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The collective excitations (perimeter magnetoplasmons) for a square-lattice array of quantum rings
are calculated in the presence of a perpendicular magnetic field B. These calculations are done for
thin rings whose width W is taken to be much smaller than the radius R and also satisfying W « LH
where LH = (hc/eB)'~ is the magnetic length. The Coulomb interaction between electrons produces
a depolarization shift and also couples those transitions for which Am is di8erent, where Am is the
difference between the angular momentum quantum numbers for the initial and final states. This
coupling induces a small gap between the Am and —Am modes as well as a large gap between the
states with different values of ~6m~. This gap decreases as ~Am~ increases. The collective excitation
energies are also a periodic function of the magnetic flux C = ~BR within a ring, with period
equal to one flux quantum Po = hc/e. Only those excitations having the smallest difference +fi in
angular momentum have appreciable dispersion due to strong Coulomb interaction effects on them.
There is a peak in the excitation energy spectrum for some value of the lattice constant a due to a
competition between screening and the modification in the electron density. Moreover, there is an
abrupt change in the slope of the dispersion curve as a function of 1/R when the magnetic flux C

is either an integer or half-odd integer multiple of the flux quantum Pp.

I. INTRODUCTiON AND SYNOPSIS

The outstanding achievements of semiconductor mi-
crofabrication technology have enabled researchers to
carry out detailed investigations of electronic microstruc-
tures in spatially confined two-dimensional electron gas
(2D EG) systems such as quantum wells, quantum wires
and quantum dots. Quantum rings are another inter-
esting low-dimensional electronic system which uniquely
exhibit dimensionality crossover from zero to one dimen-
sion. It has been suggested in Ref. 1 that quantum rings
may be fabricated with a technique that would use two
gates having disk shapes, where one gate could form a
quantum dot within the 2D EG and the other one would
deplete the central region of the dot. There have already
been several theoretical studies dealing with the ring
geometry, e.g. , perimeter magnetoplasmon, z Aharonov-
Bohm oscillations, the eigenstates of two particles on a
ring with magnetic flux, 4 the e8ect of edge-channel scat-
tering on the quantum electron transport in an annulus, s

as well as dynamic and coherent persistent currents in
mesoscopic rings. In this paper, we calculate the elec-
tronic collective excitations for a square-lattice array of
rings. This system is shown schematically in Fig. 1.
In our notation, R is the radius of the ring, W is its
width and a is the lattice constant of the square-lattice
array. An ambient magnetic field B is applied perpen-
dicular to the plane. There are two regimes of interest;
one is the thin-ring limit and the other is the wide-ring
limit. These two limits have several difFerent features.

In the presence of a magnetic field, we require that both
W « R and W « LH are satisfied for thin rings. Here,
L~ = (hc/eB) i/z is the magnetic length. For wide rings,
we have W R.

In this work, we restrict our attention to the thin-ring
limit. This means that the energy-level separation for ra-
dial motion of the electrons is very large. Therefore, for
thin rings, the radial motion is effectively frozen out, so
that only the electron angular motion contributes to the

Y

Planar Array of Quantum Rings

FIG. 1. Schematic representation of a planar array of
quantum rings. Here, R is the radius of a ring, W is its width,
and a is the lattice constant of the square lattice. A uniform
magnetic field B is applied in the direction perpendicular to
the 2D plane.
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dynamical response. We will show below that the angu-
lar momentum quantum number m for the highest occu-
pied energy level changes with magnetic field. Moreover,
we have found that the screening function in the effec-
tive Coulomb interaction is independent of the strength
of the magnetic field. The Coulomb interaction between
electrons produces a depolarization shift and also cou-
ples those transitions for which Am is different. Here,
6m denotes the difference between the angular momen-
tum quantum numbers for the initial and final states.
This coupling induces a small gap between the Am and
—b,m modes as well as a large gap between the states
with different values of ~Am~. This gap decreases as ~6m~
increases, which means that the single-particle contribu-
tions increasingly become more important for large val-

ues of ~Am~. The magnetoplasmon excitation energies
clearly show anticrossing as a function of the magnetic
field B Th.e magnitude of the gap between two modes
produced by anticrossing gives one a sense of the effects
due to the Coulomb coupling on these modes. The col-
lective modes are also a periodic function of the magnetic
flux 4 = vrBR~ within a ring, with period equal to one
flux quantum $0 = hc/e. Due to nonlocal efFects, the
quantum magnetoplasmons have dispersion as a function
of the wave vector in both the x and y directions. The
dispersion in these two directions is also periodic, with
period equal to the reciprocal-lattice vector G = 2vr/a.
This may be interpreted as being due to the square-lattice
structure within the plane. Only those modes having the
smallest difference kh in angular momentum have ap-
preciable dispersion due to strong Coulomb interaction
effects on them. When the lattice constant a is large, the
depolarization shift is negligible because of a decrease in

the average two-dimensional electron density nzD which
is proportional to 1/az. Moreover, the Coulomb interac-
tion between electrons on different rings decreases with

a, for sufficiently large a. As a result, the excitation
energy spectrum of the collective modes could be well

approximated by ignoring the Coulomb interaction and
using the energy eigenvalues of a single particle on a ring.
Therefore, the excitation energy decreases as a increases.
On the other hand, when a is reduced, the screening is

appreciable although n2D is increased. Therefore, the ex-
citation energy again decreases in the limit of small a as
the lattice constant is reduced. In our numerical calcu-
lations, we have found a peak in the excitation energy
spectrum for some value of the lattice constant a due to

a competition between screening and a modification in
the electron density. Our calculations show that when
the radius of the ring R is small, the excitation energy is
a linear function of 1/Rz since the single-particle kinetic
energy is so large that it dominates the small Coulomb in-
teraction between electrons. This reproduces the single-
particle-like feature on a ring in the excitation spectrum.
When R is large, the single-particle kinetic energy and
the Coulomb interaction are comparable. In this limit,
the oscillations of the excitation energy as the magnetic
flux C varies have been calculated as a function of R. For
this, B is fixed and C changes with R. This produces an
abrupt change in the slope of the dispersion curve as a
function of 1/R when the magnetic flux C is either an
integer or half-odd integer multiple of the flux quantum
$0. When R is further increased, the "kinks" gradually
develop into maxima and minima. The amplitude of the
oscillations of the magnetoplasmon energies increases due
to the quenching of the single-particle kinetic energy. In
this regime, the Coulomb interaction becomes consider-
ably more important and leads to significant shifts in the
locations of the maxima and minima away from their
positions that correspond to flux quantization. This en-
sures that flux quantization efFects cannot be ignored in
this case.

The rest of this paper is organized as follows. In Sec.
II, we derive the dispersion relation for a square-lattice
array of quantum rings. In our model, we include the
infinitesimal but finite thickness of the 2D EG inversion
layer. In Sec. III, we present numerical results for the
single-particle energy and the perimeter magnetoplasmon
excitation energies as functions of magnetic field, wave
vector, lattice constant, and the radius of the ring.

II. MODEL FOR QUANTUM RINGS
AND FORMALISM

In this section, we derive the dispersion relation for
plasma oscillations in the random-phase approximation
(RPA) when a uniform magnetic field B is applied per-
pendicular to the array of narrow quantum rings. To
formulate the problem mathematically, let the plane con-
taining the rings coincide with the xy plane, and let the
magnetic field be parallel to the z axis. The Hamiltonian
for an electron of effective mass m* on a ring is, making
use of the symmetric gauge A = &B x r for the vector

potential, given by

f d 1 dz d2
'H =— p—+- +

2m* p dp ( dp p2 d$2 dz2

jehB d e~B2p2. —+ . , + V.~(p) + U.~( ) .

Here, p, P, z are cylindrical polar coordinates of an elec-
tron and V,ir(p), Ue~(z) represent the effective poten-
tial in the radial and axial directions, respectively. The
single-particle eigenstates for an isolated ring are

~imP

2~
(2)

where R„(p) is the radial wave function for electron
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motion in the effective potential V,ff(p). Also, n (=
1,2, 3, . . .) and rn (= 0, +1,+2, . . .) are the radial and an-

gular momentum quantum numbers, respectively. (()(z)
is an axial electron wave function, representing the quan-
tum confinement at the heterojunction for z & 0.

We now consider a square-lattice array of quantum

rings, shown schematically in Fig. 1. We take account
of the screening due to the background medium by as-
suming that the array is immersed in a material with
effective dielectric constant e, . The single-particle Bloch
wave functions for the ring array have the periodicity of
the lattice and are given by

~v & = ~k„k„;n, rn &

) exp i,k ja+ikyj a —i —A R1,1 4'„8 (p —R~~ ),
(NN„) i (3)

where R1~ = (je + j'e„)a is a 2D lattice vector. We
assume that there are (N~ x N„) rings on the plane, with
periodic boundary conditions. We take (()(z) as a varia-
tional wave function of the form

1
(0(z) = ze ') ' for z&0

and is zero for z ( 0. L, is the thickness of the 2D layer.
In our model, we assume that the electrons are in the
lowest energy level associated with confinement in the z
direction since the confining potential in this direction is

strong.
We now include the many-body effects due to the

Coulomb interaction between electrons on the same ring
and on different rings. When an external potential of the
form

Vext (
. t) V ( q

.~) e [ (q~*+q„y)'j—

is applied, the perturbation in the electron density in-
duces a Hartree and exchange-correlation potential. In
this paper, we only include the Hartree self-consistent-
field potential since the contribution due to exchange and

correlation produces a small correction. These effects
could be incorporated into our calculation with the use
of the local-density approximation (LDA).s The induced
Hartree potential is a solution of Poisson's equation

VH (q y, z) = dz'e '*"~' * ~«(q y, z'),
spry

where q» ——(q~ + qy), and the induced electron den-1/2

sity in linear-response theory is given by~0

«(q*y z) = l(o(z)l'): (v V'"(p') v')
v, v'

x(v'~exp(iq p')~ v')

„&o(E.) —
&o (E. )

h(d —(E„—E„)

where v is a composite index for the electron eigenstates,
f()(E) is the Fermi-Dirac statistical function, and E„ is
the single-particle energy. Also, V"' = V'"'+ VH is the
total perturbation.

Equations (6) and (7) jointly give

&"(a,) fd~ &"(~" *)=-i(0(*)i'

2%6
I(q „)) ) V'"(q') ( v ~exp( —iq' p')~ v' & ( v'~exp(iq p')~ v &

&sexy Ru —(E„—E„)
1

where the screening factor, due to the finite thickness of the 2D layer, is

(q „)= dz dz'l(()(z)l l(0(z')I e

8 + Qq~y L, + 3 (q y L,)
2

8 (1+q.„L,)'

For the tight-binding wave function in Eq. (3), the matrix elements in Eq. (8) have been calculated as
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& v' Iexp (iq p')
I
v )= b (k' —k —q —tt ) 6 (I"„' —k„—q„—l'G) A„.„(q),

where G = 2'/a is a reciprocal-lattice vector and l, l' = 0, +1,+2, . . . include the effects due to umklapp scattering.
The form factor is defined by

A„,„(q)= d'P' " @.",' (P')@", (P')

where @„, (p ) is the single-particle eigenfunction given in Eq. (2). The modes of collective excitation are determined
from the self-sustaining condition, which corresponds to setting V'"' = 0. Substituting Eq. (10) into Eq. (8), a
straightforward calculation gives

v" (lq+«, ~ I) =U(lq+«, ~ I) ).).11, ;, ( )A, ', , (q+«, i)
n' m'n m

x ) VH (Iq+ G, , I) A„', , „(q+G, ,j ) (12)

where the Fourier transform of the Coulomb potential is

U (q*w) = 27''8 I (q,„),
2 2 1/2

and Iq+ Gj j I

= (q + jG) + (q„+j'G) . The polarization function II„,„(u) is given by

( )
fo(E, ) —fo(E, )» —(E~,m —E~,m)

' (14)

The solutions corresponding to Eq. (12) can be obtained by solving the following secular equation:

Det 6~& m&agb~ma) II~ m~m(ld))U(lq+Gjj l)A~m~m(q+Gjj)A~i g.ag(q+Gjj):0 (15)

Since we are only concerned with the thin-ring limit

(W « R and W « LH), we approximate the electron-
density profile in the radial direction by the Dirac b

function

O

This means that only those transitions between energy
eigenstates with the same radial quantum number and
different angular momentum quantum numbers are al-
lowed. With this simplifying assumption, the single-
particle energy levels are

2-2m*a2 2m'
m*R~~c +

Q
C O

LLJ

4
O
tW

Lg

O(Q

F

0.0 1.0 2.0
Magnetic Field B(T)

3.0

where u, = eB/m'c is the Larmor frequency. The energy
eigenvalues in Eq. (17) are shown in Fig. 2. It is clear that
the angular momentum quantum number for the highest
occupied state varies with the magnetic flux 4 inside the
ring. These changes in the quantum number occur at the
points of intersection of the single-particle energy levels

plotted in Fig. 2. In this approximation, the dispersion
relation in Eq. (15) is simplified and the result is

FIG. 2. Calculated single-particle energy spectrum as a
function of magnetic field B Here, 2 Ry.

' = h /(m as ) =
11.66 meV is the energy scale. The parameters used in the
calculation are m' = 0.067m„R = 2.58az, where az ——

h e, /m"e = 97.01 A is the length scale. The levels can
be labeled by the angular momentum quantum number m.
Eleven energy levels around B = 0, from the lowest to the
highest, are labeled by m = 0, +1,+2, . . . , +5, respectively.
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Det Sg~,gr, —gg~, o(v) ) U (~q+ Gj,j' I) Asm, p (q+ Gjj') ~at, o (q+ Gj,j')

where 6m and b,t (= +1,k2, . . .) stand for the changes
of angular momenta for the transitions between initial
and final states. Also, the form factor in Eq. (18) is

1
p(q) dP e-~Em4eici R

2F 0

=[1-~(lql)j(i) "e ' ""~~~ i(lql&)
(»)

&m —&m+6m
X~~,o( ) 2). ~ (@ @ )

+ &m &m —Em
hu —(8 —E ~ )

(20)

In our notation, n is the average areal density of energy
level m and we define the function 8(q) in Eq. (19) by

where J~(z) is a Bessel function of the first kind and the
irreducible polarizability at zero temperature is

been maintained. Therefore, the collective excitations
have been classified by the change in angular momentum.
The coupling between these modes has been excluded.
For simplifying our calculations, we have assumed that
there are two electrons on each ring. This means that
only the lowest energy level is occupied. o Although this
is a simplification, we believe that the qualitative features
obtained in our calculations would not be affected when
more than one level is occupied. For this simple model,
we have

'0 ifm) 0
=

C
2a ' if (2/m/ —1) & +, & (2/m/+1)

, a if
+

——(2/rn/ +1) .
(22)

A detailed investigation with numerical results of perime-
ter magnetoplasmon excitation energies as functions of
magnetic field, wave vector, lattice constant, and radius
of the ring is presented in the next section.

tan ~ qqq- if q & 0

8(q) = & 2sgn(q„) if q = 0

rr+tan i P ifq (0,
q

(21)

where sgn(x) is the standard sign function. In con-
trast to previous work, z our calculations show that only
the global lattice symmetry is retained for the quan-
tum ring array. Therefore, the collective excitations may
be classified by their wave vectors q = (q, q„). The
modes are periodic in the x and y directions with pe-
riod G = 2rr/a. The perimeter magnetoplasmon modes
with different 6m are coupled to each other. In Ref. 2,
the local circular symmetry for the ring superlattice has

III. NUMERICAL RESULTS

Figure 3 is a plot of the determinant of the dielectric
matrix defined by Eq. (18). Since we are primarily inter-
ested in the low-energy magnetoplasmon modes, we have
truncated this determinant into a (4 x 4) determinant.
This means that only the modes with b, rn = +1,k2 are
included. In our calculations, we have used the following
parameters:

e, = 12.5, m* = 0.067m„

where rn, is the bare electron mass and

a = 10.0a&, L, = 0.52a&, R = 2.58a&, q~ = q„= —,B = 1.0 T.
2G

Here, a& = 5 e, /m'ez = 97 01 A. an. d 2 Ry'
5 /(m'ag) = 11.66 meV are the effective Bohr ra-
dius and twice the effective Rydberg energy, respectively.
These are the length and energy scales used in all the fig-
ures. The arrows in Fig. 3 indicate the positions of the
zeros of the determinant. These correspond to the exci-
tation energies of the perimeter magnetoplasmon modes.
The four vertical straight lines in the figure are located
where the determinant has singularities which are at the
single-particle energies.

It is instructive to compare the single-particle energy in
Fig. 2 plotted as a function of magnetic field with the B

dispersions of perimeter magnetoplasmon modes in Fig.
4. The four curves, from the lowest to the highest one,
represent the coupled modes with Am = —1, +1,—2, +2,
respectively. The parameters used in the calculation are
the same as in Fig. 3, except that the magnetic field
varies here. The results in Fig. 4 show that whenever
the magnetic flux C = vrBR~ inside the ring is an inte-
ger multiple of the fiux quantum Pp = hc/e, there is a
small gap between the Lm and —Lm modes due to the
coupling between them. On the other hand, whenever
the magnetic flux C is a half-odd integer times the flux
quantum Pp, there is a large gap between the Am and
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hu) / (2Ry )

—(Am+ 1) modes due to the Coulomb coupling. This
gap decreases as ~4m~ increases, indicating that in this
limit the Coulomb coupling becomes more and more im-

portant. The dispersion curve clearly shows anticrossing.
The magnitude of the gap between the magnetoplasmon
modes produced by anticrossing is a measure of the ef-
fects due to the Coulomb coupling on these modes. The

FIG. 3. The curve for the determinant of the dielectric
matrix as a function of energy. The energy is in units of 2
Ry'. The parameters used in the calculation are e, = 12.5,
m' = 0.067m„a = 10.0 a~, L, = 0.52 az, R = 2.58 az,
q = q„= m/2a, and B = 1.0 T. The four arrows indicate
the zeros of the determinant, corresponding to the energies of
the magnetoplasmon modes. The four vertical straight lines
denote the positions of the singularities of the determinant,
corresponding to the single-particle energies.

excitation energy of the magnetoplasmons is a periodic
function of the magnetic flux O with period equal to Pp.
By comparing the single-particle spectrum in Fig. 2 with
Fig. 4, it is clear that the depolarization shift is not neg-
ligible.

Figure 5 is a plot of the excitation energies of the mag-
netoplasmon modes for 6m = 1 and Am = —1 as a
function of wave vector. Here, the parameters used in
the calculation are the same as those in Fig. 3, except
that q~ and q& are varying. The points I', X, and M in
Fig. 5 are defined as the following three symmetric points
in wave-vector space: (q~, q&) = (0, 0), (—,0), (-, —),
respectively. The magnetoplasmon dispersion in both the
z and y directions is periodic, with period equal to the
reciprocal-lattice vector G = 2m/a. This is a consequence
of the square-lattice structure within the plane. However,
the dispersion relation from I' to X and I' to M is asym-
metric. This implies that only the global lattice symme-
try is retained for the quantum ring array, while the local
circular symmetry of a single ring is lost. Therefore, the
collective excitations could be classified according to their
wave vectors q~ and q„and modes with different Am are
coupled to each other. In contrast, Ref. 2 showed that the
local circular symmetry for a ring superlattice is main-
tained. Therefore, the excitations have been classified
by the value of Am. Furthermore, we have found that
only modes with Am = +1 have appreciable dispersion
as a result of the strong nonlocal Coulomb interaction
between electrons. This confirms that perimeter magne-
toplasmons with large ~Am~ possess more single-particle
contributions. For the Arn = 1 mode, the dispersion
for the excitations between X and M is weak, but the
dispersion for the 6m = —1 mode is strong. Also, the
asymmetry from I' to X and I to M is stronger for this
mode.
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FIG. 4. The perimeter magnetoplasmon modes for Am =
+1,+2 as a function of magnetic field. Energy is measured
in units of 2 Ry*. The parameters used in the calculation
are t, = 12.5, m' = 0,067m„a = 10.0 az, L, = 0.52 az,
R = 2.58 a~, and q = q„= vr/2a. The four modes, from
the lowest to the highest, are related to the transition with
Em = —1, +1,—2, +2, respectively.

FIG. 5. The wave-vector dispersion for perimeter magne-
toplasmon modes with Am = +1. The energy is in units of
2 Ry'. The parameters used in the calculation are e, = 12.5,
m = 0.067m„a = 10.0 az, L, = 0.52 az, R = 2.58 az,
and B = 1.0 T. The symbols I', X, and M correspond to
the points (q, q„) = (0, 0), (0, —), and (—,—) in wave-vector
space.



NONLOCAL PERIMETER MAGNETOPLASMONS IN A PLANAR. . . 4153

O
P)
O I I I I I I I I

O

U)
P)

C O

~
o

~~

O
0
X

LLj
O
O
P)
O

5.0
I I I I I I I

10.0 15.0 20.0 25.0

Lattice Constant / (aB )

O

O

O

Ch
Ch

FIG. 6. The perimeter magnetoplasmon excitation energy
as a function of the lattice constant a for Am = +1. The
energy is in units of 2 Ry', and the lattice constant a is in
units of az. The parameters chosen in the calculation are
~, = 12.5, m' = 0.067m„L = 0.52a~, R = 2.58a&, q
q„= n /2a, and B = 1.0 T.

Figure 6 shows plots of the excitation energies as a
function of the lattice constant a for the b,m = 1 and
h.m = —1 modes. In our calculations, the parameters
are the same as those in Fig. 3, but here the lattice con-
stant a is varying. In the limit that a becomes large,
both the Coulomb coupling and the depolarization shift
are negligible because of a decrease in the average two-
dimensional electron density n2D = 2/a . Furthermore,
for this range of density, the Coulomb interaction be-
tween electrons on different rings decreases as a increases.
Therefore, for sufficiently large a the excitation energy
decreases as a increases. As a result, the excitation en-

ergy spectrum could be well described by the energy
eigenvalues of one electron on a ring. However, when
a is reduced, the screening greatly increases although
nzD is increased also. This can be clearly seen from
the reductions of the form factor A(q+ Gz & ) and the
Coulomb potential U(Iq+ G~~ I) in Eq. (18) for fixed

q as a increases. Therefore, the excitation energy again
decreases in the limit of small a as the lattice constant
is reduced. In our calculations, we have found a peak
in the excitation energy spectrum for a value of the lat-
tice constant a due to a competition between screening
and the changes in the electron density. The energy of
the perimeter magnetoplasmons as a function of the ra-
dius R of a ring is shown in Fig. 7, for the hm = +1
modes, respectively. All the parameters in the calcula-
tion are the same as those used in Fig. 3, except that R
is varying. When the radius of the ring R is small, the
excitation energy is a linear function of 1/Rz since the
single-particle kinetic energy is so large that it dominates
the small Coulomb interaction between electrons. This
results in the single-particle-like behavior in the excita-
tion spectrum for small values of R. As R becomes large,
the single-particle kinetic energy and the Coulomb inter-

O

o
CC

I I I I I I I

O
M

O~ n—
O

UJ

O
0

b3
O

0
IM

O
V
X

UJ

I I

0.05 O.j 0
I I I I I

0.15 0.20

(R / aB )

O
0.25

FIG. 7. The perimeter magnetoplasmon excitation energy
as a function of 1/R for Ern = +1, where R is the radius
of the ring. The energy is in units of 2 Ry', and the radius
R is measured in units of a~. The parameters used in the
calculation are t., = 12.5, m' = 0.067m„a = 10.0 az, L, =
0.52 as, q~ = q„= ~/2a, and B = 1.0 T.

IV. CONCLUDING REMARKS

In summary, we have calculated the excitation energies
of perimeter magnetoplasmons in a 2D array of narrow
quantum rings. We have computed the single-particle
energies as well as the collective excitation energies as
a function of magnetic-field strength. The effect due
to magnetic flux quantization on the magnetoplasmon
modes corresponds to the oscillations as the magnetic
field varies. Nonlocal effects due to the long-range part
of the Coulomb interaction are shown in the wave-vector
dispersion of the magnetoplasmon modes. The Coulomb
coupling between the modes is responsible for the anti-
crossing. The global square-lattice symmetry is retained,
whereas the local circular symmetry for a single ring
is lost. This is evidenced in the periodic nature of the

action are comparable. The oscillations of the excitation
energy as a function of the magnetic flux O have been
calculated as a function of R. Here, the magnetic field
is fixed and the flux changes with R. This produces an
abrupt change in the slope of the dispersion curves as a
function of 1/Rz when the magnetic flux C is either an
integer or half-odd integer multiple of the flux quantum
Pc = hc/e. Whenever the slope increases abruptly for
the b,rn = 1 mode, the slope for the b,m = —1 mode is
decreased for increasing R. When R further increases,
these "kinks" gradually develop into well-defined max-
ima and minima. The amplitude of the oscillations in
the dispersion curve is enhanced because of the quench-
ing of the single-particle kinetic energy. In this case, the
Coulomb interaction becomes more important and leads
to significant shifts in the locations of the maxima and
minima away from the positions that correspond to flux
quantization.



4154 DANHONG HUANG AND GODFREY GUMBS 46

wave-vector dispersions in both the x and y directions.
When the excitation energy is plotted as a function of
the lattice constant, the competition between the screen-
ing and the modification of the areal electron density is
demonstrated. The excitation energy as a function of
the radius of the ring shows two distinct regimes. The
single-particle kinetic energy dominates the Coulomb in-
teraction between electrons in the small R regime. The
oscillations of the excitation energy occurring for large
values of R are due to the magnetic flux quantization.

In this paper, we confined our attention to thin rings,
where the electron radial motion is effectively frozen out.
In the wide-ring limit, the quantization energy for ra-
dial and angular motions is comparable. Therefore, we
expect the coupling between the electron radial and an-
gular motions would be strong. This gives the anticross-
ing between the cyclotron and edge modes. Also, in this
limit, the screening function should depend sensitively
on magnetic field when the radial electron motion is in-
cluded. Also, the magnetic switch of the highest occupied
state obtained for thin rings will not apply to wide rings.
As a matter of fact, the single-particle energy spectrum
is quite different. The existence of two edges in a wide
ring introduces scattering along the edges. This gives the
edge-magnetoplasmon modes in this system which is fa-

vored by a low magnetic field. At high magnetic field,
these edge modes will be effectively suppressed, leaving
only the cyclotron modes. Calculations for wide rings are
in progress.

Successful fabrication of the 2D square arrays of quan-
tum dots and antidots (hole punching) has been reported
recently. ' s If one could further punch a hole at the cen-
ter of each quantum dot in this 2D square array, we will
obtain a quantum ring array which is proposed in this
paper. Using conventional far-infrared optical absorp-
tion techniques in the presence of an external magnetic
field perpendicular to the array, as used in the study of
quantum dot arrays, iz we expect to see some features
predicted in this paper. Although there is still some dif-
ficulty at the present time in the fabrication of materials
with the geometry discussed here, we hope that this work
will stimulate experimental work which would study non-
local perimeter magnetoplasmon excitations in a planar
array of quantum rings.
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