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Far-infrared studies of two-dimensional random metal-insulator composites
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Samples consisting of 10-pm squares of gold film (500 A thick) are deposited as random two-

dimensional (2D) arrays on sapphire substrates by using microfabrication techniques. The arrays

represent a square lattice of the 2D site-percolation problem with a lattice constant of 10 pm. Far-

infrared transmission and reAection spectra are measured between 8 and 92 cm '. A smooth change,

rather than a sharp transition near the percolation threshold, is observed in the measured spectra. The

experimental effective conductivity which is derived under the assumption that our sample looks homo-

geneous in the long-wavelength limit is shown to be different from the effective-medium-approximation

prediction by several orders of magnitude. A scaling theory, based on the conductivity fluctuation near

the percolation threshold, is found to give better description. However, there still exists a significant

discrepancy between its prediction and the absorption spectra of our measurement, which we suggest is

due to magnetic-dipole absorption.

I. INTRODUCTION

The optical properties of metal-insulator composites
have been studied for more than a century. Most
theoretical work has been based on effective-medium
theories, i.e., the Maxwell-Garnett theory (MGT), ' the
effective-medium approximation (EMA), and
modifications of these two theories. Though there has
been much progress in understanding various physical
properties of metal-insulator mixture near the percolation
threshold, ' ' there has been little effort' ' to explain
their optical properties using modern percolation
theories.

Recently, Yagil et al. ' applied the scaling theory of
percolating clusters to optical properties of semicontinu-
ous films near the percolation threshold. In that descrip-
tion, the effective conductivity at finite frequencies fluctu-
ates over the film, and the length scale of fluctuating re-
gions is determined by the anomalous diffusion relation. '

Instead of following the conventional approach of the
effective-medium theories, i.e., using a single average
effective conductivity, they used the distribution of the
local conductivity to compute the optical responses of the
two-dimensional (2D) films.

Scaling theory can describe the following optical prop-
erties common to the semicontinuous films near the per-
colation threshold ' (l) a very weak wavelength

dependence in the near-ir regime, and (2) a very weak

dependence of the optical responses on the volume frac-
tion near the percolation threshold. Yagil et al. obtained
an excellent agreement between the experimental data
and numerical calculations after they included the effect
of the intercluster capacitance in the simulation. '

In our study, we investigate the far-infrared response
of a 2D random metal-insulator composite. Using
modern microfabrication techniques, we make samples
consisting of 10-pm squares of gold film which form
1000X 1000 2D site-percolation networks. Measured
transmission and reflection spectra on these artificial 2D
composites between 8 and 92 cm ' provide a good op-
portunity to compare predictions of an effective-medium

theory and those of the newly developed scaling theory.
Our study shows that the far-infrared responses of the 2D
random composites, over a wide range of volume frac-
tions near the percolation threshold, can be described
much better by the scaling theory. This observation indi-

cates that the far-infrared response of our 2D films near
the metal-insulator transition is dominated by the con-
ductivity fluctuation, and using a single effective conduc-
tivity in describing the far-infrared response of our com-
posites is inadequate. Even though the scaling theory can
provide a fairly good description, there still remains a
significant discrepancy between its prediction and the ab-

sorption spectra of experiments. We study this
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discrepancy in relation to two possible mechanisms; i.e.,
the capacitive coupling between the metal clusters and

the magnetic dipole absorption.
The rest of this paper is organized as follows. Section

II summarizes the EMA and the scaling theory. Section
III describes the sample preparation techniques and the
far-infrared rneasurernents in detail. In Sec. IV, the mea-

sured far-infrared transmittance and reflectance are com-

pared with the predictions of the EMA and those of the

scaling theory. Inadequacy of the EMA in explaining the
far-infrared properties of our 2D composites near the

percolation threshold is demonstrated. Two possible ab-

sorption mechanisms are discussed. The summary is

given in Sec. V.

II. THEORIES

Lg
ll

A. The eH'ective-medium approximation

Suppose that light of wavelength A, is incident on a
metal-insulator composite with a typical grain size a and
a conductivity which depends on position and frequency;
i.e., o =rr(r, co) Suc.h a local description is not very use-
ful when the quantity of interest is the average response
of the system to the incoming light. When A, is much
larger than any length scale which represents inhorno-

geneity inside the composite, the medium looks homo-
geneous and its response can be described by an effective
conductivity, o,ff. The condition on the wavelength is

usually represented by a relation, called the "long-
wavelength limit, "

a((A, .

Even though this relation has been used by many work-
ers, ' it should be noted that Eq. (1) neglects other im-

portant length scales, such as cluster sizes.
The idea of the effective-medium theories is illustrated

in the diagram of Fig. 1(a). Various effective-medium
theories have been developed to express 0.,& in terms of
the conductivities, volume fractions, and particle shapes
of the constituents for a given composite structure. One
of the most commonly used is the effective-medium ap-
proximation (EMA), which was developed by Brugge-
man and generalized by Stroud. ' According to this
theory, individual grains are considered to be surrounded
by a background which represents the average response
of the mixture. The self-consistent condition that there is
no net extra current due to the depolarization of the
grains inside the whole medium gives an equation for
0 ff. Under the assumption that each grain is spherical in
d dimensions (d =2 in our case) and that only the electric
dipole response is important, the self-consistent equation
for a two component metal-insulator composite be-
cornes

FIG. 1. (a) The approach of the effective-medium theories.
When the wavelength of the incident light is much larger than

any other length scales inside a composite, the response of the
composite can be described by an effective conductivity cr,&. (b)
The approach of the scaling theory. The 2D composite is divid-

ed into the squares of linear size L&. Note that there exist two
kinds of squares, i.e., the squares that have metallic properties
and the squares that have insulatorlike properties. The squares
that have metallic properties are depicted as the hatched
squares. The response of the composite is obtained by adding
the local responses of the small squares.

(2) does not include any variable which describes the
length scale of inhomogeneity inside the composite.

B. Scaling theory

Near the percolation threshold, grains of the same kind
form a very large cluster, so the length scale of inhomo-
geneity inside the composite becomes very large. In or-
der to understand the optical properties of 2D sernicon-
tinuous metal films near p„Yagilet al. ' have adopted a
scaling theory which takes effects of the cluster formation
into account.

Two different length scales, one for the inhornogeneity
and a second for the measuring probe, are used in the
scaling theory. The inhomogeneity length scale is
represented by the coherence length g, which is the typi-
cal size of the finite cluster. As p approaches p„g
diverges' with a critical exponent v,

+(1—p ) =0, (2)
(7 +(d —1)o,(r (7;+(d —1)o,(r

where o. is the conductivity of the metal, o.; that of the
insulator, and p the volume fraction of metal. The EMA
predicts a metal-insulator transition, at the "percolation
threshold, "" ' i.e., at p =p, =1/d=0. 5. Note that Eq. L( )

—gg (g/g ))/(2+9) —1/(2+8) (4)

where $0 is of order of the lattice constant. The length of
the measuring probe is represented by the anomalous
diffusion length, L(co), the distance a carrier diffuses on a
cluster during the period of the electromagnetic wave
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F(g)= A)+ A~( . (6)

Similarly, (1 f ) denotes the—probability of finding insu-
latorlike squares, which do not have a percolating cluster
of metal grains. The average value, cr„~,], of such insula-
torlike squares has the same functional form as Eq. (5),
but

F(g) = A3(+ A~(

In Eqs. (6) and (7), the A's are constants of order 1. Note
that, for dc problems, F(g) is equal to the constant value
A

&
for metallic squares and zero for insulator like

squares.
Near p„there exists a large fluctuation of 0. . The de-

tails of the conductivity fluctuation are described by a
probability distribution function P(cr;L(co), g). The dis-
tribution function has been numerically studied in some
detail only at p =p, (i.e., for infinite g), by Rammal,
Lemieux, and Tremblay. Their result shows that
P(o , L(co), g} at p, c"an be written as a function of a single
scaling variable z=o. /o. „and the resulting universal
function can be written as P, (z). In the scaling theory, it
is assumed that P(o",L(co),g) can be written as a scaling
function, P(o.;L(co)/g): When L(co) «g, the distribu-
tion P(cr;L(co)/g} reduces to P, {z), but when L(co) »g,
P( o",L ( co ) /g } is then a Gaussian distribution whose
width scales as [L (co) /g] '. Note that the distribution
function, in the limit of L(co) »g, is sharply peaked
around cr,„,since {(bo ) }/{o} —[L(co)/g] ap-
proaches 0; therefore, the sample behaves as a nearly
homogeneous material in this limit.

To get the average far-infrared response, such as
transmittance T, of the composite medium, the response

where B is a coefficient of order 1, and 0 is the critical ex-
ponent describing the anomalous diffusion process. For
the 2D percolation problem, ' ' v= —', and 0=0.79.

In the scaling theory, as shown in the diagram of Fig.
1(b), the optical response of a 2D composite is represent-
ed by the sum of the local optical responses from squares
with a linear dimension of L&, where L& is the smaller of
L(co) and g. In this picture, the effective conductivity of
each square is 0. , where j is the index of the squares.
Near p„there exists a large fluctuation in o. , which is
described by a probability distribution function discussed
later in this section.

Some squares have clusters of metal grains percolating
through them so that they show a metallic behavior. The
probability of finding such metallic squares is defined as
f. The average value, 0 „~~, for the metallic squares can
be expressed by a scaling function

0,„(I=o L(" "F((a, /0 )L~p+'r'},

where o and 0.; are the conductivities of the metal and
the insulator grains, respectively, and p and s are the crit-
ical exponents describing the divergences of the dc con-
ductivity and the dc dielectric constant, respectively. '

All the lengths are in units of the typical grain size a,
thus both L(cu) and the correlation length g are dimen-
sionless. For a metal-insulator composite where

of each square must be obtained first. Then, considering
the fluctuation of the transmittances, the average
transmittance T can be written as

T=ff T(o,„~ i(L&)z)P(z;L(co)/g)dz

+(1 f)—f T(cr,„~,~(L&)z)P(z;L(co)/g)dz, (8)

where T(o',„~ ~(L&)z) and T(o,„~;~(L&)z) are the
transmittance of the metallic square and the
insulatorlike square, respectively. Note that the second
part of Eq. (8) is included since the complex conductivity
of the insulator is not zero for the far-infrared region. An
equivalent equation for the average reflectance R can be
obtained by replacing the transmittance of each square
with the reflectance

R =ffR(o,„~ ~(L&)z)P{z;L(co)/g)dz

+(1 f)fR(cr—,„~;~(L&)z)P(z;L(co}/j)dz . (9)

Depending on the relative sizes of L (co) and g, the scal-
ing theory provides us two different optical responses. If
L(co) «g, the measuring probe averages over a length
scale smaller than the cluster size, so the optical response
is position dependent. The optical response of the whole
composite is the simple addition of local responses for
areas whose typical size is about L(co}. However, if
L(co)»g, the sample should look homogeneous. The
distribution function of 0~ in the limit of L(co) &&g is
sharply peaked around its average value, 0.,„.Then the
response of the whole medium is very close to the
response of a medium which has a conductivity of a.,„.
Therefore, the description of the scaling theory in the
limit of L(co)»g agrees with that of the effective-
medium theories.

III. EXPERIMENTAL DETAILS

A. Sample preparation

Our 2D random metal-insulator composites, which
represent 2D site-percolation lattices, are made using mi-
crofabrication techniques. A typical sample used in our
study is shown in Fig. 2(a). Our samples are 1000X 1000
square lattices where, for a given value of the volume
fraction, the actual sites for metal are determined by a
computer generated random number sequence. The
choice of unit-cell length a in our arrays is dictated by a
compromise between optical parameters and an available
electron-beam time. The smaller the unit size, the better
our experimental condition satisfies the "long-
wavelength" limit shown in Eq. (1). However, it takes a
longer electron-beam time to make a sample with a small-
er size of a. For these reasons, we had to choose 10 pm
as the unit-cell length. In the frequency range of our ex-
periments, i.e., from 8 to 92 cm ', the long-wavelength
condition limit is satisfied.

Our masks are made using electron-beam lithographic
techniques. The patterns are generated by a sequence of
random numbers and transferred to the masks using a
Cambridge EBMF-2-150 Electron Beam Microfabricator.
During the developing and etching processes, each mask
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is carefully examined under an optical microscope to
screen defective masks.

To transfer the random array patterns from the masks
onto the sapphire substrates, a typical photolithographic
process consisting of contact printing, chlorobenzene
soaking, and development is used. A polycrystalline
sapphire substrate —,

' in. X —,
' in. in size (0.04 in. thick with

both sides polished) is cleaned in an ultrasonic bath. The
cleaned substrate is baked at 150'C for 30 min to get
better cohesion between the photoresist and the sapphire
substrate. After the contact printing is done with a con-
tact mask aligner, the photoresist is soaked with chloro-
benzene for 3 min before the final developing process.
This soaking process with chlorobenzene is known to
provide an undercut profile of the photoresist after devel-
opment.

To produce 2D random gold arrays, we initially used a
lift-off technique. After the random array pattern of pho-
toresist is made on the substrates, a 500-A-thick gold film

is deposited on top of the photoresist patterns. The final
2D gold array is obtained by removing the photoresist us-

ing acetone. As can be seen from Fig. 2(b), this method
gives a very clean edge to the gold square, but it suffers
from a serious "corner touching" problem. The circles of
Fig. 2(b) show that some of the gold lattice sites touch
with their diagonally adjacent sites, but the others do not.
This is very serious problem since percolation is based on
connectivity. Poor control on connectivity of metal
grains will give erroneous experimental results. To elimi-
nate this "corner touching" problem, various process pa-
rameters such as exposure, developing time, and soaking
time have been systematically changed. However, all
these attempts were unsuccessful.

A subtractive etching technique is found to be useful to
overcome the problem of "corner touching. " As a first
step, a gold film, 500 A thick, is deposited on a clean sap-
phire substrate using thermal evaporation. Following the
photolithographic techniques described earlier, a random
pattern of the photoresist is produced on the gold coated
substrate. Then, the random array can be obtained by
chemically etching the gold film which is not covered
with the photoresist. After this etching process, each
sample is carefully examined under an optical microscope
to check the connectivity between the adjacent squares.
The chemical etching process is repeated 2 —3 times until
it is certain that all the metal corners are disconnected.
After this process, the photoresist is removed using
acetone. As we can see in Fig. 2(c), the edges of the metal
squares are not as clean as those in Fig. 2(b). However,
since this etching technique removes the connectivity
problem, it is used in preparing our samples. The percola-
tion threshold, p„is measured by the dc resistance mea-
surement and found to be located between 0.58 and 0.60.
This value is in good agreement with the well-accepted
value for site percolation, i.e., about 0.59. This agree-
ment provides further evidence that the metal corners
made by this technique do not touch adjacent sites. If the
connectivity problem exists, the measured value of p,
should be lower than the accepted value.

B. Far-infrared measurement

FIG. 2. (a) An optical microscope picture of a 10X10-pm
gold square network on sapphire. The bright squares are 500-
A-thick gold films. 1000X 1000 lattice points were generated to
cover the 1 X 1-cm square. (b) An optical microscope picture of
the 2D gold random array obtained by a liftoff technique. This
technique produces a very clean edge to the gold film. However,
as seen in the circles, the corners of the gold squares sometimes
touch and sometimes do not. (c) An optical microscope picture
of the 2D random array obtained after a subtractive etching.
Even though the edges of the gold film are not clean, this
method guarantees that the adjacent corners do not touch.

The transmission and reflection spectra between 8 and
92 cm ' are measured at room temperature. The
reflection spectra are measured at an angle of 13', but the
transmission spectra are measured for normal incidence.
The correction due to deviation from the normal in-
cidence in the reflection spectra has been evaluated to be
small, and so it is neglected in the data analysis. For
both measurements, the sample is positioned in such a
way that the incident beam first hits the gold film.

In the measured frequency region, the interference
fringes from the sapphire substrate become very
significant in both spectra. These Fabry-Perot fringes
make it difficult to isolate the far-infrared properties of
the film from those of the substrate. To avoid this
difficulty, the spectra are measured with a very low reso-
lution, i.e., 8 cm

Figure 3 shows the measured transmission and
reflection spectra of our 2D metal-insulator composite
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FIG. 3. (a) The measured transmission spectra of 2D random
arrays with different gold volume fractions. (b) The measured
reflection spectra of the same samples.

films. From Fig. 3(a), it can be seen that a metal volume
fraction of p=0. 42 is required to reduce the transmit-
tance by a factor of 2 over that of the bare substrate
around 60 cm '. Moreover, the transmittance for our 2D
composite only gradually decreases as p increases. In
Fig. 3(b), the refiection spectra for the composites show
the opposite trend; as the volume fraction increases, the
reflectance slowly increases. Note that no drastic changes
in the spectra of transmittance and reflectance are ob
serUed near the percolation threshold.

T, T,'Rb exp( 2at—)
=R, +

1 —R,'R„exp( 2at—)
(10)

where a is the absorption coefficient of the substrate.
After a similar calculation for the transmittance, we get

T, Tbexp( at )—

1 —R,'Rb exp( —2at )

Note that the phase information between the multiply
refiected beams in the substrate is neglected in Eqs. (10)
and (11).

To check the validity of the ITMM, a numerical sirnu-
lation was used. For arbitrary values of conductivities
and thicknesses of the film and the substrate, the
transmission and the reflection spectra were evaluated ex-
actly. To eliminate the Fabry-Perot fringes, the calcu-
lated spectra for a given frequency were averaged with a
proper weighted function, for example, a triangular win-

These six optical responses are obtained by solving the
Maxwell's equation exactly, i.e., the multiply reflected
beams in the thin film are added coherently.

The reflectance of the film is obtained by summing the
intensity of light traveling along the various paths; in oth-
er words,

+T 7'Rbe +7 7'R'R e +

IV. DISCUSSION f i lm subs tra te

A. Intensity transfer-matrix method (ITMM)

The interference of multiply reflected beams from
parallel substrate surfaces leads to Fabry-Perot fringes in
the measured spectra, making the data analysis difficult.
Moreover, in most real experiments, a small misalign-
ment between the parallel surfaces causes the fringes to
become smaller at high frequency, a behavior that usually
cannot be explained with any reasonable model. One typ-
ical solution to this problem is to perform low resolution
measurements so that the Fabry-Perot fringes cannot be
seen. Then, the measured spectra should be analyzed
carefully with a proper method of averaging the fringes.

One convenient technique for such data analysis is the
intensity transfer-matrix method (ITMM). ' This
method neglects the phase information between the mul-

tiply reflected beams from the substrate surfaces and adds
the beams incoherently, so the Fabry-Perot fringes due to
the substrate do not appear. Suppose that light enters a
thin film from the left side, as shown in Fig. 4(a). The
thickness of the substrate is t. In the ITMM, six different
optical responses, shown in Fig. 4(b), are used. If the sub-
strate were of infinite thickness, the transmittance and
the reflectance of the film for the light entering from the
left side would be T, and R„respectively. For the light
entering from the opposite direction, the corresponding
terms are denoted by T,' and R,'. The other two optical
responses are Tb and Rb, the transmittance and the
reflectance of the interface between the air and the sub-

strate for the light entering from the substrate side.

incident light

(a)

Ta

substr ate

Ta

Ra

(b)

FIG. 4. Schematic diagrams for the intensity-transfer matrix
method (ITMM). (a) Light is incident normally on a thin film

which is on top of a thick substrate. The thickness of the sub-

strate is t. (b) Six optical responses required in the ITMM are
indicated. The arrows designate the direction of light.
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dow. The width of the weighted function was chosen to
give the resolution of 8 cm '. (This process is similar to
measuring spectra with a low resolution. ) These averaged
spectra agreed with the prediction of ITMM.

B. FIR optical constants of fused sapphire

3.5 10 x10

3.4-

3.2

3.1

b0
Q 0 Q Q 0 0 0 Q 0 Q Q Q 0 0 0 0 Q

b

~ h

From Fig. 3, it is apparent that the bare sapphire sub-
strate absorbs far-infrared (FIR) radiation rather strongly
at room temperature, especially in the high-frequency re-
gion near 90 cm '. This absorption is too strong to be
neglected in our data analysis.

The complex index of refraction, n,
(=n, +ik, =Qe, ), for polycrystalline sapphire is calcu-
lated from the experimental transmission and reflection
spectra for the bare substrate. The ITMM, combined
with a proper numerical technique, is used to find n, . In
this case, since there is no gold film on the substrate, the
six optical responses in Eqs. (10) and (11) should be
modified appropriately. Generally speaking, the
transmittance when light is incident on an absorbing
medium from air is different from that when light is in-
cident on air from the absorbing medium. However,
when the real part of the index of refraction for the ab-
sorbing medium is much larger than its imaginary part,
T, —= T,'=Tb and R, =R,'=Rb. The real and imaginary
parts of n, are plotted in Fig. 5. The open circles in Fig.
5 indicate the measured n„which is nearly constant up
to 90 cm '. The reported values for a single crystalline
sapphire are also plotted. The dashed line is n, for the
ordinary ray, and the dotted line is that for the extraordi-
nary ray. Our measured values for polycrystalline sap-
phire are located between these two lines. The open tri-
angles in Fig. 5. show that the experimental value of k,

increases with frequency. The magnitude of k, is large
enough to affect the spectra of our 2D films significantly.

C. Comparison with the EMA predictions

In the EMA calculation, the conductivity of gold is
represented by the simple Drude model

~dco(ei)=
1 l co'7

(12)

1.0 1.0

where the dc conductivity O.d, is taken to 3.5X10'
sec ', and the relaxation time ~ is 2X10 ' sec . Since
there is no material between the metal clusters,
e; = (4~i /co)cr;, the dielectric constant of the insulator, is
taken to be 1. The effective conductivities for our 2D
films are calculated from Eq. (2).

With the measured optical constants for fused sapphire
and o,ir obtained from Eq. (2), the theoretical transmit-
tance and reflectance are obtained using Eqs. (10) and
(11). The EMA results, shown in Fig 6, predict very
abrupt changes near p, . For a sample with

hp =p —p, =0.01, the transmittance becomes very small
and the reflectance approaches one. This predicted be-
havior is not observed in our experimental data, i.e., Fig.
3.

This large discrepancy between the experimental re-
sults and the EMA predictions is due to the fact that the
EMA treats the composite as a homogeneous material
with a single effective conductivity. The EMA predic-
tions on the real part of the effective conductivity are
plotted in Fig. 7(a). For samples with hp = —0.01 and
hp=0. 01, the EMA predicts changes in the effective
conductivity by more than eight orders of magnitude.

To see how far these EMA predictions are from the ex-
perimental observations, we numerically calculate the
effective conductivities of our samples under the assump-
tion that the optical response of our film for a given
volume fraction can be represented by a single value of
cT ff The cr,~ of the film was obtained from the ITMM.
This hypothetical quantity, plotted in Fig. 7(b), changes
by less than one order of magnitude over most of the ex-
perimental frequency range even though hp varies from
—0.20 to 0.06. The large differences between curves in
Figs. 7(a) and 7(b) show that the EMA cannot properly
describe the far-infrared response of our films.

0.8 . EMA 0.8 EMA (b)
3.0

0 20 40 60 80
0

100

Frequency (crn )

FIG. 5. The index of refraction for polycrystalline sapphire.
The open circles represent the real part of the index of refrac-
tion, n, . (The scale of these points is indicated on the left y axis. )
For comparison, the values for crystalline sapphire are plotted
as a dashed line (for the ordinary ray) and a dotted line (for the
extraordinary ray). The open triangles represent the imaginary
part of the index of refraction, k, . (The scale of k, is shown on
the right y axis. )
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FIG. 6. (a) The transmission spectra predicted by the EMA.
(b) The reflection spectra predicted by the EMA.
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changing the values of g~+' and go
' by a factor 2 does

not affect our numerical results significantly.
We estimated cr,„~ ~(L

&
) and o,„~,~(L &

) from Eqs. (5),
(6), and (7). In these evaluations, the geometry-dependent
coefficients, such as A, , A2, A3, and A4 are also set
equal to 1. Changes in these parameters do not
significantly influence our theoretical curves either.

The transmittance and reflectance for a given square
can be calculated using the ITMM, i.e., Eqs. (10) and
(11). The distribution function P(o",L(co)lg) in the re-
gion of L (co) & g is estimated by fitting the numerical re-
sults by Rammal, Lemieux, and Tremblay with a
double-log-normal distribution. To provide a smooth
change in the far-infrared response from the region of
L(co) &g to that of L(co) )g, the same functional form
for P(o;L(ro)lg) is used in the region of L(co) )g, but
with a much sharper distribution width of
((ho ) ) l(o. ) —[L(co)lg] . Even though this distri-
bution is not a Gaussian, the scaling theory predictions
remain unchanged.

The results of scaling theory are shown in Fig. 8.
Comparison of these results with Figs. 3 and 6 shows that
scaling theory is much better than the EMA in describing
the far-infrared responses of our 2D random composites.
The abrupt changes near p, predicted by the EMA ap-
pear neither in this calculation nor in the experimental
data.
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FIG. 7. The real part of the effective far-infrared conductivi-
ty of our 2D random arrays with different volume fractions of
gold: (a) the EMA predictions and (b) our measurement. The
experimental values are obtained under the assumption that the
samples appear homogeneous. Note the large differences be-
tween the EMA predictions and the experimental values.

The above-mentioned failure of the EMA comes from
the fact that the effective medium theory treats our sam-
ples as a homogeneous medium. Even though the long-
wavelength limit as defined by Eq. (1) is satisfied in our
experiments, the approach of the EMA clearly fails.
Near the percolation threshold, the coherence length be-
comes very large, so the length scale of the measuring
probe becomes comparable to or shorter than the length
scale of sample inhomogeneity, so that the local far-
infrared response strongly depends on the position of the
incident light. This is accounted for by the scaling
theory, as explained in Sec. II B.

E. A remaining puzzle in the absorption spectra

Even though the scaling theory can provide a much
better description of our experimental data than the
EMA, there still remains an important discrepancy be-
tween the experimental data and the scaling theory pre-
dictions. A careful look on Figs. 3 and 8 reveals that
both transmittance and reflectance, as predicted by the
scaling theory, are larger than experimental values. In
particular, the theoretical transmittances are two to three
times larger than the experimental values.

The discrepancy can be seen most clearly in the ab-
sorption spectra. Figure 9 shows the experimental and
theoretical absorption spectra. The measured absorption
spectra, shown in Fig. 9(a), are larger than the prediction
of scaling theory, shown in Fig. 9(b), for all the samples

D. Comparison ~ith the scaling theory predictions

It is necessary to know the probability of finding metal-
lic squares in the scaling theory. Yagil et al. ' estimated
the probability from another scaling equation such as

f f, =~+(Lqlk —')""(p p,»-—
where (0'+' and gz

' are the amplitudes of the coherence
length above and below p„respectively, and u+ and u

are the corresponding coefficients, respectively. When
dual symmetry for p )p, and p &p, exists (for example,
the 2D bond-percolation problem), go'+ '=

go
' and

u+ = u . When dual symmetry does not exist, go'+' and
' can be obtained by numerical simulation, and the

other parameters can be obtained from the following
equations:

(13)
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We could find no values for gz+' and gz
' for 2D site per-

colation in the literature, so we set gz+'=1, gz '=1, and

p, =0.59 in our calculation. However, we found that

FIG. 8. (a) The transmission spectra calculated by the scaling
theory. (b) The reflection spectra calculated by the scaling
theory.
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FIG. 9. (a}The measured absorption spectra. (b}The absorp-
tion spectra calculated by the scaling theory.
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0.008 ~

with p &0.42. In the high-frequency region, the experi-
mental absorptance decreases as the volume fraction in-
creases, in qualitative agreement with scaling theory.
However, in the low-frequency region, the measured ab-
sorptance shows an enhancement as p increases, which is
opposite to the theoretical prediction.

For more insight into these absorption spectra, we cal-
culate theoretical transmission and reflection spectra for
a hypothetical 2D random composite with no substrate,
and obtain the absorptance, i e , (1.—. T —R). The results
are shown in Fig. 10. The scaling theory shows that the
absorption loss in the free-standing sample is less than
1% of that for the sample, with any volume fraction.
This fact clearly shows that the calculated absorption loss
in Fig. 9(b) is due to the substrate. The monotonic de-
crease of the absorptance shown in Fig. 9(b) is due to the
fact that for a sample with a higher volume fraction there
is a smaller probability that the light meets the bare sub-
strate without experiencing reflection. The similar be-
havior of the measured absorptance in the high-frequency
region can be explained by the same argument.

However, the behavior of the measured absorptance in

the low-frequency region indicates that some other far-
infrared absorption mechanism exists. We consider two
different mechanisms which could account for the far-
infrared absorption losses; absorption due to capacitive
coupling between metal clusters, and magnetic-dipole ab-
sorption.

o's —
& coCO, (15)

where Co is of the order of the capacitance per unit
thickness between two adjacent metal grains. For simpli-
city, Co is assumed to be frequency independent. A rela-
tively good fit for the transmission spectrum of the sam-
ple with p =0.65 is obtained for the choice CO=10. This
value is about ten times larger than the value used by
Yagil et al. , which is contradictory to our earlier argu-
ment.

The scaling theory predictions with Cz =10 are plotted
in Fig. 11. Comparison between Figs. 8(a) and 11(a)
shows that the transmittance is suppressed by capacitive
coupling. On the other hand, comparison between Figs.
8(b) and 11(b) shows that the reflectance is enhanced by
the coupling. Changes due to the capacitive coupling be-
come larger at the higher frequency regions, as expected
by Eq. (15). The absorption spectra calculated by
(1—T —R) shows that capacitive coupling makes the ab-

1. Capacitive coupling between metal clusters

Metal clusters located very close to each other can
have significant capacitive coupling. Yagil et al. ' in-
cluded such capacitive coupling to explain their large ex-
perimental absorption of the semicontinuous gold films
near p, . However, the coupling in our 2D samples is not
as large as that of the semicontinuous films. The lattice
constant of our sample is 10 pm, much larger than the
typical dimension {-300A) of gold grains in the sem-
icontinuous film. Therefore, the coupling between the
metal clusters in our sample should be much smaller than
that for the semicontinuous film.

To understand the effects of capacitive coupling more
quantitatively, they are introduced in the scaling theory.
The coupling is incorporated using the conductivity of
the insulator, such as
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FIG. 10. Absorption spectra for hypothetical samples which
have exactly the same geometry as our 2D random composites
but without the sapphire substrate. Note that the maximum of
the y axis is 0.01 instead of 1.0.

FIG. 11. The calculated spectra using the scaling theory
when capacitive coupling is included. (a} Transmission spectra.
(b} Reflection spectra.
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sorptance even smaller than the value calculated without
the coupling. This result shows that the capacitive cou-
pling between the metal clusters cannot explain the
anomalous large far-infrared absorption observed in our
experiment.

2. Magnetic dipole absorption

In both the EMA and the scaling theory, only the ab-
sorption due to the electric dipole is included. The elec-
tric dipole absorption is the most important absorption
mechanism in most cases. However, for some cases, the
magnetic dipole absorption due to eddy currents,
which causes the medium to have a nonzero magnetiza-
tion even though the constituents are nonmagnetic, has
been shown to play an important role. For exam-
ples, in the far-infrared region, the magnetic dipole ab-
sorption becomes several order of magnitude larger than
the electric dipole absorption for metal particles of size
1000 A. ' The magnetic dipole absorption can be de-
scribed by a competition between the absorbing power
(i.e., a term related to the conductivity) and the absorbing
volume (i.e., a term related to the skin depth), so it de-
pends strongly on the size of the particles and the fre-
quency of measurement. Therefore, clustering of small
particles has been shown to be important in some far-
infrared absorption experiments. ' Considering that
the skin depth of gold is comparable to our film thick-
ness, the magnetic dipole absorption could be very
significant in our experiment. The eddy current effects
are very difficult to handle since the governing equation is
no longer the Laplace equation, but the Helmholtz equa-
tion. There are a few theoretical results on the
magnetic-dipole absorption that include the effect of clus-
ter formation, but their results are not consistent. Both
numerical models ' and a scaling theory predict a
divergent response at p, . However, a recent treatment
that takes mutual inductance into account does not show
divergent behavior. "

We suggest that the discrepancy between the experi-
mental absorption spectra, shown in Fig. 9(a), and that of

the scaling theory, shown in Fig. 9(b), is due to
magnetic-dipole absorption. Since our experiments
represent far-infrared measurements on lattices of the 2D
site-percolation problem, our experimental results can be
compared with computer simulations without any free
parameters. Further investigation of the observed
discrepancy in the absorption spectra may provide an op-
portunity for us to understand the effects of cluster for-
mation on the magnetic dipole absorption near the per-
colation threshold.

V. SUMMARY

The far-infrared transmittance and reAection spectra
have been recorded for samples which represent a
1000X 1000 2D site-percolation problem. The EMA can-
not explain our experimental observations, but an ap-
proach based on a scaling theory gives a more reasonable
description of our experimental results. This improved
agreement demonstrates that the Auctuation of local con-
ductivities near the percolation threshold inAuences the
far-infrared response of our 2D films. However, there
remains an important difference between the absorption
spectra of our experiment and those predicted by scaling
theory. We suggest that the origin of this discrepancy is
neglect of the magnetic dipole absorption in the calcula-
tion.
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