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A unitary transformation is found to diagonalize the 6 x 6 Luttinger-Kohn Hamiltonian into two
3 x 3 blocks, making it more efficient to calculate the quantum-well subband structure. Using this
formulation, we study systematically the strain-dependent coupling between the heavy-hole bands,
light-hole bands, and the spin-orbit split-off bands for a strained quantum well and its bulk limit.
We show how the strain deforms the constant energy surface in k space and compare the subband
structure calculated with and without the split-off bands. Our results clearly demonstrate that
the spin-orbit coupling has significant effects on the band structure especially for highly strained

quantum wells and, therefore, cannot be ignored.

I. INTRODUCTION

The epitaxial growth of semiconductor layers, which is
the key to a variety of important electronic and optoelec-
tronic devices, had long been limited to lattice-matched
materials, because the strain and dislocations associated
with lattice mismatch are detrimental to device perfor-
mance. Recently, scientists and engineers began to re-
alize that strain could be a powerful tool for modifying
the band structure of semiconductors in a beneficial and
predictable way. Since its introduction,’™3 this concept
of strained-layer epitaxy has opened an entirely new di-
mension in band-gap engineering and device design. Now
its application can be found in many major categories of
semiconductor devices.

For example, using a strained-layer active region, semi-
conductor lasers, modulators, or photodetectors can be
tuned to a desired operation wavelength with great flex-
ibility. For quantum-well lasers, the splitting of the
valence-band edge at £k = 0 and the lowering of the in-
plane effective mass caused by strain could lead to a de-
crease of the density of states and the reduction of thresh-
old current.®® The application of a strained-layer het-
erojunction to the modulation-doped field-effect transis-
tors (MODFET), for instance, using In;_,Ga,As rather
than GaAs as the conduction channel, has resulted in sig-
nificantly improved transistor performance,® 8 primarily
due to a larger band offset and better carrier confine-
ment. The use of a strained, graded-band-gap base in
a heterojunction bipolar transistor (HBT) also has im-
proved the base transport factor and hence the current
gain.® Recent surveys on the physics and technology of
strained-layer superlattices can be found in Ref. 10.

The effect of strain on the band structure of semicon-
ductors is well understood from the early works of Bir
and Pikus,!! among others.!?271° For an extensive review
on strained-layer semiconductor superlattices, please see
Ref. 20. The isotropic (hydrostatic) component of the
strain shifts the energy gap; the anisotropic (uniaxial or
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shear) component of the strain lifts the degeneracy of the
valence bands at k = 0.

Strain introduces additional coupling between the
heavy-hole (HH) bands, light-hole (LH) bands, and the
spin-orbit split-off (SO) bands.?! Such coupling is often
ignored, for example, in the calculation of quantum-well
subband energies,?? 24 exciton absorption,227 and gain
spectra.?8:2% This is justifiable for the lattice-matched
system such as Al;Ga;_;As/GaAs. But for highly
strained quantum wells, the neglect of the coupling be-
tween the HH, LH bands and the SO bands could lead
to an error of several tens of meV in energies and up to
30% in effective masses.

The purpose of this paper is to illustrate how the strain
modifies the valence-band structure of semiconductors,
with the emphasis on the coupling between the HH, LH
bands and the SO bands. Our formulation is based on
the Luttinger-Kohn Hamiltonian3?:3! and the envelope-
function approximation. In Sec. II we derive the analyt-
ical formulas of the band-edge energies and the effective
masses for a strained bulk semiconductor with or without
the SO coupling, and illustrate systematically how the
strain deforms the constant energy surface in k space.

In Sec. III, combining the quantum-size effect with the
strain effect, we concentrate on the subband structure
calculations for strained quantum wells. Under the ax-
ial approximation,32:33 a unitary transformation is found
to diagonalize the 6 x 6 Luttinger-Kohn Hamiltonian
into two 3 x 3 blocks. With this simplified Hamilto-
nian, we then calculate the subband structure of an
In;_,Ga,As/InP strained-layer quantum well with and
without the SO coupling. Finally, conclusions are given
in Sec. IV.

II. STRAINED BULK SEMICONDUCTOR

Based on the theory of Luttinger-Kohn3%:3! and Bir-
Pikus,!! the valence-band structure of a strained bulk
semiconductor can be described by the following 6 x 6
Hamiltonian in the envelope-function space:
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where the wave vector k is interpreted as a differential
operator —iV; ¢€;; is the symmetric strain tensor; i,
72, and 73 are the Luttinger parameters; a,, b, and d
are the Bir-Pikus deformation potentials; A is the spin-
orbit split-off energy, and the basis function |j,m) de-
notes the Bloch wave function at the zone center (see the
Appendix). Here the energy zero is taken to be the top
of the unstrained valence band.

The central issue of this paper is to illustrate how
the strain modifies the valence-band structures, including
the band-edge energies and the effective masses, which
are among the most important parameters characteriz-
ing any semiconductor materials. We focus on the ef-
fects of the coupling between the heavy-hole (|3, £3))
bands, light-hole (|$, +1)) bands, and the split-off bands
(|3,£3)). This coupling is commonly considered to be
unimportant; therefore, it is neglected in many calcula-
tions. For most III-V semiconductors, the split-off bands
are several hundred meV below the heavy- and light-hole
bands. Since the energy range of interest is only several
tens of meV, it is usual to assume that the split-off bands
can be safely ignored. In other words, the band struc-
ture of the heavy- and light-hole bands is approximately
described by the 4 x 4 Hamiltonian

Dl

Rt 0 P-Q S
0 Rt st P+

I NI I NI

,—3)
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A number of previous calculations on the transition en-
ergies of strained quantum wells were based on such an
approximation.?2724 In this paper it is shown, analyti-
cally and numerically, that the neglect of the split-off
bands can lead to significant errors in both the band-edge
energies and effective masses for highly strained semicon-
ductor materials. In this section we deal with the bulk
semiconductor, and the effect of quantum confinement
in a strained-layer quantum well is discussed in the next
section.

The Hamiltonian H in Eq. (1) is written for an ar-
bitrary strain. For simplicity, in this paper we restrict
ourselves to the special case of a biaxial strain, namely,

€zz = €yy # €22,

€xy = €yz = €2 = 0, (4)

thus
R. =8 = 0,

which essentially covers two of the most important
strained systems: (i) a strained-layer semiconductor
pseudomorphically grown on a (001)-oriented substrate
and (ii) a bulk semiconductor under an external uniaxial
stress along the z direction. For the case of the lattice-
mismatched strain, we obtain

_ _ ag—a
€xx = €yy = 2 ’
(5)
_ 2C42
€2z = — Cu €zz

where ag and a are the lattice constants of the substrate
and the layer material, and C;; and C;5 are the stiffness
constants. For the case of external uniaxial stress, we
have
€ e = C11 + Ci2 T
e vy 0121 + C11C12 — sz ’

€172 = — Cu T
= C% +CuCi2—-C% "’
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where T is the external stress along the z axis. The
results and conclusions presented in this paper can be
easily generalized to other crystal orientations or stress
directions. Wherever numerical calculations are needed,
we exemplify the ideas on one of the most technologically
important systems: strained In;_,Ga,As on InP. High-
quality and highly strained samples of this system have
already been grown and widely studied for optoelectron-
ics applications. All of the material parameters3* used
are listed in Table I, where m} is the electron effective
mass and mg is the free-electron mass. All of the parame-
ters for In;_Ga,As are taken as the linear interpolation
of those of InAs and GaAs, except that for the strained
energy gap,>* Ey(In;_,GazAs) = 0.324 + 0.7z + 0.4z2 +
(@c — ay)(€zg + €yy + €22) is used, where a. is the hy-
drostatic deformation potential for the conduction band.
For the conduction- and valence-band offsets, we assume
AE. = 0.36AE, and AE, = 0.64AE,.%

For the Hamiltonian in Egs. (1) or (3), the valence-
band structure of a bulk semiconductor is determined by
the algebraic equation

det [Hij(k) — 65 E] =0, (7

where k is now interpreted as a real vector and the enve-
lope functions are simply taken as plane waves. For the
4 x 4 Hamiltonian, the solutions of Eq. (7) are simply

Egy(k) = —Pc — Py
—sgn(Qe) \/(Qc + Q) + B> + ISkl?

(8)
Erg(k) = —P. — Py

+szn(Qe) v/ (Qc + Qu)2 + [Rul® + ISKl?

for the heavy holes and light holes, respectively. Each
of the solutions is doubly degenerate. Note that it is
important to include the sign factor sgn(Q.) in front
of the square root, because Q. could be either negative
(compressive strain) or positive (tensile strain) while the
square root is conventionally taken as positive. For a fi-
nite and fixed strain, the small-k expansion of the above
dispersion relation can be written as

TABLE I. Material parameters.

Parameters GaAs InAs InP
a (&) 5.6533 6.0584 5.8688
Eg (eV) 1.424 0.36 1.344
" 6.85 20.4 4.95
Y2 2.1 8.3 1.65
3 2.9 9.1 2.35
C11 (10! dyn/cm?) 11.879 8.329 10.11
C12 (10! dyn/cm?) 5.376 4.526 5.61
ac — ay (eV) -9.77 —6.0 —8.6

b (eV) —-1.7 -1.8 -2.0
ms/mo 0.067 0.027 0.077

CALVIN YI-PING CHAO AND SHUN LIEN CHUANG 46

EHH(k) ~ —P. ‘—Qc

52
- (2—mo> [(m +12) kﬁ +(m —272) k3],

(9)
Ern(k)~ —P.+ Q.

il kf 272) k3
~ (2 ) (o =)+ (o + 2m) KD,

where k; =k, and kj = ,/kZ + kg, from which we im-

mediately obtain the band-edge energies

EHH(O) =—-P - Qe )
(10)
Erp(0)=—-P+Q,

and the effective masses parallel (||) or perpendicular (L)
to the zy plane

MHHL 1 ™My, _ 1
- b - )
mo Y1 — 272 mo Y + Y2
(11)
MIH,1L 1 mLy,| __ 1

me N+’ mo Nn—"7

These are the well-known results of Hensel and Feher.!3

If the split-off bands are included as in the 6 x 6 Hamil-
tonian, the E-k relation determined by Eq. (7) becomes
a sixth-order polynomial of E, which apparently can be
decomposed into two identical cubic polynomials because
of the symmetry property of the Hamiltonian. However,
an attempt to expand and factor directly the determi-
nantal equation directly is tedious. The details are given
in the Appendix and Eq. (7) is finally reduced to

{E(K)® = 3A(K) E(K) — p(k) + A[E(K)? = A(K)]}* =0,

(12)
where

E(k)=E+ P+ P.,

Ak) = (Qe + Qx)? + 1Skl® + R, (13)

u(k) = 2Qc + Qx)® + 3QISk|* — 6Q|Re|*
3v3
2
The band-edge energies can be readily solved from

Eq. (12) by setting k =0,

Epp(0) = —Pe — Qe ,

Erp(0) = —P. + 1 (Qc — A+ /A2 +2AQc +9Q?) ,
(14)

+2¥2 (2Rt + ST°R)

ESO(O) = _Pe + % (Qe AN \/A2 + 2AQ5 + QQE) .
At k = 0, the Hamiltonian H is actually simplified to
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FIG. 1. The energy band gap of a bulk In;_GazAs vs
the Ga mole fraction z. The dotted-dashed curve: unstrained
Ini_GagAs; the solid curves: transition energies from the
conduction band (C) to the heavy-hole (HH) and light-hole
(LH) bands for a bulk In;_;GazAs pseudomorphically grown
on InP; the dashed curve: the conduction to light-hole tran-
sition energy calculated without the SO coupling.
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FIG. 2. The percentages of the LH com-

ponent (lFs/z,ﬂ/glz) and the SO component (‘F1/2_11/2|2)
corresponding to the band-edge energy Erx(0) [see Eq. (16)]
for a bulk In;_;GazAs on InP. This plot shows the strain-
dependent coupling between the LH band and the SO band
at k=0.

P.+Q. O 0 0 0
0 P-Q O 0 —v2Q. fo
0 0 Pe—Qe 0 2Q€
HE=0=- o o "0 P+qQ. 0 (15)
0 —-V2Q. O 0 P+A 0
0 0 Vv2Q O P.+A

Clearly, the heavy-hole band is decoupled from the rest of
bands, while the light-hole band (|3, +1)) is coupled with
the split-off band (|1, £1)) through the strain-dependent
off-diagonal terms. This coupling would be totally unac-
counted for in the 4 x 4 approximation. For In;_,Ga As
on InP, the transition energies from the heavy-hole and
the light-hole bands to the conduction band with and
without the SO coupling are shown in Fig. 1. The com-
parison evidently demonstrates how important it is to
include the split-off bands, because the error in the light-
hole energies could be as large as several tens of meV. The
error is comparable to the heavy- and light-hole energy
split and is certainly too large to be ignored. As a con-
sequence of the coupling, the eigenvector corresponding
to the energy Ery(0), determined by

[—P€+QE i\/iQe ] F3/2,d:1/2]
i\/ﬁQc _Pe —-A F1/2,:E1/2

F.
= Er (0 3/2,;&1/2]
£u(0) [Fl/z,:i:l/2

(16)
2 2
|Faj2,21/2)" + |Fuja,212|” =1,
is not a pure light-hole state, but an admixture of the
light-hole state and the split-off state. The nature of this

[

mixing can be quantified and is shown in Fig. 2, the indi-
vidual light-hole (| Fa/z,41/2|”) and split-off (|1 2,+1/2|")
components are plotted. For the extreme case of z = 0,
the light-hole energy Er p(0) corresponds to a state with
80% light-hole band characteristics and 20% split-off
band characteristics.

The band mixing at finite k is more complicated since
all three bands (HH, LH, and SO) are coupled together.
Although it is possible to write down a general, closed-
form solution of Eq. (12), physical insights of the strain
dependence would be lost in the lengthy expression. In
fact, we can calculate the effective masses at £k = 0
without solving the cubic equation. First, differentiat-
ing Eq. (12) versus k; and kj;, and noting that all the
first-order derivatives of E(k), A(k), and u(k) vanish at
k = 0, we have

i _ 0025, (25
ok:0k; /

3£(0)2 + 2AE(0) — 3A(0)

- (2—20) 71 635 . 17)

Substituting in the £(0) and evaluating the second-
order derivatives of A(k) and u(k) at k = 0, we then
obtain the series expansion of E up to the second order
of k
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FIG. 3. (a) The heavy-hole (HH) and light-hole (LH) effective masses, at k = 0, parallel (]|) and perpendicular (1) to the
growth direction for a bulk In;_.Ga;As on InP. The solid curves: with SO coupling; the dashed curves: without SO coupling.
(b) The energy E and the relative reciprocal effective masses mo/m* along the k, and k. axes; the solid (dashed) curves

correspond to heavy (light) holes.
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where fi is a dimensionless, strain-dependent factor

2z [1+32 (¢ — 1+ VI + 2+ 922)] + 62 Q.

fe=

From Eq. (18), we obtain the effective masses

MyHL 1 MyH,| 1
mo M—2v2" mo Y+’

MLH.L _ 1 MLu,| _ 1 (20)
mo Mn+2f+v2’ mo M- five’

Mo, 1 Mso, _ 1
mo +2f-r2’ moe  m-—f-v’

It is interesting to note that f, =1, f_ = 0 for the limit-
ing case of zero strain (Qe — 0, z — 0), and the effective
masses derived from the 6 x 6 Hamiltonian become identi-
cal to those derived from the 4 x 4 Hamiltonian. For the
strained-layer In;_,Ga;As on InP, the effective masses
calculated using Eq. (11) (solid curves) and Eq. (20)
(dashed curves) are compared in Fig. 3(a). The results
for heavy holes are the same whether the SO coupling
is included or not, but are quite different for light holes.
As shown in Fig. 3(a), the in-plane light-hole effective
mass (m}y ) would be remarkably underestimated un-
der tension and overestimated under compression if the
SO coupling is ignored. The discrepancy could be larger
than 30% in the extreme case. However, the notion of the
effective mass and the results in Fig. 3(a) should be inter-
preted with caution. In general, the valence-band energy
E is not exactly a parabolic function of k; therefore, the
effective mass m*, defined by

mg = My 62E(k)

me = R 9kadks @)

) a,ﬁ=x,y,z

is not a constant either. Figure 3(a) shows only the ef-
fective masses at £k = 0. Solving Eq. (12) numerically,
the energy E and the relative reciprocal effective mass
mo/m},, for a bulk In;_,G,As/InP as functions of k,
and k, are plotted for (a) £ = 0.468 (unstrained), (b)
z = 0.4 (compression), and (c) £ = 0.52 (tension) in
Fig. 3(b).

In Fig. 4 the valence-band structure of In;_,Ga,As/
InP is shown schematically. To the left, the energy E at
k, = 0 is plotted as a function of k, and k,. To the right,

S(c-1+VIi+22+92%) +2 -1+ VI 254922 — 322 A

T == (19)

constant-energy contours are plotted on the k;-k, plane.
The label HH or LH is assigned to each band according
to its characteristic at the band edge. Comparing these
figures, the effects of strain on the valence-band struc-
ture can be summarized as follows: (i) the overall energy
is shifted by an amount of P. due to the valence-band

(a)x=0.468
E Unstrained
N 13/2,£3/2>
/\tl/2>
kx
(b)x<0.468
€ Compression
kz 13/2,£3/2>
kx
(-\IB/Z.M/b
‘M/CD\J kz
kx
(c)x>0.468
13/2,%1/2>
E Tension e
ky +3/2>
/> kz
Ky

FIG. 4. The valence-band structure of a bulk In;—,Ga;As
on InP substrate for (a) z = 0.468 (lattice-matched), (b) z =
0.35 (compressive strain), and (c) z = 0.6 (tensile strain). On
the left: the energy at k, = 0 as a function of k; and k.; on
the right: the corresponding constant energy contours in the
kz-k. plane.
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hydrostatic deformation potential a,; (ii) the originally
degenerate valence-band edge at £ = 0 is split by an
amount 2Q). and the HH band can be above or below the
LH band depending on whether the strain is tensile or
compressive; and (iii) the symmetry of the E-k relation
is reduced from the cubic group O to the group Dyy.
To visualize the effects of strain systematically, we plot
a family of two-dimensional (2D) constant-energy con-
tours at k, = 0 and the three-dimensional (3D) constant-
energy surfaces for the cases of zero strain (z = 0.468),
compressive strain (x = 0.35), and tensile strain (z =
0.6) in Figs. 5(a), 5(b), and 5(c), respectively. In each
figure, the heavy holes are plotted on the left column
and the light holes are plotted on the right column; the
2D contours on the top are plotted for energy F rang-
ing from the band-edge E(0) to 30 meV below E(0), 3
meV apart between two adjacent curves. Apparently, the
shape of the constant-energy surface is independent of E
for the case of zero strain but dependent on E for the
cases of nonzero strain. In Figs. 5(b) and 5(c), the 3D
surfaces are plotted for E equal to 3 meV (in the mid-
dle) and 30 meV (on the bottom) below E(0), therefore,

(a) Unstrained
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corresponding to the innermost and the outermost 2D
contours shown in the same figure. At a small energy
such as 3 meV below the band edge, the strained E-k re-
lation in Figs. 5(a) and 5(b) can be well approximated by
an ellipsoidal surface with a cylindrical symmetry around
the 2 direction. As described by the analytical expres-
sions (9) and (18), each semiaxis of the ellipsoid is pro-
portional to the effective mass along the same direction.
The heavy hole has a larger effective mass along the 2
direction and a smaller effective mass along the z and
y directions (a prolate ellipsoid), and vice versa for the
light hole (an oblate ellipsoid). At 30 meV, the interband
coupling is much stronger, the constant-energy surfaces
are more deformed, and the parabolic band approxima-
tion is no longer valid.

III. STRAINED-LAYER QUANTUM WELLS

The previous discussion on the valence-band struc-
ture of a strained bulk semiconductor is informative, but
the numerical results should be interpreted with caution.
In practice, a high-quality strained semiconductor layer

(b) Compressive strain

HH LH

ks
3 meV

30 meV

N
T

=
I

T LT

T
RN

[177

1717
ol
T

|'=
W

FIG. 5. The 2D constant-energy contours and the 3D constant-energy surfaces of the valence bands for a bulk In;—GazAs
on InP, (a) = = 0.468 (lattice-matched), (b) z = 0.35 (compressive strain), and (c) z = 0.6 (tensile strain). The 2D contours,
equally spaced in energy, are plotted from 3 to 30 meV below the band edge. The 3D surfaces in (b) and (c) are plotted for 3

and 30 meV below the band edge.
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cannot be grown beyond a certain critical layer thick-
ness (CLT), which strongly depends on the lattice con-
stant mismatch. Therefore, boundary conditions and the
quantum-size effects always have to be incorporated. In
this section we consider a strained-layer quantum well,
assuming that the growth direction is along the z axis
and the strain caused by lattice mismatch is entirely elas-
tically accommodated in the quantum well. The energies
and the envelope functions of valence subbands can then
be obtained by solving the effective-mass equation

E[H;w + Vh(z)(spu]Fu(kll ) Z) = E(kll)Fu(kll’ Z) s

14

(22)
b € I8 D3 B0 520 5.0 D))

where H is the Luttinger-Kohn Hamiltonian in Eq. (1)
and Vj(2) is the quantum-well potential for holes. The
envelope function component F, has the form

F,(ky,r) = F,(k, 2) e, (23)

where k| = kzX + k¥, p = X + y§. The Hamiltonian
is written in such a way that all of the operators of the
form

(c) Tensile strain
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0% 0
in Eq. (1) are replaced by
0 0 1 a 0
aA(z)b—; and 5 (B(z)a + aB(z)) (25)

to ensure that H is Hermitian. The proper boundary
conditions at the interface between the well and barrier
can be obtained by integrating Eq. (22) across the inter-
faces or by considering the continuity of the probability
current density in the envelope-function space.3¢ Except
for very special cases, such as assuming an infinite bar-
rier height,37:38 the effective-mass equation does not have
analytical solutions; numerical methods must be used.
The subband energies and the wave functions, in gen-
eral, depend not only on the magnitude of the in-plane
wave vector kj but also on the azimuthal angle ¢, where
k| = (k,¢) in polar coordinates. With this ¢ depen-
dence, the constant-energy contours of the subbands in
the ky-ky plane are warped (anisotropic). However, the
amount of warping is usually much less than the energy
difference between two adjacent subbands. Therefore, it
is justifiable to neglect the in-plane anisotropicity with-

3 meV Kz

FIG. 5. (Continued).
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out losing the essential physics of band mixing. Such an
axial (or cylindrical) approximation has been suggested
and widely adopted in valence subband calculations us-
ing the 4 x 4 Hamiltonian.32:3% It has been shown that,
under the axial approximation, the 4 x 4 Hamiltonian can
be block-diagonalized into two 2 x 2 Hamiltonians.32:33
In this section we extend and apply the axial approxi-
mation to the 6 x 6 Hamiltonian and show that it can

J
Py = (5%) - (kﬁ +k2)
(%) 7 (kF - 262)

Rk=—(h—2>\/§

2m0

Qr =

h? »
Sy = (%> 2\/5’)’3 k” k,e ¢ .
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be similarly diagonalized into two 3 x 3 blocks. The ax-
ial approximation is especially attractive for calculating
the binding energies of quantum-well excitons because
it simplifies the two-dimensional exciton equation to a
one-dimensional equation.??” Thus, numerical computa-
tion becomes much more efficient.

We start with rewriting the matrix elements in Eq. (1)
as

(26)

Y2+ —2ie Y278 2i¢
(_2_) + () |k

The axial approximation is actually an observation that, if the matrix element Ry is approximated by

2
Ry ~ — h V3 72+ 7 kﬁe‘zw’,
2m0 2

(27)

then all of the subband energies will be ¢ independent. To see this, we rotate the reference frame around the z axis by

an angle ¢ and change the basis function |j, m} into |j,

[P+ -5, R, 0 —7155'
-S, P-Q 0 R, 20
o | B 0o P-2 S, fis,
- 0 S, P+Q -V2R
\/'Q /35, ~VZR, P+A
\/—Sp \/;Sp V2Q *7155,, 0
where
_ hZ Y2 + 73
Rp__(2mo)\/§< 2 i
(29)
B2
Sp = <2m )2\/—7316” 2
and R, = S = 0 by assumption. The new Hamilto-

nian H’ has the same form as H with the R and S re-
placed by R, and S,, respectively. Note that R, and
S, are Hermitian operators while R and S are not. Af-
ter rotating the reference frame, we find that each ma-
trix element of H' is independent of the angle ¢. As a
consequence, the subband energy must also be ¢ inde-
pendent, that is, E(k;) = E(kj). As to the ¢ depen-
dence of the envelope-function components, 1’c 1s simply

F,(ky, 2) = F,(kj, 2)e”"™*, where v = (j,m).>®

The most important advantage gained from the axial

m) e~"™® accordingly. The Hamiltonian H in Eq. (1) becomes

V2R, 1l3:3)e7 /¢

V35, | 153)e /e

Vao | |3 -byeams

—255, | |8, -2) e/ (28)
0 | |1, 1) emi/2e

P+A | |1, -1) /29

f
approximation is that the Hamiltonian H' can be further
block-diagonalized by choosing a new basis set

1
lu1) = _\/_§(|2, 3)emi3/2D¢ _ 4|3 _3)ei3/28)
lus) = \/_(zla Lyemi/2¢ _ |3 _1yoi/26)
-1
[us) = —=(il}, eV + |3, —1)e'0/D?)
. (30)
lug) = E(l%,%)e_’(sm‘b +i|3,-3)el®/D?) |
—~1 _ i
lug) = ﬁ(@ﬁ e i(1/2)¢ 4 12, ~1)e 1729y |
lug) = \/_(”1 1) —i(1/2)¢ _ | >ez(1/2)¢)

Carrying out the associated similarity transformation, we
finally obtain a block-diagonalized Hamiltonian
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H3y3 0 }
HII= [ ,
0 Hi,

P+Q
~R,+iS, P_Q
~V2R, ~ 255, V2Q - i\/gsp

H3yz=—

and ngs is the Hermitian conjugate of H3x3. The orig-
inal set of six-coupled differential equations (22) is now
reduced to two sets of three coupled differential equa-
tions, corresponding to the basis sets {uj,uz,us} and
{u4,us,ug}, respectively. If the potential energy has a
reflection symmetry Vj,(—z) = V,(z), then only one set
of these equations has to be solved, because the other
leads to identical subband energies. Since the new ba-
sis set only mixes |, m) with |j, —m), we can still assign
the label HH (heavy hole) to the bases |u;) and |u4); LH
(light hole) to |ug) and |us); SO (split-off) to |ug) and
|ug). When the split-off bands are ignored, we are left
with the upper 2 x 2 block of the Hamiltonian Hsxs,

P+Q —R,—iS, | |u)
—R,+iS, P-Q | |uz).

To study the effect of SO coupling, we now consider
a In;_;GazAs/InP quantum well and compare the sub-
band structures calculated using H3x3 and H3x2. A nu-
merical method similar to that described in Ref. 24 is
used. First, all of the plane-wave solutions in the well
and barrier are found and the envelope-function spinor
(Fy, v =1,2,3) is written as a linear combination of the
plane waves in each region. Then, the subband energies
and the coefficients of linear combination are solved by
imposing the boundary conditions, that is, requiring the
continuity of

Hjyo = — (32)

-Fl(Z) .
Fy(z) (33)
_Fs(z)
and
(i —2v2)&  V3usk —\@73’“" Fi(2)
—V3uky (n+21)E& —Fwk | |F(2)
EY 3~k a F3(2)
373k 23 M3z
(34)

across the interfaces between the well and the barriers.

In Fig. 6 the valenc= subband energies at k = 0 for a
60-A In;_,Ga;As/InP quantum well are plotted versus
z, which shows the dramatic difference between the light-
hole energies calculated with (solid curves) and without
(dashed curves) the SO coupling. In contrast, the heavy-
hole energies (dotted-dashed curves) are not affected by
the SO coupling.

The SO coupling not only changes the band-edge ener-
gies but also alters the subband structure considerably.
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31)

~R,—iS, —V3R,+ 35,7 lu)
V2Q+i\/385, | lu2)
P+A

IU3) )

IIn Figs. 7(a), 7(b), and 7(c), we plot the subband en-
ergy E as a function of k) for a 60-A quantum well
with = 0.468 (no strain), x = 0.25 (compression), and
z = 0.6 (tension), respectively. At a finite k), both the
LH band and the HH band are modified by the SO cou-
pling. It is also observed that all of the subband energies
calculated including the SO coupling (solid curves) are
higher than those calculated ignoring the SO coupling
(dashed curves). This general trend is not an accident
but a direct consequence of the quantum-mechanical level
repulsion: the HH and LH bands are pushed upward by
the SO band below them.

The effects of strain on the subband structures have
been discussed in detail in Ref. 24. For the unstrained
quantum well (z = 0.468), the first heavy-hole state
always lies above the first light-hole state, because the
heavy hole has a larger effective mass along the growth
direction (quantum-size effect). For the compressively
strained quantum well, the heavy-hole state is moved to
higher energy and the light-hole state to lower energy
due to the shear-deformation potential. The most inter-

50 [

-50 P,
-100 f

-150 |

Subband energy (meV)

-200 F

250 |

-300

FIG.6. The valence subband energies at k; = 0 for a 60-A
In;-Ga;As quantum well sandwiched between InP barriers.
The dotted-dashed curves: heavy-hole (HH) subbands; the
solid curves: light-hole (LH) subbands including the SO cou-
pling; the dashed curves: light-hole subbands ignoring the SO
coupling.
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esting case occurs when the strain is tensile; the shear-
deformation potential tends to move the light-hole energy
upward and heavy-hole energy downward, thus compet-
ing with the quantum-size effect. As a result, the sub-
band structure can be engineered such that the highest
valence subband can be chosen to be HH or LH band.
For the 60-A well in Fig. 6, the LH1 and HH1 states
crossover at z ~ 0.58. At z = 0.6 shown in Fig. 7(c), the
LH1 is above the HH1.

50 P
ﬁ (a) x=0.468 ]
0 [ HH1 g
N :

Energy (meV)

250 F

-300
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IV. CONCLUSIONS

Because of the flexibility of using a variety of materials
and the ability to tailor the band offsets, strained-layer
semiconductor devices are superior in many ways to the
conventional devices based on lattice-matched systems.
Understanding and modeling the optoelectronic proper-
ties of these devices, such as the gain spectra of quantum-
well lasers and the absorption spectra of quantum-well

50 e
(b) x=0.25

T T T T [T T T T T

-
+
F HH1

O IS AR

-50

-100

L lllljl

150 [

Energy (meV)

-200

250 |

Aot ad

-300 L

50 e

: (c)
L LH1

LI B I I B S N L L R

x=0.6 ]

’
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.
| IR

’
.
[ BT

> :
D "
g -100 |
T
5 -150
: ------
m ipmaaE bl
-200 |- HH3
250 F
300 Lt s
0 0.02

FIG. 7. The valence subband structure for a 60-A In;—;GazAs quantum well sandwiched between InP barriers for (a)
z = 0.468 (lattice-matched), (b) z = 0.25 (compressive strain), and (c) z = 0.6 (tensile strain). The solid curves: including the

SO coupling; the dashed curves: ignoring the SO coupling.
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modulators, requires knowledge of the accurate subband
structure. In this paper we have studied the effects of
strain on the valence-band structure. We have shown
that the strain would introduce additional coupling be-
tween the heavy- and light-hole bands and the spin-orbit
split-off bands. We have presented graphically how the
strain deformed the constant energy surface in k space,
derived analytical formulas for the hole effective masses,
and found a transformation to block-diagonalize the 6 x 6
Luttinger-Kohn Hamiltonian, thus simplifying the sub-
band structure calculation considerably yet retaining the
important spin-orbit split-off band coupling. This sim-
plified formulation should be useful for studying the ex-
citon absorption and gain spectrum in highly strained
quantum-well devices.
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APPENDIX: DISPERSION RELATIONS

The Luttinger-Kohn Hamiltonian in Eq. (1) is written
in terms of the basis set
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12,2) = 7_ l(x+iy) 1),
{%%>=_\/= (x+ay) | +22 1),
13,-1) = (& —iy) T +22 1) ,
\/'
(A1)
5 %>=7<w-w>l>
11, %>=\_/_- (z+iy) L +2 1),
|4,-1) = \/_ia:—zy)T—Zl)

To factor the associated sixth-order determinant equa-
tion (7), we find it convenient to work on a different basis

1 .
Zlerw)n,

%l(x—iy) 1,

lz1) , (A2)

%I(z—iy) b,
%Kﬂw) b,
lz 1) .

Because this new basis set transforms H into a nearly
block-diagonalized form

(P+e VAR \fis o 0 0
~VBR PO+ (fist o 0 _¥3a
3st 3 - A 28
o Vist fis P-20+4 o Z 0 a3
0 0 0 P+Q —vARt ,f3sf
0 0 Y2 3R P+Q+2% \/§S
| o - 0 f3s fist P-20+%]
Then, with the help of a mathematical identity,
a;iraz2a3 0 0 0
ag1 a22 a23 0 0 T 2
az; azz azz 0 —z 0 G11 G12 d13
81 82 83 P ( a1 G2 Gg3 | —anz® | (A4)
0 0 —z ap azp Gz a31 032 Q33
0 = 0 a3 a3 as3
and some straightforward algebra, we can immediately simplify Eq. (7) to
det(H}; — 6;E) = {2 —3AE—p+ A€ -} =o, (A5)
where
E=E+P, A=Q*+|SP+|R?>, n=2Q%+3Q|5*-6QIR|> + ‘/_(5273T +sPR). (A6)
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