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Normal-state properties of high-temperature superconductors
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The doping and the temperature dependence of various normal-state properties of high-temperature
superconductors are studied by applying the t-t'-J model. The slave-boson method is used to treat the
strong correlations. The fermion quasiparticles carry both charge and spin and the volume of the Fermi
surface satisfies the Luttinger theorem. The quasiparticle energy spectrum used in the calculation is ob-
tained from a mean-field treatment of the t-t'-J model. The study is confined to the metallic phase where
contributions from the t and t terms are most dominant. The calculations provide a quantitative under-
standing for the doping dependence of Drude plasma frequency, Hall resistivity RH, band Pauli magnet-
ic susceptibility yz&, thermopower, and the room-temperature dc conductivity. The temperature depen-
dence of RH and yz& for small doping are not understood. The calculated density of states, Fermi ener-

gy, efkctive mass, and the Sommerfeld parameter have reasonable values. %'e have taken J=0 and
t =0.45 eV and have considered a wide range of t' values.

I. INTRODUCTION

The normal-state properties of high-temperature super-
conductors (HTSC) are anomalous and may provide the
most important clue to their physics. ' Anderson has
pointed out that the single-band Hubbard model should
be a good starting point to understand the physics of
HTSC. In the large intrasite Coulomb repulsion limit,
the Hubbard Hamiltonian reduces to a single-band
effective Hamiltonian, known as the t-J Hamiltonian.
Anderson has reemphasized that the single-band
effective Hamiltonian is adequate even in the light of
multiband proposals. Zhang and Rice have derived
the single-band effective Hamiltonian starting from a
two-band model. Kotliar, Lee, and Read arrived at the
same result. More recently, semiempirical analysis' and
constrained local-density-functional (LDA) calculations"
also support the above conclusion. The t-t'-J model is an
extension of the t-J mode1 by including the next-nearest-
neighbor hopping term. '

Starting with the t J(or t t' J) model, -a -nu-mber of
problems related with the physics of the oxide supercon-
ductors have been studied. As the undoped oxides are
quantum antiferromagnets (e.g., La& „Sr„Cu04 with
x =0), one of the important problems is to consider a
hole (carrying charge and spin) moving in a quantum an-
tiferrornagnet. ' ' In fact, the problexn of a hole mov-
ing in an Ising antiferromagnetic background was con-
sidered several years ago by Brinkman and Rice' who
employed a self-retracing-path approximation. The basic
idea of this approximation is that the hopping of a hole in
a Neel state will create a "string" of overturned spins
along its path and in order to return the spin
configuration to its original state, one should consider
paths in which the hole retraces its path back to the ori-
gin. A. significant result of such studies is that in the
self-retracing path approximation the hole is always local-
ized. ' ' To delocalize the hole, one needs either to turn

on the quantum fluctuations' ' or to include the "loop
paths. "' ' Recently, the quasiparticle dispersion relation
obtained from the hole-motion problem has been used by
Trugman for calculating some normal state properties
of HTSC. Specifically, he assumed that the quasiparticles
fill the rigid band described by the single-hole dispersion
relation and that they form a weakly interacting Fermi
gas. A good quantitative agreement with experiment was
obtained in Ref. 20. Trugman has chosen that t =1.6 eV
and t'=J=0. 133 eV. One of important results of the
Trugman theory is that the Fermi surface consists of ec-
centric ellipses and the volume enclosed by the Fermi
surface is proportional to x (hole concentration). It may
be mentioned that angle-resolved photoemission, angle-
resolved inverse photoemission, and positron-annihilation
two-dimensional angular correlation of annihilation radi-
ation measurements ' seem to indicate a Fermi surface
that includes an area proportional to l —x (satisfying the
Luttinger Theorem). The issue of the nature of the Fermi
surface is not resolved at present and more accurate mea-
surements are needed. More recent theoretical studies of
the Fermi surface are given in Ref. 22.

Recognizing the importance of satisfying the Luttinger
theorem, Nagoasa and Lee have calculated the normal
state properties of HTSC by developing a gauge-field-
theory approach. They studied a resonating-valence-
bond (RVB) state ' in which fermions (spinons) and
spinless bosons (holons) are coupled by a gauge field and
the spinon Fermi surface obeys the Luttinger theorem.
They assumed that the doping level is sufficiently large to
stabilize the uniform RVB state. Their approach is par-
tially based on Refs. 25 and 26 where gauge fields are
considered in detail. The authors of Ref. 23 were able to
understand the linear T resistivity and they also found
that the Hall number is proportional to the hole density
and is temperature dependent.

Anderson and Ren have recently proposed that the
normal state of HTSC is a new metallic state known as
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"Luttinger liquid" —the basic idea is that the systems de-
scribed by the 2D Hubbard model are "Luttinger
liquids. " In the "Luttinger liquid" state, which was
developed from the study of a 1D interacting electron
system, the charge and spin acquire distinct spectra and
the Fermi surface correlations have unusual exponents.
Thus the charge and spin are deconfined. While interest-
ing results have been obtained for 1D systems, ' gen-
eralization to 2D systems is very difficult.

The two-band Hubbard model or the Cu02 model has
also been used to study the normal state properties of
HTSC. This model considers holes in the 3d orbital of
copper and 2p orbitals of oxygen and is characterized by
the set of parameters (8,t, td, Udd, U ~,J, V) with

8=(e~, ed sz, ted) —as the basic set. Here Ed
—

s~ is the
d-p splitting energy (or the charge transfer energy), V is
the intersite Coulomb repulsion and the other parameters
have their conventional meanings. Newns and coworkers
have studied the case of (B,t~, O, ~,0,0,0) (Ref. 30) and

(B,t~, td, ~,0, 0, 0) (Ref. 31) for a small value of sd —E .
Kim, Levin, and Auerbach (KLA) considered
(B,t, O, ~,0,0,0) with several different values of sd —c~.
Castellani and Kotliar considered the case
(8,0,0, ~,O, J,O) and studied the phase transition from
the Fermi-liquid to the non-Fermi-liquid state. Balserio
et al. investigated (8,0,0, Udz, U, O, V). Grilli,
Kotliar, and Millis (GKM) studied (B,t, O, ~,O, J, V)
and presented a systematic analysis. All the above stud-
ies use mean-field theory approach. We will compare our
results with those from above studies whenever possible.

Varma et a/. have developed a marginal-Fermi-liquid
theory for the normal state of HTSC. Assuming that
there exist charge- and spin-density excitations with the
imaginary part of the polarizability at low frequencies co

proportional to co/T and constant otherwise, they have
understood the temperature dependence of several prop-
erties. Ruvalds and Virosztek have studied the optical
properties of these oxides by considering Fermi-surface
nesting. Schneider and Sorensen have investigated
some normal state properties using a tight-binding band.

In the present paper, we have calculated the doping
and the temperature dependence of several normal state
properties of HTSC by using quasiparticles with energy

spectrum derived from a mean-field treatment of the t-t'-
J model. The quasiparticles carry both charge and spin
and the volume of the Fermi surface satisfies the Lut-
tin ger theorem. We have employed the slave-boson
method to treat the strong correlations. Our study deals
with the metallic phase for which the transfer integral
terms are most dominant and consequently the superex-
change term has been ignored.

The paper is organized as follows: Section II gives a
general formalism. Starting with t-t'-J model and using
the slave-boson method, the energy spectrum of the
quasiparticles is obtained within the mean-field approxi-
rnation. An electron-hole interaction term, which is be-
lieved to be responsible for the anomalous relaxation time
of the carriers, is also obtained. Further, the formulas for
calculating various transport properties are given in this
section. In Sec. III, we present detailed numerical results
of the transport properties. First, the Fermi-surface re-

lated properties and the Drude plasma frequency at zero
temperature are given. Next, at room temperature, the
doping dependence of the Hall resistivity, band Pauli
magnetic susceptibility, thermopower, and dc conductivi-
ty are shown. Finally, the temperature dependence of the
above transport properties are presented. Section IV
gives a summary and discussions.

II. FORMALISM

where t, t', respectively, are the transfer integrals for the
nearest neighbor (NN) and the next nearest neighbors
(NNN) and J is the superexchange interaction. The first
(second) summation is over NN (NNN). The operators
h, hop single electrons from site to site but are not true
fermion operators since they are subject to the single oc-
cupancy constraint h;~ h; 1. Further o; and n;, respec-
tively, are the spin density and the number density at site
i. For the metallic phase considered in this paper, the
contributions from transfer integral terms are most dom-
inant and the J term can be neglected.

A convenient way to deal with the single occupancy
constraint is to use the slave-boson technique. ' In this
technique, one writes

h,. =C, b,t, (2)

where C; is a fermion operator (which carries the spin

quantum number cr and the charge) and b; is the boson
operator (which keeps track of the empty sites). Usually

C; and b, , respectively, are referred to as the electron
and the hole operators. Using Eq. (2) in Eq. (1) and tak-

ing J=0, one gets

H= t g bb—CtC +t' g bbC C; . (3)
&i j&,o &ij &, o

Further, in the slave-boson method, the single-
occupancy-constraint inequality for site i is converted to
the holonornic constraint

QC, C; +b;b, =l . (4)

This constraint is treated in the mean-field approxima-
tion; i.e., we replace Eq. (4) by

(btb, ) =x,

y (C,.'.C,.) =1—x,

The t-t'-J model is an extension of the t-J model by in-

cluding the next-nearest-neighbor hopping term. ' The
t-J model has been derived from the single-band Hubbard
model in the large-intrasite-Coulomb-repulsion-( U) limit
in Refs. 39—41. The derivation of the t-J model from a
two-band model was carried out by Zhang and Rice. The
t-t '-Jmodel is described by the Hamiltonian

H= t g h—
, h +t' g h; h

&ij &, o &i j &, o

+J g o;o', nn—
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where x is the occupation number for holes. Our calcula-
tions based on Eq. (3) are mainly for the La2 Sr„Cu04
system but apply to other "p-type" HTSC compounds if
the relevant physics occurs in the Cu02 planes.

In the momentum space, Eq. (3) becomes

1H= ——g f (p k—)biqbq+qC + C
p, q, k, cT

f( p) =2t (cosp„o +cosp a

2t'—It cosp„o cosp~a ),
with a as the lattice spacing. Similarly Eqs. (5) become

(6)

(7)

H =He +Hh +Hj

with

(10)

H, = g (sp —p')Cp Cp
p, cT

Ht = X(&l"—v" }b~bl
k

H;„,= —— g f (p —k)bl, bl, +qCp+q Cp
1

p, k, q@0,0

(12)

(13)

Here, the H;„, term represents the electron-hole interac-
tion. It can lead to superconducting pairing and is also
believed to be responsible for the anomalous relaxation

I

—g ng=x,h

k

1—gn' =1—x, (9)
1V

p, cT

where nt =(b bl&) and n' =(C C& ). Carrying
out a self-consistent Hartree-Fock factorization for the
nonscattering (q =0) terms, Eq. (6}gives

time ~ of the carriers. Also c and ck, respectively, are
the energy spectrum for the electrons and holes, and are
given by

E~= ——g f (p —k)(bjtb„),1

k

(14)

e = 2tx(c—osp, a+cosp a

2t'/tco—sp„a cosp a), (16)

where Eqs. (7) and (8) have also been used. This energy
spectrum has the form of a tight binding band renormal-
ized by the strong correlations. It can also be obtained
from Eq. (3) by replacing b; with its mean-field value

(b; ) =x ' . It may be noted that this replacement of the
bosons by a c-number amounts to the assumption of Bose
condensation of the b's. The energy spectrum implies
that the bandwidth increases and the effective mass de-
creases with the increase of hole concentration. It espe-
cially gives the Brinkman-Rice (Coulomb) localization
as x approaches zero.

Normal-state transport properties can be obtained by
using standard formulas. ' Using Eq. (16), various
transport coefficients in the constant-relaxation-time ap-
proximation are given by

Eq= ——g f (p —k)(Cp Cp ) .
p, 0'

Further, p' and p", respectively, are the chemical poten-
tials for the electrons and the holes and are used to en-
force that the occupation numbers of electrons and holes
satisfy Eqs. (8) and (9).

As holes are light bosons and x is a small fraction, one
expects that small values of k dominate so that Eq. (14)
can be approximated as

'2

o„„= f f dp„dp' sin p„(1 2t'It cos—p ) ( —Bf/BE ),
LB

2
ext 2'o„,= — f f dp„dp f„,( —Bf/Bsp),

(17)

(18)

e

S=S„„=— ' f ds cr„„(s)( Bf/Bs)/f d—so'„„(e)(—Bf/Be) .
e LB kg T LB

(19)

In the above equations

f„,=sin p„(1 2t'/t cosp„)(1 2—t'It cosp )(cosp— 2t'/t), —
'2

2~ exto„„(E)= f f dp„dp~( 1 2t'ltcosp„) —sin p„5(E —E) .
LB

(20)

(21)

Here, ~„„is the dc conductivity in the Cu02 plane, o.
xyz

is related to the Hall resistivity RH given by
RH Rzyz 0 &yz /cT zz and S is the therrnopower. Fur-
ther, ~ is the quasiparticle relaxation time, I, is the dis-
tance between the two neighboring Cu02 planes,
p„=p„a,

—+ e(ep —E„}=1.
2

p

(22)

f=f(e )=Iexp[(E —p')/ksT]+lj
is the Fermi function, and the notation LB is the lower
Mott-Hubbard band whose upper edge c.„ is determined
by
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Both the Hall resistivity and the thermopower are in-
dependent of ~.

The band Pauli magnetic susceptibility g~~ is given by

2

, f f dp dp (
—Bf/BE, ),pg

2~ l, a
(23)

dpx1

4m' xt sinp (1 2t'/t —cosp„)
(24)

From N(p'), the Sommerfeld parameter y is calculated
by using

y=a k23N(IJ, ')/3 . (25)

Defining the effective mass m from the theoretical
specific heat by assuming a two-dimensional parabolic
band, its ratio to the free electron mass is given by

Y —V (1 x)3/2
Yo

(26)

where y is measured in units of mJ/mole K .
Now we give some details for evaluating c„and p'. We

rewrite Eqs. (9) and (22), respectively, as

p '"( ) f(E)
dpx2 t g min(

X sinp» (1 2t' It cosp„—)

=1—x, p, ~op ~0, (27)

p (c)
dE, . dp

min( )
x

X sinp (1 2t'It cosp„)—

=1, p„&O,p &0, (28)

where p„'"(e) and p„'"(e), respectively, are the minimum

and the maximum values of p on the curve

e =E(p„&O,p &0) and are given by

where LM& is Bohr magneton. The total magnetic suscep-
tibility is the sum of gzz, the core y„„,the van Vleck

g„„,and yz due to the exchange interaction which is not
treated here.

The density of states of single quasiparticles of energy c.

per Cu site is given by

N(e) =—g 5(E —c, )
2

N
P

(16), one finds that

4—rx(1 t'—Ir), r'/r &0.5,
—4t'x, t'/t ~0.5 . (33)

The quantity E„ is determined from Eq. (28). Then p' is
obtained by solving Eq. (27). The integrations in Eqs.
(17)—(19) and (23) can be carried out similarly and the nu-

merical work is very accurate.

A. Some properties at zero temperature

Here we study the following properties at zero temper-
ature: Fermi surface, density of states and effective mass
at the Fermi energy, Fermi energy, and the Drude plas-
ma frequency.

The Fermi surface is calculated from Eq. (16) and the
zero-temperature version of Eq. (27) [i.e., replacing f (E)
by e(p' —e) j. Our results at different concentration of
holes with x =0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 are shown in

Fig. 1. We have taken t'/t=0. 30. It should be noted
that the Fermi surface satisfies the Luttinger theorem,
i.e., the total volume included by the Fermi surface is
proportional to 1 —x with and without the Coulomb
repulsion. However theories with carriers proportional
to x (e.g. , Ref. 20) do not satisfy the Luttinger theorem.
One also notes that the Fermi surfaces are extremely an-

isotropic. The effective mass of an electron is larger for p
along the axes than along the diagonal. The density of
states for an electron in the LB is calculated from Eq. (24)

—I 1'I I

3.0

l

8.0—

t.s—

III. NUMERICAL RESULTS

We will present our numerical results in three parts.
In Sec. III A, we give the doping dependence of some
properties at zero temperature. In Sec. III B, the trans-
port properties at room temperature are presented. In
Sec. III C, the doping dependence of the transport prop-
erties at several different temperatures are shown.

cos '(W),
I WI &1,

P. '""=
0, IwI&1,

cos '( Y) I YI & 1
p„'"( )=

(29)

(30)

1.0—

0.5—

with

( 1 —c/2xt).
(1+2r '/r )

(31)
o.o

0.0 0.5 1.0
ili ( i(i i i'il i i is I

P.o 8.5 3.0

Y=
—(1+E/2xt)

(1 2r'Ir)— (32)

The quantity cL is the lower edge of the LB. From Eq.

FIG. 1. The Fermi surface at different concentrations of
holes with x =0. 1, 0.2, 0.3, 0.4, 0.5, and 0.6. Further,
t'/t=0. 30. The Fermi surfaces satisfy the Luttinger theorem.
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with E„determined from Eq. (28). In Fig. 2, we have
shown the normalized density of states versus normalized
energy for x = 0.1, 0.2, 0.3, and 0.4 and t'/t =0.3. One
notes that the bandwidth increases as the hole concentra-
tion increases. One also notes the existence of Van Hove
singularity in each curve. Figure 3 shows the energy
dependence of the density of states for x=0.2 and
t'/t=0 0, 0.1, 0.2., 0.3, 0.4, and 0.5. For these values of
t'/t the minimum of the LB occurs at the zone center.
For t'/t )0.5 the band minimum occurs at zone edges

I I I
)

I I I
)

I I I I I I
)

I I I I

FIG. 2. The normalized density of states of quasiparticles in

the lower Mott-Hubbard band (LB), N(c/t)t, as a function of
c/t for x =0.1, 0.2, 0.3, and 0.4 and t'/t =0.30. One notes that
the LB is broadened as the doping increases. Also note the Van
Hove singularity in each curve.

(0, +n ), (+n, 0}and the Fermi surface has different topol-
ogy from the cases of t'/t &0.5. However, different cal-
culations indicate that for copper oxides t'/t & 0.5 is ap-
propriate. ' '" One notes that the LB is narrowed as t'/t
increases. Further the Van Hove singularity shifts from
the upper edge to the lower edge of the LB as t'/t in-
creases from 0.0 to 0.5. From Figs. 2 and 3 we observe
that the position of the Van Hove singularity shifts uni-
formly as x or t'/t changes. Comparing our results with
those from the two-band model, we point out that the
narrowing of the band with the decrease in doping found
here is similar to that found by KLA. However, in the
two-band calculation of NPT, ' the band broadens as
doping is reduced. In Fig. 4, the density of states at the
Fermi energy is plotted as a function of hole concentra-
tion x for t'/t=0 0, 0.1., 0.2, 0.3, 0.4, and 0.5. One notes
the Van Hove singularity for t'/t=0. 1, 0.2, and 0.3
curves. Further, the density of states increases rapidly as
x becomes less than about 0.1. This divergence in the
density of states at Fermi energy as x ~0 is the so-called
Brinkman-Rice divergence and is due to the Brinkman-
Rice localization. This localization also appears in the
two-band theories of KLA and GKM (J =0 case} but
is absent in the theory of NPT. ' In Ref. 35 it is found
that the inclusion of the superexchange interaction treat-
ed with the RVB mean-Seld theory removes the
Brinkman-Rice localization and also reduces the density
of states by about 5 folds for moderate doping. We ex-
pect that the inclusion of the J term in our approach will
mainly affect the density of states at low hole concentra-
tions. Using the density of states at the Fermi energy
given in Fig. 4, the Sommerfeld parameter y and the
zero-temperature band Pauli magnetic susceptibility g&z
can be easily obtained from Eq. (25) and the relation

ps~ =IJ~N(IJ, '). For example, for t =0.45 and t'/t=0. 3,
we obtain y =23.5, 17.7, 15.5, 15.9, and 13.7 mJ/mole K2

and ps+ =3.23, 2.43, 2.13, 2.17, and 1.88 (units of 10
emu/mole), for x=0.1, 0.15, 0.20, 0.25, and 0.30, respec-

@=0.8
0.5

0.4

I

0

20

I(I

15—

10—

I
)

I I I I
)

I I I I
)

I I I I

t'/t=o. o
———-- t/t=o. t

t=0.2
t=0.3
t=0.4
t=0.5

t'/t=o. o

0.3
0.2

0.1

0 I I I

-1.0 -0.8
I

—0.6
I

-0.4 -0.2 0.0

0 I I I I I I I I I I

0.0 0.10 0.20 0.30 0.40
FIG. 3. The density of states N(c/t)t as a function of c./t for

x =0.2 and t'/t=0. 0, 0.1, 0.2, 0.3, 0.4, and 0.5. Note that the
LB is narrowed as t'/t increases. Further, the Van Hove singu-
larity shifts from the upper edge to the lower edge of LB as t'/t
increases from 0.0 to 0.5.

FIG. 4. The density of states at the Fermi energy as a func-
tion of x for t'/t=0. 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The divergence
as x ~0 is due to the Brinkman-Rice localization.
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the extraction of plasma frequency from the infrared
reflectivity measurements is still controversial. Howev-
er, the plasma frequency for YBa2Cu307 obtained from
both the magnetic penetration depth and the optical mea-
surements ' is 1.4 eV. Using x=0.225 (Ref. 52) and
I, =0.585 A, appropriate for YBa2Cu307, we obtain
co = 1.56, 1.52, 1.49, 1.48, 1.48, and 1.52 (eV) for
t'/t=0. 0, 0.1, 0.2, 0.3, 0.4, and 0.5, respectively. The
agreement between the calculated and the experimental
values is important as co for YBa2Cu307 is one of the few
undisputed data. In the two-band model calculation of
GEM, co shows a similar doping dependence but with
much smaller magnitude. In the calculation of NPT, '

co changes only slightly as the hole concentration varies
from zero to one. These authors found a metallic state at
zero doping.

Overall, we found that at zero temperature the present
calculation explains successfully the doping dependence
of Drude plasma frequency. The calculation of Sommer-
feld parameter y, band Pauli magnetic susceptibility y&z,
and Hall resistance R~ agrees with the experimental data
for moderate doping (x )0. 1). The calculation failed at
lower doping for y, yz~, and R~. To remove these
disagreements a refined treatment of the t-t'-J model is
required.

We may mention that the present calculation predicts
that the zero temperature susceptibility, mass, and y
diverge like 1/x as x ~0, and that RH goes to a constant.
In contrast, Ref. 20 predicts that the susceptibility, mass,
and y go to a constant and that RH diverges like 1/x.
Both calculations agree that co -x.

B. Transport properties at room temperature

In this part, we study the following transport proper-
ties at room temperature: Hall resistivity, band Pauli
magnetic susceptibility, thermopower, and dc conductivi-
ty. Various transport properties are calculated using Eqs.
(17)—(21) and (23). First we calculate E„ from Eq. (28).
With this c„, the Fermi energy p' is calculated from Eq.
(27). We continue to use t =0.45 eV. As noted in Sec III
A, this value of t is in good agreement with the values
given in Refs. 10 and 11. Also it leads to a value for Np
which is in good agreement with the experimental value
for YBa2Cu307.

The Hall resistivity RH is calculated from Eqs. (17),
(18), and (20). Its values as a function of x at t'/t=0. 25,
0.30, 0.35, 0.40, and 0.45 are shown in Fig. 8, along with
the experimental data of Takagi et al. (T=270 K) and
a curve representing RH =x '. The theoretical RH has
the correct sign, has very reasonable magnitude, and
shows a good overall agreement with the experimental
data (except for the t'/t =0.25 curve at low values of x).

The band Pauli magnetic susceptibility y&z is calculat-
ed from Eq. (23). The theoretical ps' as a function of
hole concentration is shown in Fig. 9, where t'/t=0. 25,
0.30, 0.35, 0.40, and 0.45 have been used. The circles
represent the data of Torrance et al. One notes that
there is a qualitative agreement between the theoretical
curves and the experimental data. One also notes that
g~~ is insensitive to t' for x & 0. 1.
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FIG. 9. The band Pauli magnetic susceptibility gz& as a func-
tion of x at room temperature with t=0.45 eV and t'/t=0. 25,
0.30, 0.35, 0.40, and 0.45. The data (2:1:4compound) of Tor-
rance et al. is shown as circles. Note the qualitative agree-
ment between the theoretical curves and the experimental data.

x
FIG. 8. The Hall resistivity RH as a function of x at room

temperature with t=0.45 eV and t'/t=0. 25, 0.30, 0.35, 0.40,
and 0.45. The experimental data (2:1:4 compound) of Takagi

0 3
et al."is also shown. Here VD =94.2A is the volume of a for-

0
mula unit. Further, 1,=6.6 A. The upper short-long-dashed
line represents Rz =x '. There is a good overall agreement be-
tween the theoretical values and the experimental data (except
for t'/t=0. 25 curve for low x).

The thermopower S is calculated from Eqs. (19) and
(21) and is shown in Fig. 10 as a function of x with
t'/t=0. 25, 0.30, 0.35, 0.40, and 0.45. The experimental
data for Sr and Ba doping is also shown. One notes the
quantitative agreement between the theoretical values
and the experimental data. The theoretical S is insensi-
tive to t' for x &0.2. S changes sign at x =0.25.

The dc-conductivity 0„„ is calculated from Eq. (17).
The theoretical values of 0 as a function of x along
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300

250—

200—

150—

100—

x. The validity of this assumption will be examined in a
future calculation of the relaxation time.

Due to the relatively complex nature of the two-band-
model-based calculations, only the zero-temperature Hall
resistance has been calculated by KLA. Their calcula-
tion provides an understanding of the doping dependence
of RH. KLA remove the Brinkman-Rice localization
by including the interplane hopping. But, their treatment
of the interplane hopping has been criticized for neglect-
ing the strong correlation effect.
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FIG. 10. The thermopower S as a function of x at room tem-

perature with t=0.45 eV and t'/t=0. 25, 0.30, 0.35, 0.40, and
0.45. The experimental data (2:1:4compound, Ref. 55) at room

temperature is shown as plusses (Cooper et al. ) and crosses (De-
vaux et al. ) for Sr doping and circles (Cooper et al. ) for Ba dop-
ing. There is quantitative agreement between the theoretical
curves and the experimental data.
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x
FIG. 11. The dc conductivity o„„atroom temperature as a

function of x, together with the experimental data (2:1:4corn-

pound) of Torrance et al. ' Here t=0.45 eV and t'/t=0. 25,
0.30, 0.35, 0.40, and 0.45 have been used and the relaxation time
7 has been taken as ~ ' (300 K) = 2. 19X 10' sec '. Further,
l, =6.6 A. Note the excellent agreement between the theoreti-
cal and the experimental values.

with the experimental data of Torrance et al. are
shown in Fig. 11. We have used t'/t=0. 25, 0.30, 0.35,
0.40, and 0.45. The relaxation time ~ is not known and
has been chosen at 1/r(300 K) = 2. 19X 10' sec '. One
notes an excellent agreement between the theoretical and
the experimental values for the entire range of x and for
all values of t'/t. For x (0.3, 0,„ is nearly independent
of t'/t. Here, we have assumed that r is independent of
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C. Transport properties at various temperatures

Here we study the following properties at various tem-
peratures: Hall resistance, band Pauli magnetic suscepti-
bility, thermopower, and the Drude plasma frequency.
We have taken T=25 K, 50K, 100K, 200K, and 300 K.
We will continue to use t=0.45 eV. For t'/t we choose
t'/t=0. 3 which is the average of the semiempirical

10value (t /1=0.5) and the constrained LDA calculation
value (t'/t=0. 16)." In Fig. 12, we have shown the cal-
culated Hall resistance as a function of the hole concen-
tration along with the experimental data of Tagaki

53et al. One notes that the doping dependence of RH is
consistent with the experimental data for all the curves.
All curves diverge as x —+0 and are temperature indepen-
dent for x )0.2. However, the temperature dependence
of the calculated RH is not consistent with the experi-
mental data. One also notes that the present calculation
is successful in explaining the measured Hall resistance
RH at room temperature but fails at low temperatures.
The reason for this has already been discussed in Sec. III
A.
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FIG. 12. The Hall resistance RH as a function of x at T=25,
50, 100, 200, and 300 K. Further, t=0.45 eV and t'/t=0. 3.
The experimental data (2:1:4compound) of Takagi et al. "at 80
K (squares) and 300 K (triangles) is also shown. Here Vo =94.2
A is the volume of a formula unit. The upper short-long-
dashed line represents RH=x '. Doping dependence of RH is

consistent with the experimental data, but the temperature
dependence is not.
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value of the Drude plasma frequency with the experimen-
tal data for YBa2Cu307. The density of states, Fermi en-

ergy, the effective mass, and the Sommerfeld parameter y
have reasonable values. Detailed comparison with the
experimental data can be made when the experimental
data converge. Transport properties at room tempera-
ture are shown in Figs. 8 —11 which provide a quantita-
tive understanding on the doping dependence of the Hall
resistivity RH, the band Pauli magnetic susceptibility

y&~, the thermopower S, and the dc conductivity o.

The temperature dependence of the transport properties
is given in Figs. 12—15. We find that the temperature
dependence of RH and yzz for x &0.2 are not consistent
with the experimental data. Some refinements and exten-
sions of the present study would be needed to remove
these discrepancies. Two obvious extensions are to use
Eqs. (14) and (15) instead of Eq. (16) and to include the
effect of the superexchange term. The contribution of the
J term to g&z would be significant even in the metallic
phase.

The electron-hole coupling term given in Eq. (13) can
lead to superconducting pairing and is also believed to
be responsible for the anomalous relaxation time ~ of the
electrons. A calculation of v using this coupling term is

underway.
For "n-type" HTSC compounds, e.g., Nd2, Ce„Cu04,

the physics occurs in the upper Mott-Hubbard band.
The role of spinless neutral holes representing the vacant
sites in the "p-type" HTSC systems is played by different
spinless neutral bosons representing doubly occupied sites
in the "n-type" systems. Further, in these compounds,
the singly occupied sites are more conveniently represent-
ed by fermion holes carrying a positive charge and having
an energy spectrum c, = —c. . With these changes, the
formalism presented in the present work can also be ap-
plied to the "n-type" systems.

Summarizing, we have studied the doping and the tem-
perature dependence of various normal-state properties
of HTSC using quasiparticle energy spectrum obtained
from the mean-field treatment of the t-t'-J model. The
Fermi surface satisfies the Luttinger theorem. The calcu-
lations give quantitative explanation of the doping depen-
dence of Drude plasma frequency, Hall resistivity RH,
band Pauli magnetic susceptibility yz~, thermopower,
and the room-temperature dc conductivity. The temper-
ature dependence of RH and y&z for small doping are not
understood.
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