically, on this 2 X 2

basis we find

where

(n, ll ~ng

(n + 1, 1 I

—ip(n + 1)'~

iP(n +1}'
~n +1)

(6)

P=a "E,(fico, /4E )'~

c,„i=(n +1/2)%co, —1/2g "psB,

e„i=(n + I/2)fico, +1/2g'psB . (9)

In Eqs. (6)—(9) g' is the Lande g factor of the conduction
electron at the zeroth order in HSF (g"=—0.44 in
GaAs}. The eigenenergies of Ho are therefore

e„+=(c,„+,i+e„i)/2+[ [(e„+,t —c,„t)/2]

+(n+1)P }'~

while the normalized eigenstates will be written

(10)

4'„+=a+(n)ln, $ &+6+(n)l(n+1), 1 & . (11)

p is always small in GaAs (p/E, (5X10 ). Thus the

spin mixing is weak in this material. To a very good ap-
proximation c.„+ equals e„+» and c„equals c.„~. It can
also be checked that the average of cr, over the 4„+
states is very close to +—,

' (the departure from the +—,
'

value being at most a few percent). It is also worth not-.
ing that the IO, 1 & level is unadmixed with any other lev-

el. Thus the spin relaxation from the %'0 level to the
IO, 1 & level exists only to the extent that %o contains a
small component on

I 1, I &. For the other spin deexcita-
tions, i.e., the transitions from 4„ to 4'„&+, the relaxa-
tion is due to the spin mixing in the initial and final
states. One may therefore anticipate that the spin
relaxation in the lowest-lying pair of levels
(po, q' i+ —= IO, T &) will be the less effective. Also, it is
clear that the spin relaxation in general will be faster for
the narrower wells, where E„and thus p, are the larger.

To calculate the spin-flip relaxation time one still has
to cope with the discrete nature of the Landau-level spec-
trum. Any calculation performed at the regular Born ap-
proximation provides meaningless results since the transi-
tion rate is either zero or infinite. We shall use an empiri-
cal model, reminiscent of the self-consistent Born approx-
imation. ' We shall write that the broadening
I ( =i'/2r) is given by the usual Fermi golden rule ex-
cept that the 5 function ensuring energy conservation is
changed into a Lorentzian with a width parameter given
by the total broadening in the final state. By summing up
all the contributions to the broadening (spin conserving
and spin flipping) we shall end up with self-consistent
equations. In principle, these self-consistent equations
are integral equations. For uncorrelated short-range
scatterers, however, it is well known' that the self-
consistent equations reduce to algebraic ones which, in
the limit of strong magnetic field and weak scatterers
(I &(fico, ), gives an analytical result to the self-consistent
broadening. As applied to our particular situation, this
procedure leads to the following set of equations:

~/2rsF+ rsF+ I (+ —1+ I Vd fl+ —& I (rsF++ rsc+)[ [e—(n} e+(n 1)] +(rsF + rsc

fi/2r =r =1&+„—„IV,. Ie.—,&I'(r +r
fi/2 = I —=

I ('p„—
I v, Iv, & I'(r„+r„)

(12)

(13)

(14)

where the matrix elements involve an average over the random locations of the scatterers. In establishing Eqs.
(12)—(14) we have assumed that I'sc, I SF (&fico, in order to truncate the infinite sum (over the Landau-level index of the
final states) to a single term (n =m). Note that in the absence of spin mixing (HSF =0, I'SF=0}Eqs. (12)—(14) reduce to
the known self-consistent Born results. ' The spin-lip matrix element is readily evaluated for short-range scatterers.
We find

I('p„,+lvd, rl+„&I =[V N; /2irA, ]f zdy, (z)[l *a(n)a+(n —1)l +lb* (n)b+(n —1)l ], (15)

where V is the strength of the 5-function scatterers, N; the volume concentration of defects, and y, (z) the envelope

function of the E, state. This matrix element can be rewritten in terms of I 0, the zero-field broadening evaluated at the

Born approximation between unadmixed spin states:

2A' I o/m, =V N; fy, (z)dz . (16)

Finally

I(q„,+lv„,lq„&l'=(r, ir~, /vr)[la* (n)a+(n —1)l +lb* (n)b+(n —1)l ] .

Along the same line we find for the spin-conserving matrix elements:

I &+„, I v„,le„„&I'=(r,e~, /~)[la (n —1)I'+ lb (n —1)I'],

IV„,le„&l'=(r,ir~, /~)[la (n)l'+Ib (n)l'] .

(17)

(19)

Since the spin mixing is in fact weak in GaAs, the self-consistent equations (12)—(14) admit the approximate solution

(r,„«r„)
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rsc+ ——[r~,r, /m]' [la+(n —1)I +Ib+(n —1)I']'",
I sc =[%co,I 0/ir]'i [ia (n)i +ib (n)i ]'

I s„=[+~I /~]'"[/u' (n)~ (n —1)l'+Ib' «)b {~—1)I'][I~+(n —1)I'+ Ib+(~ —1)I']'"

X[fa {n —1)[ +[b (n —1)[ +m[e (n) —E (n —1)] /(Rm, l )]

I sF+=[A'co, l 0/ii]' [/a* (n)a+(n —1)/ +/b' (n)b+(n —1)/ ][/a (n)f +/b (n)f ]'~

X[/a (n)/ +/b (n)/ +ir[e (n) —e+(n —1)] /(A'co, I 0)]

(20)

(21)

(22)

(23)

The numerical solutions of Eqs. (12)—(14) are very
close to the approximate ones. Thus we shall discuss the
general trend displayed by Eqs. (20}—(23). First, the
spin-conserving and spin-flip broadening of the %„and

&+ states are almost identical. %'e also find that the
spin-conserving broadenings I sc+ are very close to the
usual self-consistent Born results (i.e., [fico, I olir]'
(Ref. 12)}. The increase as 8'~ and the independence of
I sc+ versus the Landau-level index n are characteristic
of short-range scatterers. ' The spin-flip broadenings
display a similar B' dependence. However, it is dom-
inated by the B dependence of the mixing term
(a' (n}a+(n —1)( +)b' (n)b+(n —1)) . [Note that the
8 dependence of the denominator in Eqs. (22) and (23) is
negligible in GaAs quantum wells because the g* factor
is so small. In other materials with larger g* and if the
zero-field broadening is small, the denominator could at
large field increase linearly with B and contribute to a
further decline of the spin-flip frequency. ] The spin mix-
ing term decreases linearly with increasing B. This may
readily be understood on the basis that a (n)-=1 while
b (n) —=P(n + 1)' /%co, « 1. In addition, a+ (n—1)-=Pn '~ /fico, while b+ (n) =—1. Thus the mixing term
is —= (2n +1)(P/fico, ) —=8 ' at large field. In summary,
one has to expect a B '~ decrease of the spin-flip
broadening with increasing B. This is illustrated in Fig. 1

in the case of a 9-nm-thick GaAs quantum well. Al-
though the precise power-law dechne of the spin-flip re-
laxation frequency depends on the exact shape of the
scattering potential, we believe that the ratio between
spin-conserving and spin-flip transition rates should be
rather shape independent, because it reflects a genuine
band-structure effect. Note also that the spin relaxation
becomes more effective with increasing Landau-level in-
dex. This feature is in qualitative agreement with recent
magneto-optical data. ' ' The calculated order of mag-
nitude of the spin-flip broadening with GaAs-like param-
eters (m, =0.07mo, g'= —0.44, L =9 nm) and the as-
sumption of a good sample (I 0=1 meV) provides a spin-
flip relaxation time in the n =0 Landau level of 1.4 and
2.3 ns at B=6 and 15 T, respectively. This is much
longer than the recombination time (a few tenths of ns}
and therefore provides a qualitative explanation of the ex-
periments ' which point out the existence of several
luminescence lines which involve different spin sublevels
in GaAs quantum wells subjected to a strong magnetic
field. It is also worth pointing out that the spin-
relaxation rate increases with decreasing quantum-well
thickness {see Fig. 2). This is due to the linear increase of
the coupling constant P with E& which leads to a quadra-
tic increase of I sF with E& (or roughly I s„=L ). This—
effect is quantitatively important: at B =6 T and for
I.=3 nm, n =0 and I 0= 1 meV, we calculate a spin-flip
relaxation time of only 0.11 ns, which is comparable to
the recombination time.
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FIG. 1. The calculated spin-flip broadening I s„ is plotted vs
the magnetic-field strength B in a 9-nm-thick GaAs quantum
well for several Landau levels n (solid lines, left scale). The
broadening due to spin-conserving transitions (I sc) is shown
for comparison (dashed line, right scale).
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FIG. 2. The calculated spin-flip broadening I sF of the n =0
Landau level is plotted vs the magnetic-field strength B for
several GaAs well thicknesses.



4256 BRIEF REPORTS

Our calculations have only considered electrons, while
optical experiinents involve excitons (in undoped
wells). ' '' In a strong magnetic field one may think of a
very rough exciton model where the lowest-lying exciton
states are built out from the ground electron and hole
Landau levels. In a narrow quantum well, one may take
as the first approximation the hole state as being unad-
mixed (i.e., corresponding to a spin quantum number
+—', ). Then there are four distinct exciton states. One is

optically inactive (~0, l', 0&+—, ) ), two are dipole active
( ~0, 1', Ot,

——', ); ~'po, O„+—', ) ) in opposite circular polar-
izations, and one (~'Ito, Ot,

—
—, )), in principle inactive,

can become weakly active due the spin mixing in the con-
duction band. There are evidences of relaxation between
these states, but it has been suggested that it arises from
electron-hole exchange interaction. ' Clearly, with
unadmixed hole spin this is impossible. However, the
spin mixing in the conduction band allows couplings by a
scalar potential between the ~0, t, Oh

——', ) and

, Ot,
—

—,') states on the one hand and between the

~0, T, O&+ —', ) and ~~Ito, Ot, +—,
' ) states on the other hand.

Of course, numerical evaluations of the relevant transi-
tion rates should properly account for the excitonic
corrections between the electron and hole wave function.
We believe we have shown, however, on qualitative
grounds that existing band-structure effects remain good
candidates to provide a natural explanation of the ob-
served free carrier and exciton spin relaxation.
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