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A tight-binding version of the linear-muffin-tin-orbital method is used to describe the electronic struc-
ture of random overlayers on a perfect substrate in a self-consistent manner within the local-density ap-
proximation. The true semi-infinite nature of the system is incorporated via the surface-Green's-
function approach. A generalization of the coherent-potential-approximation method to treat inhomo-
geneous alloys is used to study the efFect of disorder. The formalism is applied to evaluate the layer-
projected densities of states and work functions of random Ag-Pd overlayers on a fcc Ag(001) substrate.

I. INTRODUCTION II. FORMALISM AND THE THEORY

In this paper we report on the application of an
efficient self-consistent Green's-function method for the
calculation of electronic properties of random metallic
surfaces. We consider in detail the case of a random
overlayer on a nonrandom substrate. Such calculations
are of vital importance in understanding how various
physical properties of a clean surface change as a func-
tion of coverage by foreign atoms. The adsorption of
transition metals on metallic substrates has been the sub-
ject of considerable experimental and theoretical investi-
gations in recent years, since such studies contribute to
the understanding of bimetallic catalysis, metal-metal in-
terfaces, the properties of magnetic overlayers on non-
magnetic surfaces used in magnetic recording, etc. We
aim at as realistic a description as possible and thus con-
sider a true semi-infinite sample rather than its simula-
tion via suitable slab or supercell. The study of electronic
properties of surfaces, especially those covered by ad-
sorbed atoms, must be carried out in a manner so that the
potentials and the charge densities are consistent with
each other. The lack of such self-consistency is the main
source of uncertainties in empirical tight-binding (TB)
calculations for overlayers and related systems. Finally,
the study of surface states or work-function changes with
coverage also requires a proper description of the
vacuum-solid interface (the dipole barrier).

We have generalized our recent theory of the electron-
ic structure of disordered overlayers' on metal substrates
to include the charge self-consistency within the local-
density approximation (LDA) and to treat the vacuum-
solid interface properly. The main features of our
method are (i) the application of the tight-binding linear-
muffin-tin-orbital (TB LMTO) method to describe the
electronic structure from first principles; (ii) the descrip-
tion of the semi-infinite geometry of the system using the
surface-Green's-function (SGF) formalism; (iii) the use of
the coherent-potential-approximation (CPA) approach
extended to strongly inhornogeneous systems such as sur-
faces; (iv) the characterization of the vacuum region by
empty spheres which represent the continuation of the
semi-infinite lattice to infinity; and (v) the description of
the Hartree and the exchange potentials within the
spheres via the atomic-sphere approximation (ASA),
while including both the monopole and the dipole terms
of the charge density in the calculation of the Madelung
potential.

Due to the semi-infinite nature of the problem, all lay-
ers could, at least in principle, have different local physi-
cal properties. To make the problem tractable, we as-
sume that from a certain layer onward, the electronic
properties of all subsequent layers are those of the corre-
sponding infinite system, namely, either a homogeneous
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substrate or the vacuum. Thus, the semi-infinite sample
is considered to be divided into three parts: (i) a homo-
geneous substrate with no disorder; (ii) a (homogeneous)
vacuum represented by empty spheres with flat poten-
tials; and (iii) an intermediate region consisting of several
(M) atomic layers including a random overlayer, where
all inhomogeneities (chemical, structural, or electric) of
the system are concentrated and which also contains a
few layers of empty spheres of the vacuum-sample inter-
face.

The central quantity to be determined is the
configurationally averaged auxiliary resolvent of the sys-
tern,

relaxations of top samples layers (outward or inward
shifts with respect to ideal bulk interlayer distances).
Then, by using bulk screened structure constants and em-

ploying the translational symmetry parallel to the sample
face, one gets

(3)

where

g(z}=( [P(z)—S] ') = [P(z)—S] S„(ki~)= + exp I ik~~ R]S(R)
R~IR

(4)

Here, P(z) is a site-diagonal potential function matrix
describing the scattering properties of all atoms. In an
overlayer A, B&, it takes randomly either P "(z) or
P (z) at a given site R, while in the substrate it equals
P'(z). Within the LDA and the CPA, the nonrandom
configurationally averaged coherent-potential function
matrix P(z) is also a site-diagonal quantity:

Pq (z)

p(z) = p = 1,p, . . . , M in the intermediate region

P'(z) or P"(z) otherwise,

where the indices s and U refer to the substrate and vacu-
um regions, respectively, and P (z) is determined using
the self-consistent bulk TB LMTO method. For cubic
lattices studied in this work, P'(z) is a diagonal matrix
with respect to the orbital momentum index L=(l, m).
Due to lowering of the symmetry at the surface, P~(z) is
nondiagonal with respect to L even for cubic lattices.

In Eq. (1) S refers to the screened structure constants
within the most localized muIn-tin-orbital representa-
tion. The structure constants contain all necessary infor-
mation about the geometry of the system, including the
substrate lattice structure, adsorption geometry of the
adatoms, etc. The use of screened structure constants has
two important advantages: (i) the configurational averag-
ing within the CPA can be performed without additional
constraints, as S in nonrandom by definition and P (z) is
random, but site diagonal, and (ii) the short-range charac-
ter of S allows us to introduce the concept ' or principal
layers (PL), which greatly facilitates the theoretical treat-
ment.

Within this concept, the semi-infinite sample is viewed
to be composed of PL's defined in such a way that only
the nearest-neighbor PL's are coupled by the structure
constant S. Depending on the lattice structure and the
face of the system, a PL consists of one or more atomic
layers. For the sake of simplicity, in this paper we limit
ourselves to the case when a PL is equivalent to one
atomic layer [e.g., fcc (001) or bcc (110) surfaces within
the first (second} nearest-neighbor terms in S for fcc (bcc}
lattices]. The generalizations to the case of PL's consist-
ing of more than one atomic layer is also possible. ' We
can further simplify the problem by neglecting possible

Here, k~~ is a vector from the surface Brillouin zone
(SBZ), and the symbol [R ] denotes a set of vectors that
connect one site in the pth layer with all sites in the qth
layer. In Eqs. (3) and (4) we made use of the fact that the
bulk structure constants S depend only on a difference
vector R=R —R .

The coherent-potential function matrices Pz(z) in the
intermediate region, 1 &p ~N, are found from a set of
coupled inhomogeneous LDA and CPA equations. The
CPA equations, in matrix form, are given by

cp tp (z)=0,
a= A, B

tr(z)=[P (z) —P~(z)][1+/„(z)[P (z) —Pp(z)]]

Here, c are layer-dependent concentrations of atoms
a= A, B in the overlayer, which, in general, can consist of
several atomic layers. One of the atom types can be,
eventually, identical to the substrate atoms. We shall
limit ourselves here to the simplest case of an overlayer
consisting of a single atomic layer, but a more general
case is obvious. For a particular site R in a given layer

p, t (z) and Pr(z) are the on-site elements of the single-
site t matrix and of the averaged resolvent g(z),
P (z)=ga „(z), respectively. Note that even for non-

&

random layers in the intermediate region both P~(z) and
P (z) are layer dependent due to the LDA self-
consistency (a special case is the surface of a pure crystal
substrate}. The quantity P (z) enters also the expression
for the layer- and atom-resolved density matrix p~(r),
which is the central quantity for the LDA part of the
problem:

EF
p~( )= g Z~~(r, E)D~ ti. (E)Z t, (r, E)dE .

L,L'

Here,

Zzz (r,E)=RE s(r, E)YI(r), r=(r, r)

is the partial wave normalized to unity within the atomic
sphere of radius s, and EF is the Fermi level of the bulk
substrate. The layer-, atom-, and orbital-resolved
density-of-states matrix is given by



4224 J. KUDRNOVSKY et al. 46

1
p LI (E)=——ImF IL (E+i0),

F;„.(z) = [P;(z)]'"

X(P~(z)[1+[P (z) —P (z)]p (z)] ')~~,

X [PL, (z)] /

V (r)=—2Z + V~ (p~(r)}+ Vp "'(p~(r)}

+ ggM' Q
L' q

where

'I
a

Q~
= g c f YL(r) p (r)dr

a=A B S

where P (z) stands for dP (z)ldz. The quantity F~ II (z)
is the on-site element of the physical, conditionally aver-
aged Green's function ' expressed in terms of the aver-
aged auxiliary Green's function (()~(z) to be determined
below [see Eqs. (10)—(12)]. The radial part R L(r, E) of
the partial wave is obtained from the solution of the
Schrodinger equation corresponding to the spherical
LDA potential,

sphere contributions, as well as the height Bd of the elec-
trostatic dipole barrier across the surface, are then evalu-
ated as linear combinations of the layer-dependent aver-
aged multipole moments [see Eq. (9)]. The second
modification is due to the imperfect charge neutrality
which is a direct consequence of the finite number of
self-consistently treated layers. This problem was solved
in Ref. 6 by an artificial shift of the potentials which re-
stored the perfect charge neutrality. In contrast, we have
left the charges in the surface region completely un-
corrected but changed the reference points for an auxili-
ary electrostatic potential g(r) produced by the multipole
moments placed in the corresponding layers. The stan-
dard choice with the perfect charge neutrality is to set
y(r) to zero in the infinite depth in the bulk metal. The
dipole barrier Bd is then equal to the value of y(r) at the
infinite distance from the surface at the vacuum side. In
our version, the reference point for the potential zero (di-

pole barrier) was taken in a lattice site of the first bulk
(vacuum) layer not treated self-consistently. A detailed
description of the corresponding Ewald technique will be
given elsewhere. As in Ref. 6, we have restricted all mul-

tipole expansions to the monopole and dipole terms only.
An explicit expression for P~(z) is needed to solve both

the CPA and the LDA equations. After performing a
two-dimensional lattice Fourier transformation, one gets
for the (p, q) block (1 ~p, q ~N) of the inverse
configurationally averaged resolvent g(k~~, z),

—Z &IO (9) Ig(k~~, z)];,'=[V, (z) —S (k„)—r, (k„,z)]fi

The quantity Z in Eqs. (8) and (9) is the atomic number.
The first three terms in Eq. (8) represent, respectively, the
potential from the nuclei, and the Hartree and the
exchange-correlation contributions, all resolved with
respect to the atom and layer indices. The superscript
tilde indicates that the spherically symmetric part of the
density matrix p (r) is used, as is common in the ASA
approach. The last term in Eq. (8) describes the electro-
static potential acting on electrons in the pth layer which
results from the redistribution of electron density (as
compared with the homogeneous substrate) among layers
in the intermediate region due to the presence of the sur-
face with adsorbed atoms. The resulting charge density
is highly nonspherical at the surface and requires a prop-
er treatment. As shown recently by Skriver and Rosen-
gaard, it is necessary to include not only monopole
(l =0, m =0) but also the dipole (I = 1, m =0, with the z
axis being normal to the surface) contributions to the
multipole potential. The generalized intralayer and inter-
layer Madelung constants Mpq describe such interactions.
The dipole potential barrier has thus contributions from
net charges Q' in atomic spheres (monopole terms) and
those from the dipole charges Q' ' in spheres. The
latter ones are found from the corresponding nonspheri-
cal contributions to the density matrix, Eq. (6).

Two modifications, in the scheme used in Ref. 6, were
introduced to evaluate the intersphere contribution to the
electrostatic part of the potential. The first modification
is due to the disorder and requires the statistical averag-
ing of the multipole moments in each layer. The inter-

01(k((}fip+1 q 10(k()@@+1,q (10)

—So, (kii)0 (kii, z)s,o(k()]

(k„, )=[P ( )
—S~(k„)

—S&o(k~ )9 (k~~, z)so&(k~~)]

(12)

which has to be solved self-consistently for each k~~ and

where I ~(k~~~~, z) denotes the coupling of the intermediate
region to the substrate (or vacuum), namely,

r, (kii z) =S„(kii)Q'(kii z)S„(ki)

I (k~~, z)=0 for p =2, 3, . . . , M —1,
I (k~(, )=S,(k()Q'(k((, )S,(k)~} .

Note that the physical concept of the PL used in the
method gives rise to the above matrix tridiagonal form of
the Green's function g(k~~, z) [Eqs. (10) and (11)]. The
quantities 9 (k~~, z), A, =v, s are the SGF's of the vacuum
and of the homogeneous sample substrate. By definition,
the SGF is the top PL projection of the Green's function
of the homogeneous semi-infinite substrate or vacuum, '

and its knowledge is of central importance for the present
formalism. The SGF's can be determined directly in real
space by using the technique developed in Ref. 3, which
avoids the use of the bulk resolvent common to other ap-
proaches ' '" and reduces the problem to the following
equations for 9'(k), z) and G"(k~~,z):

0'(k~i, z) = [P'(z) —
Soo(kii )
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In this equation, Nll is the number of atoms in a given
layer. This completes the formal development of the
theory.

III. NUMERICAL RESULTS AND DISCUSSIONS

The theory is illustrated for the case of random
Ag, ,Pd, overlayer on the fcc (001) face of Ag substrate
assuming an ideal epitaxial growth. This means that all
interatomic distances in the overlayer, as well as between
overlayer and substrate, are assumed to be the same (and
equal to that in the Ag substrate). This is the case of the
substrate-supported overlayer which frequently occurs in
the experiment. Based on extensive tests, we have chosen
the intermediate region consisting of three sample layers
(an overlayer and two substrate layers}, plus two layers of
empty spheres simulating the vacuum. In this region the
potentials are varied until the self-consistency with
respect both to the LDA and the CPA is obtained. For
exchange correlation we used the functional of Ceperley
and Alder' as parametrized by Perdew and Zunger. '

For k-space integration we use 21 special kll points' in an
irreducible (—,

' th) part of the SBZ of the fcc (001) face.
The Fermi level of the system is that of the substrate

bulk found from the condition

EZ'= ——g f Pr'(E) Imgj (E+i0)dE,
L

(14)

where Z' is the number of the substrate valence elec-
trons. The quantity PL(z) is usually determined by a
different k-space integration than that used for P (z},Eq.
(13), namely, we should integrate over the bulk fcc BZ,

P'L (z) =—g [ [P'(z) —S(k) ]
k

(15)

Here, N is the number of atoms in the sample. To avoid
this ambiguity, we have determined P'(z) by integrating
over the SBZ of the expression

(kii ') [P'( )
—S (kii) r' (kii z) —I' (ki»z)]

(16)

Here, I 00 is the same as I ~, while I is obtained from
I, after substitution P" by P' [see Eqs. (11) and (12)].
The terms I 00 and I'~ couple the isolated layer of sub-
strate atoms [the first two terms in Eq. (16)] to the semi-
infinite substrate and its conjugate subspace, respectively.
The result is the infinite crystal, and

energy z. These SGF's provide the necessary coupling to
the intermediate region. In other words, using the con-
cept of the SGF allows one to reduce the original prob-
lem of infinite order in the layer index to an effective
problem of finite order M.

The desired quantity P (z) is obtained by integrating
over the SBZ of the (p,p) block of g(k},z), namely,

J, (z) = g g,~(k~, ,z) .1

Note that while in (15} the poles of resolvent are on the
real axis, for PLL (kl, z) they are shifted to the complex
plane making the k-space integration numerically more
convenient. The integration over the k~ component was
already done implicitly by evaluating corresponding
SGF's.

In each iteration loop, one CPA and one LDA step is

performed. We considered self-consistency to be
achieved when the maximum differences among the input
and output potentials in the intermediate region were
below 0.01 Ry. This corresponds to at least a mRy accu-
racy in the calculated eigenvalues.

The charge neutrality in the intermediate region as a
whole was preserved within an accuracy of 10 e. Due
to the finite height of the surface barrier, some charge is
found outside the sample in the vacuum [typically
=(0.2 —0.25)e]. It gives rise to the lowering of the poten-
tial on the vacuum side of the sample-vacuum interface
(imagelike potential). This result of self-consistent calcu-
lations with a proper description of the sample-vacuum
interface indicates the limited validity of the "local neu-
trality concept" applied to each layer separately and fre-
quently used in the empirical TB models. ' On the
second Ag substrate layer, i.e., the third sample layer, the
number of electrons was close to 11 with an accuracy of
10 e in all cases. Also, the calculated dipole moments,
which serve as a measure of the charge "nonsphericity, "
were essentially zero on the second substrate layer in all
cases.

The results for the layer-resolved density of the states
(DOS) are presented in Fig. 1 for the case of a clean
Ag(001) surface and in Figs. 2, and 3 for a random
Ag75Pdz5 overlayer on Ag(001). In both cases we also
present the results of non-self-consistent calculations, us-
ing, as an input, potentials from self-consistent calcula-
tions for bulk Ag and Pd. These calculations were per-
formed using the same computer program but with the
parameter controlling the mixing of the old and new po-
tentials during the LDA loop set to zero. In the vacuum
region, outside the sample, the potential in the two layers
of empty spheres is chosen to rise in a staircase manner,
with the height of the surface barrier adjusted to the ex-
perimental work function (4.64 eV). In the self-consistent
calculation the potentials in these two layers are also
determined self-consistently.

We mention the overall narrowing of the DOS in the
surface layer of a clean Ag(001) surface (Fig. 1) compared
to the bulk due to reduction of nearest neighbors from 12
in the bulk to 8 at the surface. The weight of the surface
DOS is shifted towards higher energies as a result of self-
consistency (resulting in a triangular shape characteristic
of a surface DOS), the effect of which is missing in the
non-self-consistent version. These findings are in accord
with the results of self-consistent calculations using the
slab method. ' ' On the other hand, the results of empir-
ical TB calculations, ' which employ the heuristic con-
cept of local orbital charge neutrality in each layer,
overestimate the shift of the weight of the surface DOS
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TABLE I. The calculated work functions for a clean Ag(001) surface and for a Ag&, Pd, random

overlayer on a Ag(001) substrate.

Clean
Ag(001)

4.78 eV

Ag7sPdps
on Ag(001)

5.03 eV

AgsoPdso
on Ag(001)

5.25 eV

Ag25Pd75
on Ag(001)

5.45 eV

Monolayer of
Pd on Ag(001)

5.67 eV

the rough surface via a random overlayer of Ag atoms
and vacancies on an otherwise perfect Ag substrate (a
"sandpaper" model). The vacancies are represented by
empty spheres with potentials determined self-
consistently, as in the case of Pd atoms. The same for-
malism can be applied. For about 20% vacancies, the

EwF was lowered from 4.78 down to 4.45 eV.
The Ew„of a random (Ag, Pd) overlayer monotonical-

ly increases with the Pd content. To have a feeling for
the calculated values, we have also determined the EwF
of a clean fcc Pd(001) surface, both at the experimental
lattice constant and for the expanded lattice (equal to the
Ag lattice) corresponding to a supported Pd overlayer on
the Ag(001) substrate. The calculated EwF's are, respec-
tively, 5.83 and 5.61 eV. The former one agrees well with
the experimental value of 5.8 eV in Ref. 20, while the
latter one is in good agreement with value obtained for
the Pd monolayer on the Ag(001) surface (see Table I).

We wish to demonstrate an essential importance of the
proper determination of the surface dipole barrier for the
EwF calculations. We have calculated the EwF of an
Ag(001) surface without the contribution from the dipole
charges [the l =1 term in Eqs. (8) and (9) omitted]. Al-
ternatively, we have also performed the LMTO-ASA cal-
culations for an 8 Ag+10 ES supercell [eight fcc (001)
layers of Ag and ten layers of empty spheres (ES) separat-
ing them] and for a 9 Ag+9 ES supercell which also
neglect the dipole charge contributions. In all three cases
the calculated Ew„was in the range of 7. 1 —7.2 eV. On
the contrary, the layer DOS's and related quantities are
rather insensitive to the exact value of the surface barrier.
This justifies the use of simplified TB calculations using
the infinite value of the surface barrier, for some specific
surface-related problems.

We also present estimates of the surface core-level
shifts (CLS) for clean Ag(001) and Pd(001) surfaces. The
surface CLS is the energy difference between the surface-
and bulk-atom core levels. One way ' to obtain the sur-
face CLS is to subtract the surface energies of atoms from
the atomic number Z and Z+1, e.g., for a Pd atom we
thus need the surface energies of Pd and Ag surfaces. As
our calculations do not use the frozen-core approxima-
tion and the same Hamiltonian and approximations are
used for both the surface and the bulk, we estimate the
surface CLS by subtracting the corresponding values of
core-level energies (31 for Ag or Pd). We are aware of
the fact that core levels are strongly influenced by the
many-body effects due to the screening of the core hole
created during the photoemission excitation, which are
not accounted for within the LDA. However, as far as
the difference is concerned, these corrections, though not
exactly the same for the surface and the bulk, should can-
cel out approximately. A shift towards lower binding en-

ergies and the value of 0.44 eV for the surface CLS for
Pd(001} were obtained in a recent experiment. ' We have
obtained shifts in the experimentally observed directions
with the values of 0.44 and 0.55 eV for Ag(001) and
Pd(001} surfaces, respectively. We have also estimated
the surface CLS from the corresponding values of valence
d-state levels, which we have identified with the potential
parameters Cd of the TB-LMTO theory. ' The results
were essentially the same, giving 0.43 and 0.55 eV for Ag
and Pd, respectively. The agreement with the experiment
is comparable to that when the surface CLS is obtained
from the surface energies, at least for Pd. '

Finally, we briefly compare our approach with those
existing in the literature and which treat the semi-infinite
sample geometry. The present method can be considered
as a generalization of the approach of Skriver and Rosen-
gaard (developed for clean surfaces) to the case of disor-
dered surfaces and overlayers, including the case of an in-
complete overlayer. For the case of clean surfaces, our
method differs from that of Ref. 6 in the way the SGF is
determined and the interlayer Madelung constants are
calculated. The embedded GF method of Inglesfield and
Benesh also treats the semi-infinite sample in a self-
consistent manner, but its generalization to the disor-
dered case is difBcult, if at all possible. The same com-
ment applies to the method of Kruger and Pollmann, "
developed to treat periodic semiconductor surfaces. The
self-consistent surface GF method of ScheNer and co-
workers is able to treat a localized surface defect on a
semi-infinite crystal self-consistently. In the region of the
adparticle, no shape approximation to the potential or
charge density is applied, but the substrate potentials are
taken from the bulk rather than the surface calculations.
Also, this method cannot be generalized to the cases of
random coverage or disorder in the sample. The CPA
and the layer Korringa-Kohn-Rostoker (LKKR-CPA)
methods were combined to treat self-consistently the in-
terface between two metals with possible disorder
present. Only the monopole-monopole Madelung terms
were included, which is justified for the case of the metal-
lic interface with rather smooth changes of potential or
charge density but not for the case of the sample-vacuum
interface (at least when the evaluation of the work func-
tion or the position of the surface states is concerned).
The straightforward way of determining the SGF in our
method as compared to the evaluation of the renormal-
ized propagator in the LKKR theory, based on the
techniques taken from the theory of low-energy electron
diffraction, is a great advantage of the present approach
both numerically and conceptually. As already men-
tioned, this is due to the use of the screened structure
constants provided by the TB-LMTO formalism. We
have been informed that the work to generalize the
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IKKR CPA in order to treat disordered surfaces along
the lines developed in the present paper is in progress.

IV. SUMMARY AND CONCLUSIONS

In conclusion, we have developed an efficient self-
consistent Green's-function technique to calculate prop-
erties of disordered metal surfaces. Our approach is
based on the LDA within the first-principles TB-LMTO
method. In this approach both intralayer and interlayer
interactions are short ranged, which greatly facilitates the
evaluation of the surface Green's function needed for a
proper description of the semi-infinite nature of the prob-
lem. The potentials are treated in the ASA but for the
charge density we include both monopole and dipole
terms in the multipole expansion, which accounts for its
nonspherical shape at the vacuum-sample interface and
which yields a correct value of the electrostatic surface
barrier. The effect of disorder is included via the CPA
capable of describing, from a unified point of view, vari-
ous situations occurring in experiments: clean surface,
various stages of adsorption ranging from a low coverage
limit to the case of adsorbed multilayers, as well as such
complex systems as the surface of a disordered alloy with

a possible segregation of one alloy component at the sam-
ple surface. Although not discussed in detail, the
method is also capable of treating high-Miller-index sur-
faces and of including effects due to the expansion or con-
traction of interlayer distances at the surface. The study
of surfaces of heavy transition metals and their alloys re-
quires the inclusion of the relativistic effects in the for-
malism. The effect of electron correlations on metallic
surfaces, not accounted for properly within the LDA,
should also be included in the theory. Such studies will
be subjects of forthcoming papers. In conjunction with
the generalized perturbation method, our approach can
supply the effective cluster interactions needed for sur-
face phase diagram and surface segregation phenomena
studies from first principles.
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