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Principles of energy extension in electron-emission holography
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We have derived the principles of energy extension in image reconstruction of electron-emission

holography. We illustrate these principles with examples based on multiple-scattering simulations. The

physical origins of small-window characteristics in forward-scattering and backscattering geometries are

explained. We show that images reconstructed from backscattering holograms in the energy range

150—300 eV are split for the Ni(001) (1 X 1)-Cu system, and a method is introduced to remove this split-

ting. We provide a direct view of a system in which the adsorbate atom occupies an off-centered site.
We discuss the energy range and optimal energy grid used in the small-window energy-extension process
in the forward-scattering and backscattering geometries.

I. INTRODUCTION

Electron-emission holography as a direct structural
tool has attracted a great deal of attention recently be-
cause of its potential capability for imaging single atoms
in the surface and interface regions with atomic resolu-
tion. ' However, unlike optical holography, the outgo-
ing electrons are scattered strongly by the atomic poten-
tials of the material. This strong interaction has two
consequences: (i) the images are shifted from the correct
atomic positions, and (ii) large multiple-scattering effects
are present in most systems. To remedy consequence (i),
methods are introduced to remove this phase shift from
the emission holograms before image reconstruc-
tion. ' ' Consequence (ii) is harder to overcome. Re-
cent studies have shown that Fourier transformation
(with phase-shift correction) works only in systems where
single scattering dominates. '" In non-single-scattering
systems, image reconstruction using a single-energy holo-
gram is unreliable: The images have poor resolution and
artifacts from reconstruction are present making it
difficult to identify the atomic positions. '

To overcome multiple-scattering effects, schemes are
proposed to use holograms at multiple energies. Early
energy-extension schemes involve adding intensities of
real-space images. ' This approach is inefficient because
intensity sums cumulate reconstruction artifacts. We
have proposed and demonstrated an energy-extension
scheme for the forward scattering (FS) geometry. In our
scheme, a small angular window (0,: 8=0,8, ; /=0, 2n. )

is used. The small-window energy-extension process
(SWEEP) joins together holograms at different energies

ikR0
with a different phase factor e ', where Ro is the
emitter-scatterer bond length determined from a two-
dimensional contour plot Pz (R) [see Sec. II, Eq. (16)].

l

Here, R, is a trial bond length and R is the Fourier vari-
able measured along the emitter scatterer direction (i.-e.,
focusing direction ).

The first demonstration of a multienergy phase-locking
scheme is carried out in the FS geometry, using the

SWEEP with 8, =40' for a Cu(111) slab. ' Full
multiple-scattering calculations are used to simulate the
holograms and the SWEEP method produces satisfactory
results: The nearest-neighbor distance Ro in Cu(111) is

0
determined to within +0.3 A and the image has a resolu-
tion, along the focusing direction, of better than 1 A.
We define image resolution as the full width at half max-
imum ( w =FWHM) of the radial intensity scan along the
emitter-scatterer direction.

In this paper, we derive and illustrate the general prin-
ciples of phase-Iocking energy-extension schemes in the
FS and backscattering (BS) geometries. ' ' Because
single-energy holographic image reconstruction methods
fail in many systems, a multienergy process is a necessity.
In the FS geometry with electron energy ~200 eV, the
scattering factor decays rapidly away from the forward
focusing direction. In systems with multiple focusing
directions, ' ' the interference fringes usable for image
reconstruction of an atom or atoms in a particular direc-
tion are limited to within an effective angular cone Q,ff

much smaller than the full Qz hemispherical window.

By introducing a small angular cone 0, centered at a
focusing direction, we work with those interference
fringes relevant to a specific atom or chain of atoms in
that direction. This process reduces artifacts and it pro-
duces brighter images. We generally expect that the
SWEEP method applies to the FS geometry. ' In this
paper, we shall show that contrary to expectation,
effective small windows also exist for BS holograms. In
Sec. III, we demonstrate and explain this rather unex-
pected result. We shall show that the principles of the
SWEEP are applicable to both the FS and BS geometries.

We shall also show that atomic images reconstructed
from single-energy or multienergy holograms in the
100—400-eV range are often split and a remedy is pro-
posed to eliminate it. The BS multiple-energy process is
demonstrated with multiple-scattering simulations for
two systems: monolayer (1 X 1) Cu on Ni(001) and
Ni(001)-c (2X2)S. In Sec. IV, we show atomic images for
a system in which the adsorbate atom occupies an off-
centered site on the surface. We anticipate that the
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determination of adsorption site is an important use of
this technique; Sec. IV presents a direct view of these re-
sults. In Sec. V, we introduce an improvement in the
determination of the bond distance in the FS geometry.
The significance of choosing energy points with evenly
spaced wave numbers is discussed in Sec. VII. Section
VII contains a summary. emitter catterer

II. CHARACTERISTICS OF THE SMALL-WINDOW
ENERGY-EXTENSION PROCESS

scatterer Ql(

R

emitter
As discussed in the Introduction, a small, effective an-

gular window often dominates the emission holograms in
both FS and BS geometries. In this section, we derive
and explain the characteristic of the small-window effect.

We start with the three-dimensional (3D) Fourier
transformation of diffraction patterns at energy E„,'
with k„=+(2m/R )E„:

(a) B S (b) F S

FIG. 1. Schematic diagram of emitter-scatterer system for (a)
backscattering and (b) forward-scattering geometries.

y. (R)=
I T.(R) I

fy(k„lt)5(k—k„)e " d3k (2)

X
4x (R)=2) g fX(k„k)e " 'e " kzdQ

n=1
(6)

Using d E=k dk dQ and integrating out the 5 function
in Eq. (2), we obtain

or

T„(R)=fy(k„k.)e " k„dQ . (3)
e„(R)=n y f cos8

dk„„dk„

The normalized difFraction function g(k„k)is given by '
[FD(k„,R )/2/f(k„, k R, )(

y(k„k)~

F (k„,R )f(k„,lt R )

FD (k„,k)R

+c.c.+ . (4)

4~ (R)=2) g e " 'T„(R)
n=1

(5)

where 2)=(k~ —k, )l(N —1) defines a mean wave-
number interval and R, is a scalar which defines the
phase that joins together single-energy Fourier trans-
forms T„(R).By substituting T„(R)from Eq. (3) and us-

ing k„dQ=dk„~~/cosO, we obtain

The first sum in Eq. (4) corresponds to the self-image
terms; ' ' ' ' the second sum corresponds to single-atom
image terms at R .

Phase locking involves summing over a discrete set of
energies with a particular phase factor. ' ' Consider N
energy points, in ascending order of magnitude, with
wave numbers k&, . . . , kN. For an atom at Ro, a general-
ized energy-extended image function can be written as

A justification for Eq. (5) is that when the variable R,
equals R o, the phase factor cancels the conjugate phase in
the image term of Eq. (4) for that atom, thereby, leaving

—ik kR
only a plane-wave phase e " ' for all energies. There-
fore, after performing the Fourier transform (FT) by Eq.
(6) or Eq. (7), the contribution from each energy
coherently cumulates at the image point @it (Ro), giving

0

the desired result. Also, since the image term in Eq. (4) is
only for single scattering, the sum in Eq. (5) reinforces
the single-scattering contribution to the image and
reduces (by phase cancellation) the multiple-scattering
terms. While the maximum value of 4s (R) should

i

occur at R; =Ro and R=Ro, the image half-width w de-

pends on the functional dependence of R;. The optimal
functional form of R, depends on the geometry used, FS
or BS, and on whether the effective angular range is small
window or full window.

To determine the optimal form of R, , it is simplest to
reduce the systexn to two atoms. In Sec. IV, we shall ap-
ply these results to multiatomic slab systems. Here, we
consider an emitter at the origin and a scatterer at Ro
along the z axis. For FS, the scatterer is above the
emitter; for BS, the reverse is true [see Figs. 1(a) and

1(b)]. Evaluating Eq. (6) for R along the z axis only and
explicitly writing out the image term of Eq. (4), we obtain

—ik E. i(k Ro+ k„RocosO) ik 8 cosO

C', (R) n y f'f ''
n=1

k„sin9d 8 dP
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where the —( + ) sign is for the forward-scattering (backscattering) geometry and 8, is the available polar range. In

Eq. (S), we have neglected all angular and energy dependencies of the source terms such as FD {k)and En (Ro) and of the

scattering factor f ( k k }. The full dependencies will be restored in the actual multiple-scattering slab calculations

presented in Sec. IV. Integrating out dP, we obtain
—ik„(R+Ro)( 1 —cos8 )

2m') + ik„(R()+Ro+R —R;) 1 —e (9)

In the small-window limit 8, =0' we can expand ( 1 —cos8, ) in a power series to obtain

N ik (R +R +R —R )

0 n = 1

—
—,'k„'(R+Ra) (1—cos8, ) + (10}

In the two-dimensional contour map of the image func-
tion 4R (R }, the function varies slowly when the ex-

ponent in Eq. (10) is zero. This occurs along the line

R,. =R for FS and the line R; =2R 0 +R for BS. Along
these two lines, the function 4R ( R ) has the following

l

form (to achieve this form, we convert the sum over ener-
gies into an integral over k):

I

we obtain a simi lar expression, but R 0 does not appear
and the FS-BS geometries have identical results. Thus,
the high-intensity line for the self-image term is along

R; =R for both FS and BS geometries. Along this line,
the self-image term varies as

4R (R)~ ( 1 —cos8, )
R 0

4R {R}~ ( 1 —cos8 }R,. R X [ 1 —0.03k R ( 1 —cos8 )
3 C

X [ 1 —0.03k'(R +R, )'k

max

max

+ ]
min

(12)

X ( 1 —cos8, )2+ ], (1 1)
min

where k,„andk;„arethe upper and lower limits of the
wave numbers, respectively. The function in Eq. (1 1) is
maximum at R =R 0 for FS and at R = —R 0 for BS; it
falls off as 6 =(R PRO) along the R; =R and the
R; =2R 0 +R lines, respectively.

Following the same derivation for the self-image term
I

The self-image term maximum is at the origin (i.e.,
R =0) and it decreases like R 2 along the R, =R line.

We depict these small-window characteristics schemat-
ically in Figs. 2(a) and 2(b) for the BS and FS geometries,
respectively. The hatched areas indicate high-intensity
contours for the image and square (i.e., self-image) terms.
It is easy to derive the corresponding expressions when a
full window, i.e., 8, =n/2, is in effe.ct. In the full-window

case, Eq. (9}becomes

2~2) ~ ik„(RO7 Ro+R —R,. )
—[ik„(RVRo)]/2

n = 1

k„(RPRO)
sin

2

(R +R())/2
(13)

To determine the behavior of (I)R (R ) in Eq. (13), we cut

along the R =R 0 line for FS and the R = —R 0 line for
BS to obtain, respectively,

2 k

R 0

The integral in Eq. (14) is evaluated as I2 in Appendix A;
it has a FWHM of w 2

= 1.4t, where I =2m /hk. Here,
hk =k,„—k;„is the range of the wave numbers in the
energy-extension sum. If, instead, we cut along the
R =R p line, we obtain from Eq. ( 13)

277 max [ik(R TRo)]/2

sin I k(R +R o }/2
X dk . (15)

(R +R())/2

This integral, evaluated as I3 in Appendix A, has a
FWHM of w 3

=0.9I as a function of R . The maximum
of the function 4R (R) in Eq. (13) occurs at R; =R =Ro

r

(for FS) and R,. = —R =R 0 (for BS). From these points,
Eqs. ( 14) and ( 15) indicate that the function decays 1 .5
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FIG. 2. High-intensity areas for the image and self-image
(square) terms for small-window [(a) and (b)] and full-window

[(c) and (d)] situations, respectively, in the function 4s (R).

(16)

where 0, equals m. /2 for full window. Note that R,- is al-

ways positive with these choices.
With the value of Rp determined, images are formed

with the smallest w =FWHM by using the following R, :

(a) Small window: FS R, =2RO —R

times faster when R is varied (for fixed R; ), than when R;
is varied (for fixed R). Therefore, the high-intensity con-
tours are elongated parallel to the R; axis [see Figs. 2(c)
and 2(d), respectively]. It is easy to show that for the
self-image term, the maximum is at the origin; similarly,
the high-intensity contours are elongated along the R,
axis.

In Figs. 2(a) —2(d), the high-intensity contours of
4a (R) are depicted for small (full) angular windows and

l

forward-scattering (backscattering) geometries. These
characteristics allow a systematic selection of the optimal
functional form of R;. Referring to Fig. 2, we note that
to determine the bond distance Rp, one follows the line

R; =R with positive R for FS and R; = —R with negative
R for BS. This is true whether the angular range is full
or small window. These choices are shown as broken
lines in Figs. 2(a) —2(d). The maxima of 4a (R) along

l

these lines occur at R, =R =R 0 (FS) or at R, = —R =R 0
(BS) with a value given by either Eq. (10) or Eq. (13) as

These choices of R; correspond to cuts denoted by the
solid lines in Figs. 2(a) —2(d). The values of w are the
theoretical limits of the FWHM of the image and their
derivations are given in Appendix A. Also, the values
given in Eqs. (17) and (19) correspond to the leading term
in Eq. (10); they are strictly valid if 8, ~0'.

In practice, the usable angular range is somewhere be-
tween 8, =0' and n /2 and there is an energy dependence
to this effective angular cone. Since the difference be-
tween Eqs. (17) and (18) or between (19) and (20) is small
to being with, it is simpler in actual cases to use the
choice R; =Ro for the FS geometry and R, = —R (where
R ~0) for the BS geometry. Both these choices guaran-
tee that the energy-dependent phase factor

'" ~~o+~o+
e " ' ' ' in Eq. (9) will cancel artifacts and
enhance the single-scattering image at the R =+Rp re-

gion for FS and BS geometries, respectively.

III. BACKSCATTERING GEOMETRY:
THE CASE FOR SMALL WINDOW

Having derived the characteristics of small- and full-

window image reconstructions we shall illustrate these
properties with actual examples. Since a number of
dynamical factors can cause artifacts and shifts in the
reconstructed image, we use numerical simulations with
increasing complexity. We start with a simple two-atom
backscattering system: a Ni emitter placed at the origin
and a Ni scatterer at Rp=2. 52 A in the —z direction.
We consider the single-scattering y(k„k) expression
given in Eq. (4), which includes the c.c. term. Seventeen
energies in the range of 60 to 286 eV are used; the ener-

gies are chosen so that the wave-number interval
b,k=k;+&=2) is uniform. As noted earlier, the use of a
uniform b k produces a periodic 4a (R) with respect to

l

R;, and the period is given by l. =2m/2). ' In this case
0

the period is L =21.4 A. This period is very large, and it
ensures that in the region of interest no artifacts are
present from the periods of the image and self-image.
The reason for the use of a large period will be discussed
in Sec. VII.

For this two-atom case, we assume once again that
FD(k) and Fn(R) in Eq. (4) are independent of energy of
or angle. However, actual scattering factors calculated
with plane-wave incidence are used:

f(k„,k Ro)= g (2l+1)P&(k Ro)(e
' "—1) .

2ik„ I

and

(R ~0); w =—0.7I

Full window: FS R, =Rp, w =0.9I

(b) Small window: BS R, = —R

(R ~0); w=0. 7I

(17)

(18)

(19)

(21)

In Eq. (21), P&(k-Ro) is the Legendre polynomial and 5& k

is the Ith partial-wave phase shift at wave number k„.
For comparison with this model, we also perform similar
simulations, but the scattering factor is set to a constant:

f =Ro. The functions y(k„,k) are evaluated according
to Eq. (4); the two-dimensional function 4z (R) is gen-

l
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FIG. 3. High-intensity contours of 4& (R) for a diatomic Ni system. The image is at R = —2.52 A, the self-image at R =0, and
I

the twin at R =2.52 A. Using actual back scattering factors the image is split [panel (c)].

Figure 3(b) shows the contours as the opening window is
decreased to 8, 60'. The high-intensity contours rotate
and point towards 45' lines, in accordance with the pre-
dictions of Fig. 2(a). Figure 3(a) shows the contours for a
full opening window, 8, =m/2, where actual calculated
backscattering factors f(k„,k Ro) according to Eq. (21}
are used in y(k„k). One notices two unexpected results:
(i} The high-intensity contours are elongated towards 45',
reflecting a small-window character even though a full

opening window is used, and (ii) the image (and twin)
shows a splitting in intensity. We now provide the
reasons for these results.

crated according to Eq. (6) with R, and R measured along
the emitter-scatterer direction (i.e., kz axis).

We show in Figs. 3(a)—3(c) the high-intensity contours
of 4a (R} for this two-atom system. In Fig. 3(a), a full

window 8, =n /2 and f =R o are used. The high-
intensity contours are elongated parallel to the R; axis, in
accordance with the full-window backscattering behavior
depicted in Fig. 2(c). The image and self-image appear in
the positive R; half plane; their corresponding twins ap-
pear in the negative R; half plane. The constant f =Re
scattering factor ensures that the usable range of the
diffraction equals the window opening (i.e., 8,=n/2).
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FIG. 4. The magnitude [(a)—(c)] and phase [(d)—(f)] of the backscattering factor at 150, 200, and 300 eV. In (a) —(c), m ~ 8 ~ n /2 are
along negative abscissa values, and m/2~8~0 are along positive abscissa values. The phase in (d) —(fj is shown for m ~8~m/2
values.



4160 S. Y. TONG, HUA LI, AND H. HUANG 46

A. Origin of split peaks

The origin of the splitting in the energy-extended im-
age must be due to the Ni backscattering factor
f(k„,k Ro) since there is no splitting if a constant

f =Ro is used. To investigate further, we plot in Figs.
4(a) —4(c) the magnitude ~f(m. —8)~ at three typical ener-
gies in this range: 150, 200, and 300 eV, respectively. In
these figures, f (0 ) is forward scattering and f (vr) is
backscattering. %'e notice strong angular anisotropies in

~f(m —8) ~, especially the sharp cusps at which the magni-
tude of

~f ~
almost vanishes. At the cusps, the phase of

f (~ 8) g—oes through a near ares.onance, as shown in
Figs. 4(d) —4(f). The sharp cusps and n change in the
phase of f (m —8) cause image peaks to be split (see
longer discussion given in Appendix B). This effect has
also been observed by Barton et al. to cause peak split-
tings in the Fourier transformation of energy-dependent
photoemission fine-structure spectra. From the behavior
of f (n. 8) at th—ese energies, we expect the images recon-
structed from the individual energies to be split also.
This is indeed the case, as shown in Figs. 5(a) —5(c) where
the image intensity is plotted from the origin (i.e., emitter
position} along the —z direction. All three images are
split. The correct image position, at R = —2.52 A, is
marked by an arrow. It falls between the split peaks.
For each doublet, the higher intensity peak is caused by
the part of the scattering factor which ranges from m to
the cusp at 120'-135'. The slope of the phase in this an-
gular region is positive at 150 and 200 eV [see Figs. 4(d}
and 4(e), respectively], while it is negative at 300 eV [Fig.
4(f)]. At backscattering, the image is phase shifted ac-
cording to R = —Ro+b, where b is the slope. This
means that at 150 and 200 eV, the higher intensity peak
of the doublet is shifted towards the origin, while at 300
eV, it is shifted towards larger negative values. These
trends are reflected in the image doublets shown in Figs.
5(a) —5(c). At 400 eV or above, the cusp in

~f (n —8)
~

be-
comes less deep, the slope of the phase remains negative,
but the sharp m resonance disappears. The single-energy
reconstructed image is no longer split at 400 eV or above,
but the peak is shifted towards larger negative R.

The splitting in the image peak is most pronounced in
the 150—350-eV range for Ni, exactly the energy range

best suited for holographic reconstruction in the BS
geometry. This is unfortunate because a split image from
single-energy or multienergy reconstruction causes large
uncertainties in the structural determination. In Sec.
III B, we shall propose a way to overcome this problem.

B. Origin of the small-window character in backscattering

The deep cusps in the Ni
~
f(m. —8)

~
which cause image

peaks to become split also are responsible for the small-
window characteristics of 4z (R). Referring to Fig. 5,

l

the image doublet is caused by reconstruction functions
which use separate (small} angular regions of the
diffraction fringes, therefore, the image behaves as if the
opening is much less than n/2 Beca. use the backscatter-
ing factor f (m —8) introduces an effective small angular
window, we can use the small-window energy-extension
process to improve the image resolution.

To demonstrate improvement in the image resolution
by the SWEEP, we show the energy-extended images for
the three cases of Fig. 3. We evaluate 4z (R) according

o
to Eq. (6) with R varying from 0 to —6 A along the z axis

and we put R;= —R in the phase factor e " '. The ra-
dial image intensity scans are shown in Figs. 6(a)—6(c),
respectively. For comparison, we show in Figs. 6(d) —6(f}
similar scans for the images reconstructed from the larg-
est energy (i.e., E =286 eV). The FWHM of each case is
indicated. Comparing the full-window case, i.e., Figs.
6(a) and 6(d), the width w is the same to two decimal
places. This is because at the largest energy, the width is
given by w, =2.4k,'„(seeAppendix A). The width for
the full-window energy-extended image is given by Eq.
(20), i.e., w2 -—1.3m(k,„—k;„)'. With the energies
used, E,„=286eV and E;„=60eV, the two quantities

w, and w2 are almost identical. It is possible to improve
resolution with full-window energy extension, but E;„
has to be small (e.g. , in this case, E,„must be less than

58 eV; see condition derived in Appendix A).
It is, however, much easier to improve resolution if the

effective window 8, is less than ~/2. We show this in

Figs. 6(b) and 6(e) or in Figs. 6(c) and 6(f}. The widths for
the energy-extended images improve by 47% and 28%,

eV 200 ev
6i

300 eV

-4 -3 -2 -1

R (A)

-4 -3 -2 -1 0

R (A)

-6 -5 -4 -3 -2 -l 0

R (A)

0

FIG. 5. Radial image intensity plots with emitter at the origin and scatterer at R = —2.52 A (arrow). The images are split due to
cusps in the backscattering factor; w is the FWHM.
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FIG. 8. Small-window radial image intensity plots with single-energy [(a)] and energy-extended [(b} and (c)] cases, respectively.
The emitter is at the origin and the scatterer at R = —2.52 A (arrow).

through energy extension. In actual applications in the
BS geometry, a full window is first used to locate the gen-
eral areas of the images. If an image is split or the noise
level around it is high, a small angular cone centered
along the particular emitter-image direction is applied
and the SWEEP is carried out using the g(k„lt) in that
cone only. This process can be repeated for images in
other directions. An example of this procedure is given
in the next section.

IV. BACKSCATTERING ENERGY EXTENSION
FOR Ni(001) (1X1)-Cu AND Ni(001) c(2X2)-S

We now apply the principles derived in Sec. II to two
realistic systems: an ordered monolayer of Cu on Ni(001)
and c(2X2)S on Ni(001). The approximations applied in
earlier examples are lifted; in particular, a fully dynami-
cal multiple-scattering slab method is used to calculate
emission holograms at different energies. Dynamical
source terms FD(k„,it) with s~p and p~d, s transition
matrix elements for the Cu(2p) and S(ls) core levels are
evaluated at each energy. The exact Green's-function
structural propagators are used to evaluate the near-field
(i.e., curved wave) scattering t matrices. ' Approxima-
tion schemes such as the separable representation or Tay-
lor series, magnetic-quantum-number expansion, etc. are
not used.

The normalized interference function of Eq. (4) is
defined as

mates the actual reference wave intensity and introduces
background noise in the image reconstruction; however,
its appeal is in the simplicity of Eq. (25). In the examples
given in this section, this simple choice is used and the
normalized holograms are defined as '

I(k„k)—2
y(k„k)= (26)

y(k„k)e " e
C(R)=n y f dk„„dk„„

(for all R) . (27)

The second choice corresponds to
T

From the discussions in Sec. II, in the BS geometry,
the use of R; = —R (R 0) in Eq. (7) forms the image as
well as giving the best cut for the resolution [via Eq. (19)].
However, in the R &0 half plane, we have a choice. If
we put R, =R, we cut along the 45' direction in the first
quadrant of Fig. 3(c}—the solid line. This line runs along
the high-intensity streak of the self-image term for small
window. Alternatively, one may choose the line
R;= —R (R &0), which cuts through at —45' in the
fourth quadrant. This line passes through the twin im-

age. Writing out these two choices explicitly by substi-
tuting them into Eq. (7), we obtain for the first choice'3

I(k„k) ID(k„k—)
y(k„k)=

ID(k„k}
(24) f + n

where I(k„k}is the calculated (or measured) total inten-
sity and ID(k„k.) is the intensity of the reference wave.
In a theoretical simulation, the absolute values of I and

ID are calculated. However, when I from an experimen-
tal measurement is used, the absolute intensity (per in-

cident photon per unit area per second) is only approxi-
mately known. A simple approximation of ID is to use
the average:

4(R)= '

Xdk„„dk„y(R, &0)

f X n

xdk„„dk„,(R, ~0) .

(28a)

(28b)

(25)

This choice of the angular average probably overesti-

In the example given below, results of both choices are
given.

The first example is for an ordered layer of Cu atoms
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FIG. 9. Full-window (0, =90') energy-extended image recon-
struction using Eq. (27). Left panel: Cut normal to surface.
Right panel: Cut parallel to surface. Vertical bar indicates 1 A.

FIG. 10. Full-window ( 0,, = 90') energy-extended image
reconstruction. Left panel: Same as that in Fig. 9. Right panel:
Cut normal to surface; Eq. (28) is used in the image reconstruc-

0

tion process. Vertical bar indicate» 1 A.

occupying the fourfold hollow site on Ni(001) with a Cu-
Ni spacing of 1.8 A. The energy-extension scheme uses
17 energies, from 60 to 681 eV with equally spaced wave-
number intervals. The period L =2nl2) is 10.7 A. In
Fig. 9, we show the energy-extended image reconstruc-
tion results. The choice of R, is according to Eq. (27).
The left side shows a plane normal to the surface passing
through the Cu emitter (marked by a cross) and two
nearest-neighbor Ni atoms (marked by circles) as well as
a next-nearest-neighbor Ni atom directly below the Cu
atom. The images of the two nearest Ni neighbors are
2.38 A from the origin (correct distance is 2.52 A, error
=0. 15 A). The image FWHM is 0.69 A. The images are
not split because we have extended the energy to 681 eV.
The image of the next-nearest-neighbor Ni atom directly
below the Cu atom is at 3.25 A (correct distance is 3.56
A, error =0.31 A).

On the +z side, the high-intensity noise is very evi-
dent. This is because Eq. (27) follows the 45' line in the
first quadrant of Fig. 3(c) and this line runs parallel to the
high-intensity streak of the self-image term. In a slab
geometry, there are many Ni scatterers and they all con-
tribute to the self-image term [see Eq. (4)j. In Fig. 3(c),
the self-image term is very weak because there is only one
scatterer. As pointed out earlier, we can use Eq. (28) to
avoid the 45' line through the first quadrant. This result
is shown in Fig. 10, right panel, where with R running
along the emitter-scatterer direction, Eq. (28) corre-
sponds to a line passing through the image and twin.
Hence, we see a mirror symmetry, with the twins appear-
ing in the z )0 half plane. Equation (28) contains infor-
mation about the twins, which become useful when phase
shifts are corrected (the phase-shift correction breaks the
mirror symmetry between the image and twin).

The right panel of Fig. 9 shows a cut parallel to the
surface at 1.8 A below the Cu plane. This plane passes
through the first-layer Ni nuclei. The image reconstruc-
tion shows four nearest-neighbor Ni atoms, whose dis-

0
tance from the center is 2.12 A (correct distance is 1.76
A, error =0.36 A).

As pointed out in the preceding section, after the ap-

proximate locations of the irn;ages are determined from a
full-window reconstruction, one could use a small win-
dow to improve the image precision or remove peak split-
ting. The nearest- and next-nearest-neighbor images are
not split with the energy range 60—681 eV used. These
images become split if we reduce the range to 60—286 eV,
i.e., the same range as that used in Fig. 6. The reason for
the splitting has already been discussed in Sec. III. In
Fig. 11, left panel, we show the split Ni images; except
for the reduced energy range, all other conditions (e.g. ,
b, k =k;+& —k, and the period L) are identical to those
used for Fig. 10, right panel ~ The image of the nearest-
neighbor Ni atom shows a doublet, at 1.82 and 2.75 A,
respectively, compared to the correct spacing of 2.52 A.
The next-nearest-neighbor atom directly below the emit-
ter shows a doublet at 2.60 and 3.71 A& respectively, com-
pared to the correct spacing (~f 3.56 A. We can remove
the splitting in the nearest-neighbor atom by centering a
small window 0, =45' at a polar angle of 136' from the
positive abscissa direction. 'I'he small-window image,

FIG. 11. Left panel: Full-window (0, =90 ) energy-extended
image reconstruction using the 60—286-eV energy range. Other
conditions same as those in Fig. 10, right panel. Split images
enclosed by circles. Center: Small-window (0, =45 ) energy-
extended nearest-neighbor image Crosses mark emitter and
scatterer positions. Right: Small-window (0, = 30') energy-
extended image of Ni atom below emitter. Crosses mark emit-
ter and scatterer positions. The twin images appear on the right
halves of each panel.
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thus formed, is shown in Fig. 11,center panel. The small
cross indicates the correct atomic position. To remove
the split peaks for the image of the Ni atom directly
below the Cu emitter, we use a small window 8, =30'
centered at 180' from the positive abscissa direction. The
small-window image for this Ni atom is shown in Fig. 11,
right panel. Again, the smaI1 cross indicates the correct
Ni atomic position. In all three panels, the twin images
appear on the right halves [Eqs. (28a) and (28b) are used].

There is an alternate way to determine the atomic posi-
tion, based on the fact that in the BS geometry, the self-
image is elongated along the 45' line [Fig. 2(a)]; thus, we
can write

R, =R;, (29)

where R, is the position of the self-image for a given R;.
The image itself is elongated along a parallel line in the
second quadrant passing through Ro [Fig. 2(a)], i.e.,

—RI=2Ro —R .

Adding Eqs. (29) and (30), we obtain,

Ro ——(R, + IRI I
)/2 .

(30)

(31)

Since Eq. (31) is independent of R, , it means that the sep-
aration between the image and the self-image in a line
passing through the origin is constant and equals 2Ro. In
Fig. 12, we show 4z (R) reconstructed by Eq. (7) using

0

three trial values: R; =2.22, 2.52, and 2.82 A, respective-
ly. The large circles centered at the origin have radii
equal to R;, and they pass through the self-images (at the
one o' clock position) according to Eq. (29). We draw a
line passing through the peak of the self-image and the
origin: this line cuts through the image (at the seven
o'clock position). The intensity scans along this line for
the three R, values are shown in Fig. 13. From Figs.
13(a)—13(c), we obtain the average separation between the
image and self-image: D =(D&+Dz+D3)/3=5. 14 A,
which from Eq. (31) gives a value of Ra =2.57 A (correct

0 0
bond length is 2.52 A, error =0.05 A; earlier determina-

R.
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tion of Ro by Fig. 9 is 2.38 A).
The conditions given in Eqs. (30) and (31) are best

obeyed for R; =Ro, hence this method could be used as a
second determination of the bond length after an initial
Ro has been measured in either Fig. 9 or Fig. 11. In the
BS geometry, the phase shift is not easily corrected (see
Sec. VI). The self-image term is real [see Eq. (4)] and
hence R, does not depend on the phase off (n —8). This
means Ro determined by Eq. (31) contains only 5/2,
where 5 is the shift due to the phase of the scattering fac-
tor.

We now turn to our second example: Ni(001)
c (2 X 2)-S. Thirteen energies from 60 to 452 eV are used,
again with evenly spaced wave numbers. The period in
4z (R) is L =2m/2)=10. 9 A. Figure 14 shows Ni im-

I

ages from the energy-extended process where Eq. (28) is
used. The (001) plane is cut parallel to the surface at 1.3
A below the S layer. This plane passes through the nuclei
of the first Ni layer. The left panel corresponds to the
case where S is placed at the center of a fourfold hollow
site. The cut shows the four nearest-neighbor Ni atoms
at 1.94 A from the center (correct distance is 1.76 A, er-
ror=0. 18 A). The right panel corresponds to S occupy-
ing an off-centered site, i.e., the S atom is displaced 0.7 A

FIG. 13. Intensity scans passing through the self-image, ori-
gin, and image of Fig. 12, The peak-to-peak distance is indicat-
ed by D;.

FIG. 12. Full-window (8,=90 ) energy-extended image
reconstruction using different trial values of R; for the nearest-
neighbor Ni atom. The separation between the self-image (at
the one o'clock position) and image (at the seven o'clock posi-
tion) remains constant.

FIG. 14. Full-window (0, =90') energy-extended image
reconstruction for S at the symmetric fourfold site (left panel)
and the asymmetric site (right panel).
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in the —
y direction.

In this off-centered geometry, the two farther Ni neigh-
bors are imaged at 2.37 A (correct distance is 2.31 A,
error =0.06 A). The two closer Ni atoms have split
images —the peaks are at 0.9 A (lower intensity} and 1.5
A (higher intensity) from the center. If we select the
higher intensity peak as the Ni image, the error is 0.14 A
(the correct distance is 1.36 A). In an actual system, the
off-centered image should be averaged over four
equivalent domains. However, even summing over four
90' rotations, it is still rather easy to distinguish between
the two cases —S atoms at centered off-centered sites-
by direct study of the reconstructed images.

Before leaving the backscattering geometry, we point
out that we are unable to produce clear-cut atomic im-

ages based on single-energy holograms, for either the Cu
or S overlayer system. The failure of single-energy holo-
grams to produce convincing images suggests that energy
extension is a necessary step. The improvement is con-
siderable, since we have started from a situation in which
no recognizable image exists in the single-energy case, to
the clear, highly resolved images shown in Figs. 9—11.
The multiple-energy process improves resolution, and
enhances the single-scattering term by adding to its inten-
sity in a coherent fashion.

V. SMALL WINDOW
IN THE FORWARD-SCATTERING GEOMETRY

In the forward-scattering geometry, f (8) is lobed
along the focusing direction at high energies (i.e., E 200
eV} and it falls off rapidly as 8 increases. However, un-
like the backscattering case, there are no sharp cusps in

~f(8)
~

or m resonances in its phase variation, therefore by
itself f (8) does not cause the small-window situation.
The small window in FS is caused by the presence of mul-

tiple focusing directions. In such systems, the diffraction
fringes in a (small} angular cone around each focusing
direction are dominated by the scattering of atoms situat-
ed along that particular direction. The small-window
characteristics of 4z (R ), where R is measured along a

focusing direction, have high-intensity contours of the
image and self-image streaked along the 45 axis in the
first quadrant [see Fig. 2(b)]. These characteristics are
borne out in multiple-scattering simulations of the
Cu(111) slab and we refer the reader to Fig. 3 of Ref. 7
for a diagram of 4z (R) for R along the nearest-neighbor

35.3' focusing direction.
In using the SWEEP in the FS geometry, the first step

is to determine R, the atomic position of the scatterer.
The orientation (i.e., 8,$) of R can be determined from
the ath focusing direction in k space. To determine the
magnitude, we substitute R;=R in Eq. (7) and evaluate
4z(R) along this focusing direction. The position of the
maximum, according to Eq. (16), gives R . In the follow-

ing, we present an improvement in the determination of
R

In previous works, before substituting in Eq. (7}, the
normalized g(k„k}are divided by a correction function
to remove the phase shift in the forward-scattering

geometry. ' ' The correction function has been previous-

ly defined as

f(k„,k.R )
p (k„k)= — - - g If(k„,k Rj)l

~f(k„,k k )I
(32)

where j sums over all the focusing directions (including
the ath direction) and a is the surface unit cell area intro-
duced so that p (k„k)is dimensionless. Note that the
division by p (k„k)achieves two improvements. (i) The
division by a sum of

~
f(k.R ) ~, each centered along a

focusing direction, removes the strongly forward-peaked
angular anisotropy in g(k„k}. In particular, the self-

image terms in Eq. (4) are decreased, thus reducing the
noise and artifacts due to these terms. (ii) The division by
the phase of f (8 ) removes the position error for images

along the ath focusing direction. This phase division also
shifts the self-image and the twin towards the (unphysi-

cal) —R~ direction.
An improvement to the determination of R+ can be

achieved by replacing the plane wave f(k„kR } given

by Eq. (21) with a curved-wave f(k„,k R,R, }. The
first-order curved-wave correction is given by

Ci+i(k R )=Ci ](k R )

+ C)(k„R~) (i) 1} . (34)

With the curved-wave (CW) correction, the function

p (k„k)becomes

1 f(k„,k R,R )
p (k„,k}=

If(k„,k k„R

X ~f(k„,k R,R )~

jWa
(35)

Note that in Eq. (35), we have introduced the curved-
wave correction only to the scattering factor along the
focusing direction for which images are reconstructed.
This process is permutated for other focusing directions,
excluding those related by symmetry.

In Fig. 15 we show Nz(R} for Cu(111) along the
nearest-neighbor (35.3 ) focusing direction (see schematic
geometry in Fig. 16). This system has been previously
analyzed in which 14 energies are used with E& =263 eV
and E&4=1836 eV. The energies are chosen to have
evenly spaced wave numbers giving a period of L =5.96

f(k„,k R,R )= . Q(2l+1)P((k R }
2ik

2I5
X(e

' "—1)C&(k„R ), (33)

where the polynomials C&(k„R ) are generated by

Co(k„R ) = 1

and
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FIG. 15. Plot of 4&(R) vs R along the nearest-neighbor 35.3'
focusing direction of a Cu(111) slab. The correct Cu-Cu
nearest-neighbor distance is marked by an arrow.

FIG. 17. Plot of 4~&(R) vs R along the next-nearest-neighbor
19.5' focusing direction of a Cu(111) slab. The correct distance
is marked by an arrow.

0
A. In Fig. 15(a), we show 4~+(R) where a full window

(8, =m. /2) and the plane-wave correction function given
in Eq. (32) are used. Figure 15(b) uses Eq. (32) also, but a
small window 0, =40' centered along the 35.3' focusing
direction is used. Figure 15(c) uses the same 8, =40'
small window and the curved-wave correction function of
Eq. (35). The peak at 2.65 A in Fig. 15(c) is most intense
and sharpest compared to that in Fig. 15(a) or 15(b). The
peak position of 2.65 A+0. 3 A is compared to the correct
value of 2.55 A (error =0.1 A). The artifacts at R ~ 1.5
A are due to the self-image terms [see Fig. 2(b)] and these
are smallest for Fig. 15(c). Therefore, using the curved-
wave correction function to divide g(k„k)is an improve-
ment over using the plane-wave form. Comparing the
full-window [Fig. 15(a)] and small-window [Fig. 15(b)] re-

sults, we note once again that increasing the angular win-

dow, in this case, does not improve resolution —rather,
the artifacts at R 1.5 A increase in intensity. With a
full window, all focusing directions (and hence self-

images) of the system are included.
The small-window process, on the other hand, em-

phasizes diffraction fringes of interest and cuts out many
focusing (i.e., self-image) terms. In Fig. 17, 4~+(R) for
Cu(111) is shown where P is the next-nearest-neighbor
focusing direction (i.e. , 19.5 in Fig. 16). The result using
the full-window, plane-wave correction function [Fig.
17(a)] again shows the dominance of the self-image terms
(at R ~2 A). The image position R& cannot be deter-
mined in this case. An appreciable improvement is ob-
tained when a small window is used, e.g. , 0, =40' in Fig.
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17(b). Finally, using 8, =40' and a curved-wave correc-
tion function, the result in Fig. 17(c) yields R&=4.3+0.3

A compared to the correct value of 4.42 A (error=0. 12
A).

In using the curved-wave function f(k„,k R,R ), we

need an approximate (or first determination) value of R
as an input to Eq. (33). This value can be obtained from
the plot in panel (b) of Fig. 15 or Fig. 17 where the plane
wave f(k„,k R ) is used. For this procedure to be valid,
the function f (k, k R, R ) must be slowly varying with

respect to R. This is indeed the case, as we show in Fig.
18 the phase and magnitude of f (k, k R,R) where R is

9QQ

0 6 00 0 0 0
FIG. 16. Schematic Cu(111) side view showing focusing

directions.
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FIG. 18. The phase (upper panel) and magnitude (lower

panel) off (k, k.R,R) for three values of R.
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varied by R =2.35, 2.'75, and 3.55 A. We notice an ex-
tremely low sensitivity of f (k, k R,R) to changes of —1

A in the variable R.
The self-image artifact in Fig. 17, panel (c), is still

slightly higher in intensity than the peak at 4.3 A. One
can further reduce the intensity of this artifact by either

I

increasing the energy range or decreasing the angular
window to 0, =30'—35'. After R is determined, we

form the corresponding image by using the phase factor
given in either Eq. (17) or Eq. (18}. Using Eq. (17},we
substitute R; =2R —R and the phase-shift correction
function into Eq. (7) to obtain

p (k„k)cos8

—ik„(2R —R ) ik„k.R

c„(R)=n y J'
n=1

dk„dk„„ (36)

Similarly, if we use Eq. (18}, we substitute R;=R into
Eq. (7) and obtain

4R (R)=2) g fn=1 p (k„k)cos8
dk„„dk„

F S
300 —1500
0 =45

C

18 energies

10)

(37)

Along the R parallel to R direction, the integrals in Eqs.
(36} and (37) correspond to lines (a} and (b), respectively
(see Fig. 19), which cut across the high-intensity contours
of 4R (R) at the narrow cross sections. More important-

l

ly, either cut, (a) or (b), avoids the self-image artifacts
near the origin which become strong in multiscatterer
systems. Images formed by such a cut, e.g., line (b), have
been obtained for the nearest- and next-nearest-neighbor
atoms of Cu(111}.

Finally, we demonstrate that images reconstructed
from single-energy holograms are of poor quality in sys-
tems such as Cu(111}where multiple-scattering effects are
strong. Figures 20(a) and 20(b) show radial intensity
plots along the 19.5' focusing direction for images recon-

structed from single-energy holograms. The image posi-
tion of 4.42 A cannot be recognized from either single-

energy plot, due to the high level of noise. By compar-
ison, Fig. 20(c) shows the result of the small-window
energy-extension process which uses Fig. 17(c} to deter-
mine R& and Eq. (37) to form the image. We see that in

Fig. 20(c), artifacts near the origin are mostly eliminated,
resulting in a radial intensity plot with a single sharp
peak with a FWHM of 0.56 A.

VI. ACCURACY, PRECISION, AND HALF WIDTH
OF THE RECONSTRUCTED IMAGE

In forming 3D images for direct viewing, there are
three quantities to consider: The precision of R, the
FWHM (or resolution) of the image, the accuracy of R
compared to the correct value. For multiple-energy im-

age reconstruction in the backscattering geometry, we
have shown that the integrals of Eq. (27) or Eq. (28)
determine R . The integrals also cut through the high-
intensity contours of 4R (R) at the narrowest cross sec-

tion; the images produced thus have the smallest half-
width in the emitter-scatterer direction. Either Eq. (27)
or Eq. (28) generates 3D images whose resolution (i.e.,
FWHM) is also the precision of R .

The accuracy of R in the backscattering geometry,
however, is usually =0.3 A. In the backscattering
geometry, the optimal energies used for reconstruction
are such that multiple scattering is strong even between

Cu (111j
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FIG. 19. +z (R) for a diatomic Si system, with the Si-Si dis-
I 0

tance R =2.35 A. Evenly spaced wave numbers are used and
the period is 9.7 A.

FIG. 20. Radial intensity plots along 19.5' from single-
energy reconstruction [panels (a) and (b)] and the 14-energy
SWEEP [panel (c)] for Cu(111); emitter at origin and scatterer
position marked by arrows; FWHM marked by the horizontal
bar in panel (c).



4168 S. Y. TONG, HUA LI, AND H. HUANG 46

nearest-neighbor atoms. Hence, the scattering factor
after multiple scattering depends on the crystal structure:
[R„Rz,. . . , R/v], where R; are the atomic coordinates.
The multiple-scattering renormalized scattering factor
t (k„kz) is very different from the single scattering
f (m 8)—. Simple correction functions, like those defined
in Eq. (32) or Eq. (35), are not expected to work. Without
phase-shift correction, the accuracy of the image position
is estimated to be =0.3 A. A more serious problem is
that in some materials the images may be split if energies
between 100 and 350 eV are used. This splitting, howev-
er, is eliminated if a small angular window is used, as we
have demonstrated in Fig. 11.

For multienergy reconstruction in the forward-
scattering geometry, the orientation of R is determine in
k-space by the focusing directions. ' ' The bond dis-
tance R is found by the line R; =R of 4z (R), examples

are given in Figs. 15 and 17 and Ref. 7. These two steps
define the precision of R . To form images for direct
viewing, either Eq. (36) or Eq. (37) is used. In the exam-
ples given in this and previous works, the precision of R
is around +0.3 A and the image FWHM is ~ 1 A. The
accuracy of R for the nearest-neighbor distance is good
because at high energies, the scattering of near-neighbor
atoms is dominated by the single-scattering factor f (8).
Therefore, the correction function based on single-
scattering factors [Eq. (32) or Eq. (35)j works rather
well. In the forward-scattering geometry, the accuracy
for the nearest-neighbor bond distance is estimated to be
about the same as the precision, i.e., =0.3 A. In using
the focusing direction to determine the bond direction
R, there may be an error of 58=3'—5'. This translates
to an error of R 58 in the direction perpendicular to the

0
bond: for a nearest-neighbor distance of R =2.5 A, this
error is =0. 1 —0.2 A.

VII. USE OF UNIFORM 6k IN THE SWEEP

The energy range used in the SWEEP determines the
quality of the FS curves shown in Figs. 15 and 17—
hence, the precision of R improves with a larger energy
range. The FS image FWHM given by Eq. (17) or Eq.
(18) also improves with a larger energy range. Similarly,
in the BS geometry, the image width and resolution im-
prove with a larger energy range according to Eq. (19) or
Eq. (20). Therefore, it is advantageous to use the largest
available energy range.

What about the number of energy points in a given in-
terval and is there an optimal way of choosing these
points? The answer is yes: whenever possible, choose en-
ergy points with a uniform wave-number interval. This
choice produces a period L =2m j(k, +, —k;) in the two-
dimensional contour plot of 4z (R );

t

4„+t(r)=4„(R)(see, e.g. , Fig. 19). The uniformly

spaced k„ensures that the exponential phase factor in

Eq. (10) cancels out contributions from the different ener-

gy points in the space between periods. Therefore, high-
intensity contours appear only at the predicted areas and
artifacts are eliminated in the space between. The choice
of a uniform hk is more critical to backscattering than
forward scattering. We shall discuss these scattering
geometries separately.

In the forward-scattering geometry (e.g. , Fig. 19), a
uniform Ak produces high-intensity streaks with a period
L. In the intervals between 4„(R)and 4z +L (R), the

intensities are canceled out by the energy sum. This pro-
duces very high-quality images along the cuts (a) or (b).
If arbitrary energy points are used, it introduces artifacts
at random places in 4z (R). This means artifacts could

t

appear along the (a) or (b) cuts. A large period L implies
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FIG. 21. Plot of 4& (R) for a diatomic Ni system: (a) uniform Ak with L =2.7 A, (b) uniform bE with no period. High-intensity
0

contours cutting across the R; = —R line constitute noise in the reconstructed image. Image position at R = —2.52 A.
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many energy points. In practice, it is desirable to at least
eliminate random artifacts in the distance between the
origin and R, the nearest-neighbor position. For this,
the smallest periods are the following: For cut (a) in Fig.
19,L;„&2R;for cut (b), L;„&R

The intensity on the R; =R line in Fig. 19 is not criti-
cally dependent on a uniform hk. Since the quality of
this line defines the precision of R, it is acceptable to use

energies with a nonuniform hk in the forward-scattering
geometry. However, it is important to avoid using ener-

gies that are not adequately spaced out in a given
range —too many energies with similar wave numbers
overemphasize a single phase factor and this leads to
ineffective cancellation in Eq. (10).

In the backscattering geometry, it is critical that E; are
chosen with a uniform hk and that the period L is large
enough. This is because the atomic position is deter-
mined by the R; = —R line of 4s (R }. We show in Fig.

21(a) a plot of 4~ (R) for the diatomic Ni system con-
l

sidered in Fig. 3(c), except here, we only use five energy
points in the range between 60 and 681 eV, with a uni-

form hk. The period for this system is L =2.7 A.
Furthermore, we have multiplied the square term in Eq.
(4) by R, to simulate a stronger self-image term. 20 From
Fig. 21(a), we see that the high-intensity contours of the
self-image and image are streaked along 45', as predicted
by Fig. 2(a). With the very small period, the streaks cut
across the R; = —R line, introducing significant artifacts
to the image reconstruction. The situation is worse if a
nonuniform hk is used: Fig 21(b) .shows 4z (R) for the

same energy range, but five energies with equal hE are
used. The streaks from the self-image and image
"periods" now cut across the R; = —R line at random R
values. This causes a breakdown in the determination of
R

We now illustrate these principles by actual image
reconstruction using Eq. (27) on the system considered
before: Ni(001) (1X1)-Cu. In Fig. 22, the left panel is
the same as that shown in Fig. 9; i.e., 17 energies in the
range 60—681 eV are used, Ak is uniform, and the period
L =10.7 A. The central panel uses five energies in the

!' ) 0 I I i I I ill ) j, )

I,.„& s

0
same range with a uniform Ak; the period is L =2.7 A.
We note strong artifacts midway between the origin and
image as well as just behind the image (inside the circle}.
Indeed, the two nearest-neighbor Ni images are almost
entirely obscured by the artifacts. The right panel uses
nine energies with a nonuniform hk in the same energy
range. With the amount of high-intensity random ar-
tifacts in the image ( —z) half plane, it is not possible to
determine where the real images are.

For energies chosen with a known period L, it is easy
to determine the positions of the artifacts. Referring to
Fig. 21(a), the artifacts of the self-image "periods" occur
at R = L/2—, L, —etc. , while those due to the image
"periods" occur at R = —R +L/2, —R +L/2,
—R +L /2, etc. To properly image the nearest-
neighbor atoms, it is desirable to keep the space between
the origin and the image free from these artifacts. To
achieve this, we need a period of at least L &2R . This
choice ensures that the first bright spot measured from
the origin is the true image. If we assume R =2.5 A,
this means a period of L ~ 6 A. Using an energy range of
60—320 eV, and an effective 6},=60', we obtain the fol-

lowing six energies for the backscattering geometry: 60,
96, 139, 191, 252, and 320 eV. Of course, reducing the
wave-number interval hk would further improve the im-

age quality and reduce artifacts due to multiple scatter-
ing.

VIII. CONCLUSION

We have elucidated the fundamentals of energy exten-
sion in image reconstruction and illustrated these princi-
ples with multiple-scattering simulations. The advan-

tages of using a small window in multiple-energy image
reconstruction are demonstrated. Deep cusps in the
backscattering factor cause split images and the splitting
is removed by the small-window process. Examples are
also given which demonstrate that (except for single-
scattering systems) image reconstruction using holograms
at single energies is unreliable. This makes the energy-
extension process an important and necessary step of the
technique.

In the forward-scattering geometry, a practical energy
range is 200-1200 eV. This yields an image resolution of
0.4—0.6 A by Eq. (17) or Eq. (18}. In the backscattering
geometry, an energy range of 60-350 eV yields an image
resolution of 0.7—0.8 A by Eq. (19) or Eq. (20). In the
forward-scattering geometry, energy points with a uni-
form Ak are preferred, but not essential. In the back-
scattering geometry, it is critical to use energy points
with a uniform Ak; this means special beam lines at
synchrotron-radiation facilities are needed.
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APPENDIX A: FULL WIDTH AT
HALF MAXIMUM OF IMAGES

The Fourier transformations used in the energy-
extension process involve numerical evaluations of the
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The w =FTHM indicated are averaged numerical widths over
four di6'erent energy intervals.

following four integrals. We list these integrals below
and express their numerical FWHM's as a function of
I'=2m /(k, „—k;„).The numerical FWHM is ob-
tained by averaging over the following four energy inter-
vals: 60—300 eV, 60—452 eV, 60—681 eV, and 263 —1836
eV. The integrals and their respective averaged
w =FWHM's are

corresponds to the FWHM of a single-energy Fourier
transformation. Its numerical width is more accurately
given by 1.2I, instead of (the commonly used value) I .

The cut given by Eq. (17) corresponds to the integral
[use 8, =0' and take the leading term in Eq. (10)]

maxI (r)= f k e '""dk (A5)
min

whose FWHM is half that of I2, i.e., 0.7I . The cut given

by Eq. (18) is simply I3, with w =0.91. The cut given by
Eq. (19) is also I, [again, take the leading term in Eq.
(10)], whose width is w =0.7I . Finally, the cut given by
Eq. (20) is I4 [use Eq. (13)] with width w =0.66I .

Comparing the single-energy width w, =1.2I to the

full windo-m energy-extended width of Eq. (20), i.e.,
w4=0. 66I, the latter is much narrower if the wave-

number range (k,„—k;„)is the same as the single-

energy's wave number. Using the largest energy in an en-

ergy range, the single-energy width is w
&

= 1.2I
=2.4m /k,„.The full-window energy-extended width

w~ is narrower than w, if l. 3n /(k, „—km;„)
(2.4m/k, „ork;„(0.45k,„.This is the condition
for improving the image resolution by energy extension if
a full window is in effect.

APPENDIX B: SCATTERING FACTOR INDUCED
IMAGE SPLITTING

In the backscattering geometry, the scattering factor
often has sharp cusps at which angles its phase goes
through a n change (see Fig. 4). We can divide the
Fourier transformation into separate regions at these
cusps:

I (r)= ke3

kr
sin

dk, w3 =0.9I
r/2

I, (r) = f e '""dk, w
1
= 1.21

min

I2(r) = f„ke '""dk, wz = 1.4I
min

(Al)

(A2)

(A3)

I(R)= f g(k)e'"' k dQ

f„y,(k)e'""k dQ,
1

+e' y ke'" k dQ
2

(B1)

(B2)

( r )
— k

—i ( 3k r /2 )
4

kr
sin

dk, w4 =0.66I
r/2

(A4)

sin (k,„—k;„)—
2

r/2

In Eqs. (Al) —(A4), r =(Re+ R ) and Ro is the bond dis-

tance; the —(+ ) sign corresponds to the forward-
scattering (backscattering) geometry, respectively. The
intensity plots of the four integrals and their averaged nu-

merical widths are shown in Fig. 23 for Rp =+1 A.
The integral

where Q is the full hemispherical window, Q& and Qz are
small windows, and the phase e' is from the m jump of
the scattering factor at a cusp. The integrals over dQ,
and dQ2 produce real-space functions shifted from each
other; this is due, in part, to the different slopes in the
phases of the scattering factors in the two regions. Thus,
we have

I(R)= I
A (R}—8(R}l

= [I & (R)I'+ I& (R }I'—21& (R }I I& (R) lcosk]'"

(B3)

The image position I(R) goes through a sharp minimum
at / =0, causing the image peak to be split.
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