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A generalization of the Landauer-Buttiker picture of transport applicable to time-dependent problems
in the presence of dissipation is presented. Starting from the Schrodinger equation in the Keldysh for-

malism under appropriate boundary conditions and using a linear-response approximation, we find that
an ideal Uoltage probe is described by a generalized Landauer-Buttiker equation (GLBE). Thus, the
GLBE may be considered as a particular case of the Keldysh kinetic equation. The transmission proba-
bilities become retarded functions of the elapsed time, and are evaluated in terms of the retarded and ad-

vanced Green s functions. The interpretation of the mathematical formalism is emphasized. The GLBE
is applied to get the time-dependent dissipative resonant tunneling by considering a resonant dot coupled
with (a) a dephasing process and (b) a finite side probe. For case (a), we find that the resonant-tunneling
conductance G is associated with an inductance I.=~~/G which accounts for the response in the 1ow-

frequency regime; G depends on the dissipation inside the resonant region, while ~~, being twice the nat-
ural lifetime of the resonant state, does not. For case (b), we find an additional delay in the response ac-
counting for the "inertia" of the side probe. This result clarifies the concepts of ideal voltage probe and
voltage source as applied in the case of time-dependent transport.

I. INTRODUCTION

In recent years, many experimental works on transport
in mesoscopic systems' found a good deal of inspiration
in the Landauer-Buttiker picture for steady-state con-
ductance. The fundamental observation that leads to this
picture is that a transport experiment is performed in an
open system exchanging particles and energy with the
external world. Therefore, this exchange can be viewed
as a scattering problem in which particles injected
through a given channel connected with the external
world are found in some other channels after having in-
teracted in some region called "the sample. " These parti-
cles account for (boundary) conditions controlled exter-
nally (such as current, voltage, or temperature). While
this picture was also believed to apply to samples subject
to dephasing and inelastic processes, it was not until the
independent works of D'Amato and Pastawski and Dat-
ta, that a quantum description was obtained. Transport
in the linear-response regime is then described by a gen-
eralized Landauer-Biittiker equation (GLBE). This
expresses the transmission probabihties, which contain
the dephasing processes, in terms of a model Hamiltonian
in which both leads and dephasing processes are
represented by the self-energy corrections they pro-
duce. * Works folloming related lines mere soon success-
fully applied to a number of problems. More recently,
we have shown that the GLBE is consistent with the
known behavior of dc conductivity in macroscopic sys-
tems in a wide range of situations. The fundamental ob-
servation that led to these results is the connection be-
tween the transmission probabilities in the GLBE and a

density propagator. The object of the present paper is to
extend the GLBE to evaluate the time depen-dent conduc
tance in the presence of dephasing processes, making ex-
plicit the assumptions needed to make the mentioned
connection. In so doing, we will need to extend our pre-
vious results ' and those of Datta and
collaborators * " "which considered exhaustively the
steady-state problem. Besides, while our results in Ref. 6
point in the right direction as to how the Landauer-
Buttiker picture could be extended to a time-dependent
problem, the conditions under which this can be done
were not clear. For example, in a steady state the local
occupation is that measured by a weakly coupled voltage
problem. Is that valid in a time-dependent situation? A
voltage probe and an inelastic process are equivalent,
within certain limitations, for the dc transport. Is that
true in a time-dependent case? May the voltage probes
manifest an "inertia"? A dephasing process affects the dc
conductance. Does it also show up in the ac response?
This work will answer these questions and establish a
framework to answer further ones.

In order to show our main result in the simplest terms,
let us consider the typical case described by a Landauer-
Buttiker equation: a voltage probe o. connected to a sam-
ple. If T & ( T& ) are the transmission probabilities from
(toward) all the leads P connected to the sample, the bal-
ance of currents at this lead is obtained from addition of
these transmittances, weighted by 5p& (5p ), the shift
from equilibrium of the chemical potential in the outgo-
ing channel. While the original Landauer-Biittiker equa-
tion and the GLBE describe the steady state, we wi11 find
a time-dependent equation which for an ideal voltage
probe a is
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—[1—R ]5p (t)

Here we introduced the retarded transmission probabili-
ties whose integral in time gives the usual steady-state
coefficients T

&
=f dt; T &( t t; ). T—he total transmis-

sion probability, [1—R ]=+&T &, is defined including
the channel a in the sum.

The physical meaning of Eq. (1.1) is quite simple: It is
the electric current leaving the sample at contact a. It
results from the balance between the "out" and "in" con-
tributions which gives zero net current at the ideal volt-

age probe a at any time t. The out current at a is the
sum of all the incoherent electrons which having left the
reservoir P at a previous time t, , reach the reservoir a at
time t. This sum also includes the electrons, which hav-

ing left reservoir a at time t, , return at time t without
having a dephasing collision in its journey. The second
term on the right is the in current, which describes the
electrons that at time t are leaving the reservoir a to ex-
plore the sample and are absorbed somewhere at a later
time.

Equation (1.1) generalizes that originally proposed by
Biittiker because of the following: (a) The transmission
probabilities are now retarded in time, representing the
finite velocity of propagation of wave packets. (b) The
chemical potentials are also generalized to describe a
time-dependent problem. (c) In the general case the
transmission probabilities will contain dephasing process-
es such as the electron-phonon interaction. (d) The
chemical potential is not necessarily that of an external
reservoir but can be a quantity characterizing the local
density of electrons in a nonequilibrium state. This last
point, as well as the meaning of an ideal voltage probe,
will be clarified in this work.

Therefore, this work is devoted to show that Eq. (1.1)

can be derived from the time evolution described by the
Schrodinger equation of a system modeled by a precise
Hamiltonian. This will give explicit forms for the time-

dependent transmission coeScients and chemical poten-
tials involved. With this purpose we will resort to the
quantum evolution in the nonequilibrium quantum fields

(Keldysh) formalism. While the Keldysh technique has
been extensively used to treat quantum transport in vari-

ous problems of nonlinear transport, its connection to the
Landauer-Biittiker picture in the linear-response regime
will shed light on how irreversibility and dissipation are
introduced in quantum mechanics. The essential idea we

advocate throughout this work is that the effect of the
leads and the phase-breaking processes can be represent-
ed as boundary conditions on the closed system. This
idea motivated the work of Refs. 3 and 6, and here it will

be presented on formal grounds, making explicit the ap-
proximations used with that objective. Here the bound-

ary conditions appear as time-dependent self-energies.
The resulting evolution equations will then be cast in the
form of the kinetic equation (1.1). Besides, the main

features of the solution in some representative cases will
be sketched. The time-dependent problem, in contrast
with the steady-state situation, makes evident the
difference between a real voltage lead and a dephasing
process: they may produce a very different time
response.

This paper is organized as follows: Section II presents
an overview of the basic material used in the following
sections, introducing a notation which will assist us in the
development of the conceptual framework. We start with
a brief discussion about open and closed systems (Sec.
II A) and how they are accounted for in the Keldysh for-
malisrn (Sec. IIB). In Sec. IIC we develop a real-time
formulation and obtain our main kinetic equation. In
Sec. IID this is expressed in terms of measurable elec-
tronic densities. Section III shows explicitly how bound-
ary conditions are introduced as self-energies in the case
of leads (Sec. III A) and the electron-phonon interaction
(Sec. III B). Section IV is the central part of the work;
there we obtain a simplified time-dependent kinetic equa-
tion and show that it has a classical interpretation in
terms of a density propagator. Section V has a practical
intention as it shows how, from our knowledge of the
electron densities of the system at previous times, one can
evaluate electric currents in both nonlinear- and linear-
response regimes. Then, we show that the kinetic equa-
tion is equivalent to the GLBE. Section VI addresses the
important problem of time-dependent dissipative reso-
nant tunneling, which represents a straightforward appli-
cation of the formalism developed and it clarifies the con-
ceptual elements involved. We start discussing the
salient features of the steady-state situation (Sec. VIA)
and two different mechanisms to achieve dephasing
solved in the following sections, both of which are experi-
mentally accessible. In Sec. VIB the resonant state in-

teracts with a dephasing field. We find that the
frequency-dependent tunneling conductance G(co) (in the
low-frequency limit) has an inductive component
L =r IG(0), where r is twice the escape time ~~ of the
resonant state in the absence of dephasing processes. An
interesting prediction of our kinetic equation is that this
functional form is maintained even in the limiting case of
completely incoherent tunneling. These results support
the observation of the correspondent behavior in the
differential conductance of a biased double-barrier reso-
nant tunneling device (DBRTD). In Sec. VI C we solve a

resonant region connected with a side dot. Since the side

dot can be considered a model for a voltage probe, the re-
sults of Sec. VI C clarify the difference between an ideal
and a real voltage probe. In the first case, as occurs with
a dephasing field, the electrons cannot escape from the
sample. In the last case, this restriction does not hold.
Then, it appears an additional delay time which is pro-
portional to the total density of states on the side probe
and to 7, +7g the sequential composition of the escape
time to the leads and to the side probe ~z. Finally, a gen-

eral discussion is presented in Sec. VII.
II. THE FORMAL FRAMEWORK

A. Closed and open systems

The behavior of a closed noninteracting electronic sys-

tem in a state %' is described by the Hermitic Hamiltoni-
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an H, which contains the impurities potential and the
external fields, according to the Schrodinger equation:

~&——H'(r) l+(r, r) &—= [G'(X)] 'I+(X) &=o
at

(2.1)

In the definition of the Schrodinger differential operator
[G (X)] ', the variable X=(r, t) is short for d-
dimensional space and time coordinates. For any initial
condition, there will be a finite time (Poincare cycle) for
which the state of the system returns arbitrarily close to
this initial condition. This situation changes when we
couple the sample to the rest of the universe. Because of
the increase in the number of quasidegenerate degrees of
freedom (energy band), the Poincare cycle becomes
infinite and an irreversible behavior appears. In order to
describe the opening to the external world while keeping
the manageable Hilbert space spanned by the states of the
noninteracting sample, it is possible to use the projection
operator technique. ' This allows us to downfold or deci-
mate the external degrees of freedom generating an
effective Hamiltonian:

equilibrium. The fundamental objects of the theory are
the electron and phonon field operators g(X) and P(X) in

the Heisenberg representation, acting on their respective
noninteracting ground states, ~%'o & and

~ 4o &, held in

equilibrium at some very early time to.

G'(X,X )=—&+o q'(X )y(X )leo&2& 1
(2.3a)

and

G '(X„X,) = ——'( e, ~ q(X, )yt(X, ) ~ e, & .2& 1
(2.3b)

The phonons (bosons) are described by the distribu-
tions

D (X2,X) ) = ——( 40 p(X) )$(X2 ) 4O & (2.4a)

and

B. The Keldysh formalism

The formalism' ' deals with the electron and hole dis-
tribution functions:

H,~=H +X, (2.2) D (X~,X, )= ——(40~$(X, )p(X, ) e, & .2& 1 (2.4b)

where the added effective potential (or self-energy) ac-
counts for the degrees of freedom left out of H . This
scheme is quite convenient in various simple cases such
as systems with few degrees of freedom or the description
of the radiative decay. In the first case X can be obtained
by an exact decimation procedure, " and it results in a
nonlinear real function of the energy c. The roots of the
secular equation are the eigenenergies of the complete
system. Evaluating the time evolution with Eq. (2.2), we
see that the density is not conserved within the subspace
spanned by H, but fluctuates quasiperiodically in time
with the Poincare cycle. " In the second case the self-
energy can be evaluated' in a golden-rule approximation
and it becomes a complex function of the energy, indicat-
ing that some density is irreversibly lost from the sub-
space spanned by H . However, the generation of an
effective Hamiltonian becomes more convoluted for ela-
borated boundary conditions, particularly in cases where
particles are being injected in the system, or when they
lose their phase coherence as in inelastic processes. To
the first situation corresponds the exchange of particles
with some external reservoir identified by a chemical po-
tential p'"'. An example of the latter is the interaction
with a phonon bath characterized by a Hamiltonian H h
and a thermal energy k&T. These are particularly com-
plex when the system is far from equilibrium. Therefore
we prefer to employ a Green's-function technique
developed by Kadanoff and Baym and independently by
Keldysh. This is nothing else but the formulation of the
Schrodinger equation in a quantum field formalism. This
has the advantage that the boundary conditions can be
introduced through the appropriate selection of the fields
producing the self-energies and that the exclusion princi-
ple is already included in the formalism. Besides, another
advantage is that it can deal with situations far from

and

G+(X2,Xi ) = G (X~,X, )+G (X2,Xi ); (2.5c)

D (X,X, ) =8(t t, )[D (X,X, ) D— (X,X, )]—,
(2.6a)

D "(X~,X) ) =8(~) —~~)[D (X2,X) ) D(X2,X) }],—
(2.6b)

D (X2,X, ) =D (X2,X, }+D (X~,X) ) .

These functions are arranged in a 2 X 2 matrix form:

GR GK

0 GA

(2.6c)

(2.7)

and

0 D (2.8)

Their equation of motion is given by the Dyson equa-
tion in the Keldysh space which is obtained, just as in the
equilibrium theory, by considering the time evolution of
the field operators. In the case of the electronic degrees

The usual retarded and advanced Green's functions as
well as an additional Keldysh's function, are defined in
terms of these distributions,

G "(X,X, ) =8(t t, )[G (X—,X, ) —G (X,X, )],
(2.5a)

G "(X2,X, )=8(t, t~)[G (X2,X,—) —G (X~,X, )],
(2.5b)
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of freedom it appears as

[G (X, )] 'C(X,X, ) —fdXiR(X, X, )G(Xi,X, )

=5(X~ —X, )I, (2.9)
which has been written in a form which makes explicit
that it is a Schrodinger equation of the form (2.1) with H
replaced by an effective Hamiltonian (2.2). I is the identi-
ty matrix. The electronic self-energy operator 2 contains
the interactions left out in H, and has the same matrix
structure as given by Eq. (2.7}. We will see that by trac-
ing over the undesired Hilbert subspaces, we can obtain a
2 that represents a nonlocal effective potential as in Eq.
(2.2). In particular, we will be interested in obtaining a
self-energy of the form 2 ='"2+~2, adding the indepen-
dent effects of the escape from the sample through the
leads and the electron-phonon interactions.

While most of the approaches to transport deal with
the differential equation (2.9) and transform it in a quan-
tum Boltzmann equation, we attack the problem in a
different way. We use the formal solution of Eq. (2.9),
which can be written for each component of G. The re-
tarded Green's function is

G (X X)=6 (X X)
+ fdX f dX„G "(X,X)

XX (Xi,X„)G (Xk,X, ),
(2.10)

which is the integral form of the Dyson equation for the
retarded Green's function. Its solution in the steady state
does not offer much difficulty. The advanced Green's
function satisfies an equivalent equation, while the Kel-
dysh function results

6 (X„X,)= fdX, f dX„G'(X„X,)
XX (X, ,Xk )G "(Xi„X,), (2.11)

also valid exchanging G by 6 (6 ) and X by X'
(X ). In the above expression we have dropped a bound-
ary term:

f dri fdrkG (X2 r& tp}G (r'J tp rk tp)

X G "(ri„tp, X, ), (2.12)

which is negligible due to the damping in G" and G" ori-
ginated by the inelastic processes inside the sample and
the escape through the leads.

An equation similar to (2.9) holds for D in terms of a
phonon self-energy A. In a general case 2 is a functional
of G and D and this gives a nonlinear set of equations.

I

Our purpose will be to reduce them to a system of equa-
tions which can be solved without much difficulty.

C. Time evolution

The solution of Eq. (2.9) contains all the information
we need about the system. However, we want to express
it in a more transparent form. Even when it is usual to
keep D with its equilibrium value, we are still left with a
nonlinear set of equations for 2 and C. It is in this point
where a deep physical insight of the problem must be
used. The physics contained in the equations is more
clearly expressed in the Wigner coordinates:

t = ,'[t, +t, ]-,

r= —,'[r2+r, ],
5t=t~ —t, ,

5r=rz —r, .

(2.13)

The first two variables correspond to the macroscopic
time and position, and therefore are conjugated to the
external frequency co and wave vector q, respectively.
The last two variables are uncertainties, and therefore are
conjugated to the canonical energy c. and canonical
momentum p. For example, we will use

5t 6t
G(rz, r„e,t)= f 6 r2, t + ,r„t ———

X exp(is5t IR)d5t . (2. 14)

E„lk~t, t, =(t +—5tl2) (t, +5t, I2),—

E, lh'~t, —t„=5t, ,

E„IA t„t,=(t, ——
—,'5t, )

—(t —
—,'5t) .

(2. 15)

The resulting equation is more clear if written in terms of
the variables:

,'(5t+5t, ), -
E= —,'(ER+s„), (2.16)

1co= —(s —E ) .R

Dropping the spatial variables for a while, we write (2.11)
in the form

Let us use these variables in the simplification of the
kinetic equation, by writing G, X, and 6 in terms of
the energy variables:

G (t + ,'5t, t —
—,'5t)= f G (e, t)e—xp i-. c6t dc.

= f f f f f G (E+ ,'fico, —,'(t+t;)+8—}X(e, , t, )

(c.—c, , )5t, dc,
XG (E—

—,'A'tp, —,'(t +t, ) —8) exp i —d5t;

d~ . E.5t dc.
X exp[ imp(t —t, )]— dt, exp —i

2~ '
A 2~%

(2.17)
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This equation is more convenient than (2.11)because it is

expressed in terms of macroscopic times and energies.
No approximation has been done so far. We first notice
that macroscopic transport occurs on a scale of time
much longer than that given by the fast variables such as
the absolute time uncertainty L This allows us to neglect
the dependence of the retarded and advanced Green's
functions on 8 which appears shifting the macroscopic
time —,(t +t; ). We will name this the adiabatic spectrum

approximation, which implies that the probability of
propagation between times t,. and t is evaluated using the
dynamics of the spectrum at the intermediate time
—,'(t+t;). In fact, we can expand the product 6 G"
around 8=0, and get the series

6 ii6 ~
1 + 6 ii—( 1 /6 ii

)
—g ~—( 1 / g ~

)
dt dt

This approximation is good provided that we can drop
the linear term as compared to 1 or if the product G G
is itself small. In words, it requires that, for the relevant
transitions, the instantaneous spectrum of the system
does not change much within the propagation time of
those transitions. This should be checked using the self-
consistent solutions of each particular problem. As an
example we consider here the case of a classical potential

I

dependent of time Ucos(cot) .This appears as an energy
shift b,(t}=U cos(cot) in the energy scale of the retarded
and advanced Green's functions and hence

a
at

aU a
Bt Bc,

It will become clear after the discussion of Sec. IV that
the term dropped is r~(db, /dt)BI%, where r is the
minimum between the quantum propagation time (r~)
and the dephasing time (r&), the derivative represents the
variation of the energy levels as a function of the absolute
time (in the case of an oscillatory classical potential it
would be Uco), and an extreme upper bound for 8 could
be ~&. Therefore the approximation requires that
~ Ucor&lfi«1, which can be achieved either if the po-
tential is weak, or if the frequency is low or if the relaxa-
tion is fast. Besides although the propagation time might
increase with some power of the distance, the overall fac-
tor G"G will decrease exponentially and therefore con-
tributions with large 7q are irrelevant to transport.

Therefore we are left with an integral on 5t, which pro-
vides a function 5(e —s;). Because of this energy conser-
vation the integral on c; is trivial. Writing again the
space variables, we obtain

G (r2, ri, e, t)= f fdr drk f f exp[ iso(t t;)]—6"(—r,2r J,
e+—,'fico, —,'(t+t, ))2'

XX (r, , r„,s, t, )6 "(rk,r, , s —
—,'A'~, —,'(t +t, ))dt, , (2.18)

also valid exchanging G by G (G ) and X by X
(X ). We are not aware of any previous report of this
expression. In order to proceed with the solution of Eq.
(2.18), a self-consistent solution of Eq. (2.10) must be
found.

When one wants to study the linear response to a per-
turbation in the density, as occurs in the semiclassical
Boltzmann equation, it is not necessary to correct the
transition probabilities. This correction would give a
higher-order effect. For a discussion of this regime in the
Keldysh formalism see Refs. 4(c) and 5(a). The role of
transition probabilities is played by the product of retard-
ed and advanced Green's functions, together with the
density of states and the interaction rates. Thus, we can
drop their dependence on the fluctuations in the occupa-
tion which in turn depends on time. We will call this the
steady-spectrum approximation and it results as a natural
consequence of the linear-response regime. Out of this
regime, we can still use this approximation provided that

T

G —(1/6 )+G "—(1/G ")
at at

is a small parameter. This is evaluated similarly to what
we did above. Obviously, this is small when the Green's
functions have a weak dependence on the absolute time
or when the dephasing time is very short. In this work,
whenever the linear-response regime is invoked the tran-

sition probabilities will be evaluated in the steady-
spectrurn approximation. This is the regime that leads to
a transport equation of the form of Eq. (1.1).

Notice that if the self-energy depends on the absolute
time t, , the integral over co must be performed first, and
we will see that this provides a retarded dependence on
t t; Howev—er, .in the steady state X (e) i-s constant in
time. The Green's functions are also time independent
and we can integrate t; first, obtaining a 5(co} function
which leads to the kinetic equation for the steady state:

6 (rz, r„e)=f f dr drkG (r2, r, E)

XG "(r„,r, , e)X (r, ,r„,e),

in which all the functions are evaluated at the same ener-
gy-

D. Density of states and occupation

Before we proceed let us recall some properties of the
Green's functions which are well represented in the
Wigner coordinates. We assume that the phonon bath is
held in equilibrium and hence their Green's functions do
not depend on the absolute time. Therefore the electron
and phonon spectral weight functions are written as
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A(r2 r»s, t)=i [6 (r2 ri, E, t) —6 "(r„ri,E, t)]

=i[G (r2, r„c,t) —6 (r2, r, , E, t) ],
1

Jo(r, E}= 8(r, r, s) . (2.20b)

(2.19a}

8(r2, r„~c~ ) = i[D (r2, r„s)—D "(r2,r„E)]sgn(r )

=i [D (r~, ri, E) —D (r2, ri, E)]sgn(E)

In a similar way, from the imaginary part of the elec-
tron self-energies, a rate for the interaction can be
defined:

2I (rz, r, , c, , t) = —21m'" (r2, r„E,t)
(2.19b) =i[2 (r2, r], s, t) —X (r2, ri, s, t)] . (2.21)

1
No(r, E, t) = A (r, r, s, t) (2.20a)

and

from which the electronic and phonon local densities of
states are obtained as The advantage of this rate, as well as of the density of

states defined by (2.19a) and (2.20a) is that in many cases
they are weakly dependent on the variation of the occu-
pation with time. A relation between them can be ob-
tained using Eq. (2.11) or (2.18) to evaluate [6 —6 ]:

No(r, E, t)= f fdr, dr„ f f exp[ ico(—t t, )]—6 (ri, r, s+ —,'irico, —,'(t+t, ))
1

dt's

X2I (r, , rl„t;,s)6 "(rz,r„E ,'fico, ,'(—t +—t—;))~. . .dt; .
2 I

(2.22)

The use of a consistent approximation as (2.22) and (2.18)
is essential to obtain density conservation. These equa-
tions will be simplified even more in the following sec-
tions where, besides the steady-spectrum approximation,
we will use self-energies which are diagonal in the real
space.

While the retarded (and advanced) Green's functions
contain information about the nature of the states (spec-
tral densities and transition probabilities), the Keldysh
function contains information on the occupations. This
is expressed by

and

G (r, r, E, t)= —i2irND(r, s, t)[1—2f] (2.23}

D (r, r, s)= —i2 Jir(r0, )[E1+2n],

where as the system approaches equilibrium

f (r, s, t)~1/[exp[(s —p )/ks T)+ I I

(2.24}

(2.25)

n ~ I/[ex p( s /k~ T) 1], — (2.26)

become the Fermi-Dirac and the Bose-Einstein distribu-
tion functions, respectively. In a general nonequilibrium
situation the full dependence of the Keldysh function on
the variables (r, p, 8, t) or (r2, r„c,, t) should be determined
from the equations of motion. However, this cornplicat-
ed problem will be simplified using a particular form of
the self-energy (which allows the integration on the
momentum coordinate) and a linear-response approxima-
tion for a degenerate Fermi gas (which allows the integra-
tion on the energy variable). Our main interest will be
the description of an electron density at a localized posi-
tion and defined time. Within the linear response, we
first evaluate

56 (r, r, t, E)=6 (r, r, s, t) 6(r—, r, s, t),
taking the difference between Eq. (2.11} and the corre-
sponding equation describing the equilibrium. Then we

proceed to integrate it over energy. Since only low-

energy excitations are allowed, the density fluctuations
occur around the Fermi surface. In this case the Green's
functions can be approximated by their value at the Fer-
mi surface. Hence the integral over energy only involves
the distribution function. Even when the nonequilibrium
distribution function differs from a Fermi-Dirac distribu-
tion, it may be characterized by a chemical potential
p(r, t)=p +5p(r, t) which serves as a measure of the lo-
cal density at a given time. Therefore we obtain

1 ds56 (r, r, s, t)=5p(r, t)=No(r, s~)5p(r, t} .
i 4m.

(2.27)

Here we dropped the dependence of the density of states
on t because it gives a higher order on 6t not necessary
for the 1inear response. Our goal will be to obtain an
equation describing 5p(r, t), and therefore avoid dealing
with the nonequilibrium distribution function f. Notice
that being a displacement from the equilibrium state, 5p
can take both positive and negative values.

III. THE SEI.F-ENERGIES
AS BOUNDARY CONDITIONS

A. The escape to the leads

In this subsection we will seek an effective operator
acting in the subspace spanned by the isolated sample
eigenfunctions which nevertheless is able to represent the
escape of particles to the leads. For simplicity let us con-
sider a discrete basis for the space coordinate (tight-
binding model). The connection to a lead S is represent-
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H = Vs', sg (r s, t)'P(rs, t)+ c c. (3.1)

Here g is the destruction operator at site rs in the sam-

ple. Similarly, rs. is the site in the lead. The interaction
lead sample will be given by the retarded and advanced
self-energy components:

ed by a single hopping element. The noninteracting
Hamiltonian is the direct sum of two terms, one describ-
ing electrons in the points r; inside the sample and the
other describing electrons in the points r;. on the lead.
Primed indices will be used to identify points in the leads.
The interaction is turned on at a very early time tp &&0

and can be represented by

"' X (rj, r„,t, , tk)="'pX "(r,,r„,t, , t„)
= Vss 5(r —rs)5(rs, —rk )

X5(t, t„—)B( ,'(t,-+ t„)—t, ), (3.2)

while the Keldysh part of the self-energy is

hoPyk P (3.3)

representing that no particle is lost or gained by cause of
the interaction. In what follows we will forget the time
variables and we will use a subindex representing the spa-
tial variables. In absence of interaction with the sample,
the lead is represented by the function in the Keldysh
space Cs s.. Iterating once with Eq. (2.9), using h'pX as
an interaction, and selecting coordinates inside the sam-
ple in Eq. (2.9), the Keldysh function becomes

gK —gOK+gOK [hopyA gOA hopgA ]g A +gOR [hopyK gOA hopyA ]g A
2, 1 2, 1 2,$ $,$' S',S' S',S $, 1 2,$ S,S' S',S' S',S $, 1

+gOR phopgR gOK hopgA ]g A +gOR [hopgR gOR hopyK ]g A +gOR [hopgR gOR hopyR ]gK2,S L S,S' S',S' S',S S, 1 2,S S,S' S',S' S',$ S, 1 2,S S,S' S',S' S',S S, 1 (3.4)

The second and fourth terms in square brackets are zero.
Since the terms in square brackets have external indices
denoting points on the sample, the first, third, and fifth
brackets may be identified as the only nonzero elements
of a new self-energy:

and

S R OR
&s,s = ~s,s'Gs', s'~s', s

S K OK
&s,s = ~s,s'Gs', s'~s', s

S A OA
&s,s = ~s,s'Gs', s'~s', s

(3.5a)

(3.5b)

(3.5c)

I (r, rk, s, t) = 5(r —rs )5(rs rk )8(t to)—2TS
(3.6a)

and

respectively. These account for the correction due to the
escape toward the lead S which must occur through the
site rs. The difference with the original self-energy which
accounts for the hopping between the sample and the
lead, is that the one just defined operates only on the sam-
ple subspace. All the degrees of freedom in the lead are
traced out in the evaluation of the Gs. s. Therefore, Eqs.
(3.5) represent the process of decimation" of the lead.
Besides, in the above expression there are two integrals
over internal time variables. Since "' X(tj, tk ) is a 5 func-
tion in the time difference, both integrals are trivial.
Consequently, the dependence of "'pX on the time vari-
ables is just that of the function G (t , tk ). Substituting in.
(2.25), one obtains

1 2m
s,s ~ No(rs s) .

Ts
(3.7)

E, 2 =i 2 psrstS K (3.8)

From (3.5a) we see that the validity of the steady-
spectrum approximation to describe the sample will de-
pend on its validity for the description of the lead. Final-
ly, it is obvious that the presence of many leads or
different propagating channels within a lead will simply
add a summation index n taking the values I S,L,R, . . . ],
in self-energies of the form given above, that is,

An important observation is that the occupation func-
tion that enters in this Keldysh self-energy is the occupa-
tion in the lead, which does not need to be a Fermi-Dirac
distribution. We also notice that the results of this sec-
tion did not require any particular model for the elec-
trons in the sample or the lead. The only simplifying
consideration was the use of a discrete basis for the spa-
tial variable. Besides, from Eq. (3.6) we see that if the
steady-spectrum approximation is valid for electrons in
the leads (we will assume that this is the case), this ap-
proximation is automatically valid in the description of
the lead-sample interaction. A further simplification
arises when one considers the linear-response regime.
According to Eq. (2.27), one is interested in the integral
over energy of the variation of X compared with its
equilibrium value. We can call 5ps(rs, t)=5ps(t) and
this gives

X (rj. , rk, e, t) = —i [ 1 2f( rs, e,, t)]5(r~ —rs )—
+S

esca y ny (3.9)

both with

X5(rs —rk )8(t —to), (3.6b) Note that according to Eqs. (3.5) and (3.6) these self-
energies may contribute in different regions of the real
space.
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B. The electron-yhonon interaction

H, „=gf dr pt(X)1((X)p(X) . (3.10)

In this section we follow the results introduced by
Caroli et al. ' and we will transform them to our nota-
tion using approximations that reduce them to the simple
self-energy forms used in Refs. 3, 4, and 6. The electron-
phonon interaction can be described by the Hamiltonian

In this approximation the mean-life results independent
of the electron occupation. This leads to the cancella-
tion, in the kinetic equation, of the terms quadratic in the
electron occupation. This, in turn, leads to a time-
independent equation for the retarded Green's function
consistent with the steady-spectrum approximation.
Since the thermalization on the leads can be described by
(3.10) this is consistent with the approximation adopted
to get Eqs. (2.18) and (3.8). In order to decouple the
equations for different energies, we can write

The electron-phonon contribution to the self-energy, in
the Migdal approximation, ' is given by

~X ' '(rz, r„e,t)=g f de;D ' '(rz, r„e;,t)

&X (r, , r„,E, t) = —i2 ~I (r, , e)[1—2f (e, r;, t)]

X5(r —r;)5(r; —rk), (3.15)

(3.11)

From these expressions we evaluate the Keldysh function
and the corresponding energy broadening according to

ri, e, t)=[ X (r2, r„e,t)+ X (r2, r„e,t)],

2 ~I (rz, r„e)= —21m~X (r2, r„e, t)
(3.12)

=i[~X (r2, r„e,t) —~X (r2, r„e, t)] .

In order to get expressions that can be handled analyti-
cally we will need to perform some approximations in Eq.
(3.11). A nice simplifying assumption introduced by
Caroli et al. ' is the local phonon model, which consists
in approximating the phonon spectral weight by

This expresses that the scattered electrons are reinjected
with the same energy. By doing this, we renounce the
possibility of describing the energy dissipation. Instead,
we get a much simpler equation in which the densities of
electrons are balanced for each energy independently.
Therefore the structure of the self-energy due to the
electron-phonon interaction looks similar to that due to
the leads. However, even when we will employ the usual

assumption that the phonon bath is kept in thermal equi-

librium, the electron distribution function should be eval-

uated self-consistently with the kinetic equation because
it contains the nonequilibrium occupations within the
sample. This is a substantial difference with the self-

energy produced by a lead acting as a voltage source.
In the same spirit as Eq. (2.27), we can define the varia-

tion of the self-energy with respect to equilibrium, and
evaluate its integral over energies in a linear-response ap-
proximation,

(3.16)

B(rz, r„e)=2~J0(rz, e)5(r2 —r, ) . (3.13)

This is justified' by the slowness of a phonon excitation
as compared with the electron Fermi velocity. As a fur-

ther simplification, in the evaluation' of Eq. (3.11) we

take n (E)+ 1 =n (e). This is equivalent to assuming that
the temperature is high enough for the phonon absorp-
tion and emission to be considered similar. In that case
we can write

2 ~I ( r, c, ) = iri/~&

=g' f Jo«, IE, I)« IE; I)

X ,' [No(—re+E;, )+No(r, e e)] d—;e.

(3.14)

which here implies replacing the energy-dependent in-

teraction rate by its value at the Fermi energy.

IV. THE KINETIC EQUATION

Until now we have developed the basic formalism. Let
us apply it to the solution of the time-dependent trans-
port, restricting ourselves to the cases in which the spec-
tra are time independent (steady-spectrum approxima-
tion). We are interested in the evaluation of the occupa-
tion in a given point of the space r= [r2+r, ]/2 integrat-
ed over the momentum coordinate p. Besides, in our
mode1 we have adopted a form for the self-energies which
is a superposition of 6 functions in the space. In this case
the meaning of Eq. (2.18) will become more transparent if
we write it as
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and

p, (r, r;, co)= G"(r2, r, , a+fico/2)2'

X G "(r;,r„s—%co/2)
1

ftfo r, e r =r =r
1 2 1

(4.3)

Notice that from Eq. (4.3) we immediately verify that
(a) P(r, r, , co) is analytic in the upper complex co plane, (b)
its real part is even and its imaginary part is odd with
respect to real co, and (c) P(co)~0 uniformly as ~co~~ao.
Therefore P is a response function which should have a
simple meaning in its hydrodynamic limit. These con-
siderations suggest that for low frequencies we can per-
form an expansion of the form

1
P, (r, r;, co) =P,(r, r;, co) ~„

1 l co'Tq

where

(4.4}

—6 "(r, , r, s) [1/6 "(r,, r, E)] (4.5)

This is still too formal. In order to understand more
deeply the meaning of P, let us consider a few limiting
cases for which we know explicitly the behavior of the

where we have defined

p, (r, r;, t t;—)= J exp[ i—co(t t, —)]P,(r, r, ,co) (4.2)
dc'

Green's functions. Notice that Eqs. (2.3)—(2.5) require
the exact Green's functions of the many-body system re-
normalized by the inelastic processes. To get a simpler
interpretation we consider the independent-particle
Green's function and neglect the dephasing interactions.
The latter can be included afterwards anyway.

In the case of ballistic propagation in a crystalline sys-
tem the Green's function has the form'

G "(r,r;, e) rcexp[ip, ~r
—r;~/A') . (4.6)

Remembering that u, =BE/Bp„we can obtain an expres-
sion of the form of (4.4), being r~ = ~r

—r;) /u, the time of
flight from the initial site to the final site of a wave packet
with the Fermi energy.

The case of resonant tunneling is also an important one
and will be analyzed more carefully in a later section.
For now it is enough to notice that in this case the
Green's function is dominated by a single eigenenergy'
E0 and has the form

1
G "(r,r;, s) tx: (4.7)

where b, and I depend on s, but at e=Eo —5(e) they
can be taken as constant in a first approximation. Again,
we obtain an expression of the form of (4.4), now with
7

q
A /F That is, the resonance width determines the

transit time through the resonance region.
Finally, we can consider a diQusiue case. In this case,

the electron collides elastically with impurities within a
characteristic time ~,~. It might seem more difficult than
the previous cases because we do not have an explicit ex-
pression for the Green's functions. However, we can
evaluate P' averaged over configurations of impurities in
a ladder approximation. In fact, we know' ' that

p;(r, r, , t t, 1=ff f G—" p+ P, r+ G "
p — r —

)
OA ~'q

21r av

1p exp [ i co( t t; ) ]dc—o exp—[q.(r —r, ) ]dq
1

No(e)

=8(t t, )[4mD—,(t t;)]. ~ exp[ —~r——r, ~ l4D, (t t;)], — (4.8)

where D, =v, ~,&/d. For a dimension d 2, the integral
in time diverges unless the exponential attenuation aris-
ing from the dephasing rate 1/~& is taken into account
explicitly, and the integral depends on ~&. However, for
higher dimensions the time decay is fast enough and we
an approximate the finite frequency result by the form of
(4.4) with rq being replaced by rq= ~r —r;~ /(2D, ), that
is, the diffusion time.

Therefore, from the above examples we see that P
given by Eq. (4.9} is the density propagator in absence of
dephasing processes. It gives the probability, that a par-
ticle placed in position r, at time t;, reach point r at time
t,

Xexp[ (t —t,. )/r ] . —(4.9}

The above approximation neglects the contribution of
quantum beats. In the general case Eq. (4.2) can oscillate
between positive and negative values, representing the
energy-time uncertainty. The nice property of the low-
frequency expansion is that it captures the essential
features of the function (positive integral, characteristic
decay} without introducing new parameters. This would
not be the case in a calculation with actual wave packets.
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Besides, the approximations (4.4) and (4.9},while simpli-
fying the interpretation, are not a necessary assumption
of our formalism.

All the above results are easily extended to include the
presence of an homogeneous dephasing field. As seen in
Sec. IIIB, the degradation of the coherent beam de-
scribed by P' appears automatically in the Green's func-
tions satisfying the Dyson equation (2.10). The imagi-
nary part in the self-energies E~E —i'/2~& results in a
change co~co+i Ir& in Eq. (4.5), that is,
P, (co) =P;(co+i lr&) Fo.r very weak dephasing, the
time-dependent probability is also obtained substituting

by r =r r&l[r~+r&] in the coherent expression.
Therefore, P=(1—r~lr&)P' is the coherent part of a
density propagator. P is reduced from P' due to the
leaks produced by the dephasing collisions along the
pathways.

Now we are in a position to return and analyze the
physics contained in Eq. (4.1) in the linear-response ap-
proximation. With this purpose we first evaluate
56 (r, r, t, s)as defined in Eq. (2.27).

Let us now simplify Eq. (4.1) using a linear-response
approximation which allows one to neglect the depen-
dence of P, on energy and take it out of the integral. Us-
ing (2.27) and self-energies of the form (3.9) in the ap-
proximations (3.8) and (3.16), we obtain

5p(r, t)=g f f dr, P, (r, r, , t t, )
—5p (r;, t, ) . (4.10)

dt

a 7 Q

The nature of this integral equation becomes more clear
when the only process contributing to the self-energy is
the electron-phonon interaction. Then, the only channels
are those associated with the phonon field and

5p(r, t)=5p&(r, t) Introdu. cing an electron at point rp at
time to, the resulting variation in the density at a later
time t will be

P, (r, t, rp tp)= P& (r, rp t tp)

write Eq. (4.1) in the form of a generalized Landauer-
Biittiker equation. We can write this equation in terms of
the transmittances used in Eq. (1.1), by using a Fisher-
Lee formula: '

T& (r, r;, co) = [2~1 (r, s)]P,(r, r, , co)

X[2 1(r;,s)]Np(r, ,c), (4.12)

= [1—R&(r)]=—[g(r}] (4.13)

Here R&(r) defines a refiection coefficient slightly
different from the usual because we did not set the usual
restriction PAP in the sum. The "locator" g will be later
used in the series expansion of the density propagator.
Therefore, setting the term in Eq. (4.2) at the right and
performing the substitutions of Eq. (2.27) and (4.12), we
obtain

0= g f f dr;dt, T&&(r, r, , t —t, )5@&(r,, t, )
2e

P

which now is generalized to include time-dependence and
dephasing processes. It reduces to the usual transmission
probability T& (r, r, ) by taking co~0. Here P and a la-
bel the different processes (channels) contributing to the
self-energy at sites r and r;, respectively. With this no-
tation the right-hand term in Eq. (2.18) can be reduced to
the form of the out term in Eq. (1.1},by writing the self-
energies in the linear-response approximation (3.8) and
(3.16). The term on the left of (2.18) can be reduced to
the in term in (1.1), using the linear-response approxima-
tion of Eq. (2.25) and writing the density of states using
Eq. (2.22):

2~Np(r, s)[2~I (r, s)]=+ f f dt, dr;T&&(r, r, , t t, )—
I3

=g f dr;T&tt(r, r;)
P

dt;+ f f dr, P, (r, r;, t t;)— —[1—R ~(r) ]5p~(r, t) (4.14)

XP (r t rp tp)F
(4.11)

where now it is clear that with this special boundary con-
dition 5p(r, t) =P, (r, t, rp, tp) can be interpreted as a den-

sity propagator in presence of dephasing interactions.
This equation also makes explicit an important feature of
our model for dephasing: a 5 function in space coordi-
nates relaxes both phase and momentum. That is, after
the interaction there is no memory on what the momen-
tum was. This fact is essential to simplify the original
Eq. (2.18), because in the nonequilibrium situation the
distribution function is momentum dependent, represent-
ing the finite currents present in the system. However, it
is clear from Eq. (4.11) that the number of dephased elec-
trons at any time t,. is proportional to the total variation
on the local density 5p(r;, t, ) and to the probability
dt,-/~& that a decoherence process takes place in the time
interval dt, .

For computational purposes, it is more practica1 to

which is the generalized Landauer-Biittiker equation
(GLBE). Here we have multiplied by a factor 2,
representing the spin degeneracy, and by the electron
charge so the equation has the units of an electric
current. The greek subscripts label the processes contrib-
uting to the self-energy associated with each point in the
real space. By relabeling the sum over space and chan-
nels over a single summation index, say P', the above
equation is reduced to the form given by Eq. (1.1). Equa-
tion (4.14) establishes that no electron is lost due to
scattering with the phonon field. We wi11 analyze the ac-
tual current in the next section.

V. KVAI.UATION OF THE CURRENTS

Once we have obtained the self-consistent X, either
exactly or using the linear-response approximation of Eq.
(4.15), we can evaluate the Keldysh function using Eq.
(4.1) with r2%r, and from this evaluate the current
through any surface. However, in order to obtain a
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simpler expression for the current in the spirit of the
Landauer-Biittiker equations, let us consider again the
discrete lattice with a lead attached as introduced in Sec.
III B. The current leaving the site S and entering the site
5',

is, s = „(Vs—,s Afs Vs,—sos 4s)

= ~s, s'Gs', s ~s', s Gs, s (5.1)

That is, the current is simply expressed in terms of the
nondiagonal elements of G, which are related to 6 by
Eq. (2.5c) or equivalently

This is interpreted more clearly in the linear-response re-
gime. Since the corresponding current in the equilibrium
case vanishes, it is convenient to subtract it from Eq. (5.6)
as we did in Eq. (2.27). We replace 5G and No using the
expressions (2.18) and (2.22) evaluated in the steady-
spectruin approximation. We obtain (5.6) with the substi-
tutions G ~56 and X ~5X . Then we perform the
energy integration according to Eqs. (2.27) and (3.8). Us-
ing the notation of Eqs. (4.12) and (4.13), we can write

Is(t)= y f f dr, dt, Ts&(rs, r, , t t;)5—hatt(r, , t;)
2e

P

and

6 =—'6+ —2
2 2

(5.2)
Iis(rs) its(rs t) (5.7)

X' =—'X +iI
2

Using Eq. (2.9) and its transpose, we write:

(5.3)

Gs, s Vs,s =(Gs,s Vs, s Gs,s + Gs, s Vs, s Gs, s ) Vs, s
R 0& OA

GR sy& +6& spy (5.4)

and

Vs, s Gs,s= Vs, s «s, s Vs, sGs, s+Gs s Vs, sGss)0& A OR

S & A S R= &S,SGS,S+ &s,sGS, S . (5 5)

The above quantities are evaluated at t2 = t, =t. It
remains an integral over internal time which can be eval-
uated by expanding in series and dropping the gradient
term. In that case all factors in the products on the
right-hand side (rhs) result evaluated at the same (final)
time and the integral on internal times becomes an in-
tegral in energy. With the use of (5.2) and (5.3), Eq. (5.1)
can be written in terms of 6 and X . The electric
current leaving the sample becomes

Is(t)= [ I (rs, E, t)G (rs, rs, e, t)
2e s
ht

—
—,
' A (rs, rs, s, t) X (rs, rs, e, t) }d e . (5.6)

Equation (5.6) is very useful because it describes a general
nonlinear regime (provided that one has the Keldysh
function). The first term on the rhs is an out contribu-
tion. It accounts for electrons leaving the sample and
entering the current lead at time t, having had their last
interaction at some previous time. Reciprocally, the
second term represents the electrons which at time t are
leaving the lead toward the sample. It is the in term.

=2eNs 5ys(t),
dt

(5.8)

where NS=N~Qs is the total density of states in the
volume Qs. 5ps(t) is a mean shift in the chemical poten-
tial which, in general, is different from the chemical po-
tential at the contact site defined in Eq. (3.8). However,
they are equal under certain conditions, as will be dis-
cussed in Sec. VI C. If that is the case, equating (5.7) and
(5.8), we obtain a generalized master equation for the
chemical potentials.

Another usual situation is that of a dissipative sample
connected, at points rL and rz, to two leads (left and
right) which act as Uoltage sources Assum. e 5pL )5pz so
they act, respectively, as current source and sink. With
the use of a decimation procedure, '" it is possible to ex-
press all the internal chemical potentials associated with
the electron-phonon interaction in terms of the external
voltage V determined by the difference
5p,„,(t) =pL —p„:eV(t). Using Eq. (4.1—3), we get

(5.9)

with

which has an obvious interpretation in the Landauer-
Buttiker picture.

It is worthwhile to consider the case in which the
external lead is itself a finite system (e.g., a dangling
wire), so that the exchange of electrons is only possible
through the contact described by Eq.(3.1). This situation
is relevant for the experiments because it can be used to
model a voltage probe. In that case the net current pro-
duces a change in the total charge Qs in the lead:

Is(t)= Qs(t)—= — . G (rs, rs', t, t)drs'
d 2e d 1

dt h dt &~ i4m.

Xg (ri )T(ri, rk, tj t„)g (r„)T(r„,ri, tk t, )+— — (5.10)
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which is a generalization of Eq. (2.3b) of the work from
O'Amato and Pastawski. Here it was extended to con-
sider problems with time dependence. The locator g is
defined by Eq. (4.13) and is a manifestation of the local
model adopted for the self-energies.

VI. TIME-DEPENDENT RESONANT TUNNELING

A. General features

(bl

WR L

FIG. l. (a) Scheme for the steady-state dissipative tunneling.
The triangle is a scattering center and the circles represent
reservoirs. The left (L) and right (R) channels are connected to
voltage sources (external reservoirs). The channel S is connect-
ed to a voltage probe or an inelastic process, also represented as
a reservoir. (b) Quantum dot with dissipation. The boxes
represent the confining region for the electron gas. The channel

P represents a dephasing field (e.g. , phonon bath), the dotted cir-
cle indicates that interacting electron remains in the central dot
O. If the confinements along the y and z axes are removed we

get a double-barrier resonant tunnel diode. (c) Quantum dot
coupled to a dephasing side dot. The side dot is assumed to
have fast phase relaxation. If the confinement along z is re-
moved a quantum wire configuration is obtained.

We apply the formalism introduced to the problem of
resonant tunneling with different dephasing processes un-
der time-dependent boundary conditions. For concrete-
ness we can think of the situation schematized in Fig.
1(a). There, a quantum dot, 0, is in contact with two
electron reservoirs L (left) and R (right) through some
weak connections. Since their chemical potentials will be
given as boundary conditions, they play the role of volt-
age sources. Besides, the electrons in the dot can interact
with some generic source of decoherence, S, character-
ized by a time rs (or r&). We consider two different
decoherence processes, a dephasing field and a side probe,
as schematized in Figs. 1(b) and 1(c) respectively. In both
cases we neglect the dynamics of the electrons while they
are tunneling through the barrier. This approximation is
correct provided that the energy height [~(a.)' ] and
length L of the barrier are optimized so that traversal
time, (r ~ L, /a), is minimized while the tunneling am-
plitude, proportional to exp( aL, ), is m—aintained con-
stant. As an idealization we assume that the electron-
electron interaction has been turned off. The electron-
phonon interaction inside the reservoir is implicitly taken
into account by allowing the relaxation rate inside the

h
Tg I. = Tg I (a))l =p= G(co)

=T + Rs sLT T
R, L

Tz s+Tsl
(6.1)

reservoirs to be instantaneous. This is justified because
the number of quasidegenerate degrees of freedom within
the range A/~& allows any dephasing process to be very
effective there. These assumptions will allow us to con-
centrate on the physics of the decoherence processes dur-
ing the tunneling through the dot and the time-dependent

problem.
In case (b) the electrons can interact with some dephas-

ing field while they pass through the dot. Therefore, dur-
ing the interaction they find themselves localized inside
the dot and this becomes the initial condition for a new
evolution. Examples of this are a capacitive contact with
an external lead, in which the photons play the role of a
dephasing field, and the phonon field already discussed.
The later is considered here by using the approximated
self-energies given in Sec. IIIB. These cannot account
for the effects related to energy transfer (vertical process-
es). Therefore, we will refer to them as dephasing pro-
cesses instead of inelastic. This restriction does not affect
the main features of transport.

In case (c), there is no dephasing interaction inside the
dot but the electrons can tunnel toward a side dot S. No
particle can escape from this dot except through the SO
connection. However, S will be considered to have a
good coupling rate 1/r&. with the external world through
some dephasing processes. We can assume that it has
magnetic impurities, a better coupling with the phonon
bath, or simply a quantum nature which allows any of
these couplings to be more effective. In the last case, the
side dot may be disordered or chaotic so that the degen-
eracies are broken, giving a typical energy spacing
oE « fi/~&. . This would make the dephasing very
eScient in scrambling the incident state into a wide re-
gion of the phase space. Under any of these situations,
we will not need to know the exact nonequilibrium distri-
bution function since it will be a smooth function of the
energy. In the linear-response regime, upon integration
over energy and space, a chemical potential shift 5ps is

enough to characterize the state of the side dot.
Both cases, (b) and (c), appear as equivalent in the

steady-state transport but will show up their differences
in the time-dependent problem. In case (b) when an elec-
tron is lost from the coherent beam, it remains in the cen-
tral dot. In contrast, in case (c) the electrons actually
leave the dot and are eventually reinjected at a later time.
A steady-state problem which can be assimilable to the
above cases was already addressed in the literature.
Buttiker noticed that a voltage probe S, represented by
an additional electron reservoir adjusted to provide zero
net current, can be interpreted as a decoherence process.
By using a scattering matrix to represent the interactions
between those three reservoirs, he got the transmission
probabilities T~ L, Tz s, and Tsl, and found that the
effective transmittance (or conductance G) between the
reservoirs L and R is
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H'=Eoco~co . (6.2)

This has an obvious interpretation in terms of a circuit
analogy in which the Ps are conductances. However, the
T's are not independent because they are obtained from a
unitary scattering matrix. This property makes evident
the fundamental feature that distinguishes the Landauer-
Buttiker description from a classical one. The equations
look like a classical master equation with independent
transition probabilities; however, these probabilities
should be chosen so that they satisfy the precise features
of the quantum interference. This interdependence is
best accounted by the use of a Hamiltonian model.
Biittiker also noticed that the first term of (6.1)
represents a coherent tunneling while the second ac-
counts for incoherent processes originated in the presence
of the voltage probe S.

In what follows we show that the above picture of the
steady state is right and we solve the time-dependent situ-
ation. For this we use a simple Hamiltonian which can
model various different physical situations depending on
the values adopted for the parameters. Let us assume
that there is a single resonant state at the dot with
characteristic energy Eo and whose occupation may Quc-

tuate to allow the transport in the linear-response regime.
The unperturbed Hamiltonian which describes the iso-

1ated dot 0 of volume Qo is

b(s)= —PI, ds'.1 r(s')
(6.8)

A similar description will be adopted for the right-
hand side lead and the side dot S (or phonon field P). We
can replace the label L by 8 or S (or P). In the resonant
case, in which there is no need for a spatial argument in-
side the dot, we obtain as the total self-energy:

I (s)='r(s)+ "r(s)+'r(s), (6.9)

b(s)= h(s)+"b, (s)+ b(s) . (6.10)

The central dot plays a decisive role in the kinetics be-
cause it determines the transmission probabilities. These
are evaluated in terms of the Green's function at the cen-
tral dot,

(6.11)

where the real and imaginary contributions to the self-
energy are given above. If we consider the limit in which
I VL I I / V ((1we can evaluate

with the individual contributions given by expressions of
the form of Eq. (3.7) [or (3.15) for &I ]. From (6.8) we also
obtain

The left lead I. and the hopping interaction can be
represented by the Hamiltonians:

H =El.CI CI = dkIEk cp ck
L (6.3)

I. L I.

Go, o (s+ i)iso/2) Go, o( s —A'co/2

1=Go, o(&)Go,o(&)
1 I,Ntq

(6.12)

H —
VL, L, cL, cL, +C. C.

OL
(6 4) where

Here EL (s) =Et +At (s) i I L.(s) an—d the equivalence
between the localized and the extended description is
given by the fact that

r~(s) = wm

with

(6.13)

I«lk. & I'
[E—EL (s)] '= f dkL .

s —Ek
(6.5)

w(s)= r(s)
[s Eo —b (s ) ] +—r(s)

For the particular case in which the lateral lead is a
periodic linear chain, expression (6.4) becomes simple be-
cause we know that

and

bt (E)=(s—EL )/2, (6.6a)

while

I (E)= I V —[(s—E )/2] I'

and from these we evaluate

(6.6b)

(6.7)

In the notation used XL is the self-energy correction to
the site of the lead in contact with the dot, due to the rest
of the lead. X is the self-energy correction to the dot
state due to the presence of the lead.

To obtain the energy shift from an expression such as
(3.6) or its equivalent in the momentum space, we exploit
the analytic properties of X using

At resonance, the term in square brackets cancels out. I
is very weakly dependent on s. Since

I VL t I/V((1, the
last two terms contributing to m are small and we can
take m =1. Hence the transport time has a Lorentzian
shape described by w. Therefore the relevant indepen-
dent parameters in the transport equation are the escape
rates to the left, rL =iri/(2 I ), to the right
rii =A'/(2 I ), and to the side rs =iri/(2 I') (or dePhas-
ing time r&) The recipro. cal of the natural lifetime in the
absence of dephasing is defined as 1/7, =1/7L+1/7~
=2w /tq and the total decay rate from the coherent reso-
nant state is 1/to = 1/7&+ 1/tz 2w/tq.

We can obtain an alternative way to write the
transmission coefficients using Eqs. (4.13) and (4.14) and
taking m~O and I = 1:
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(ro)
TR L=4

+L +R
(6.14)

Tg sTsL (ro )
l8

Tz,s+ Ts L (rL+ Qg )7s
(6.15)

These equations are useful because they are written in
terms of parameters which can be controlled indepen-
dently [e.g. , the width of the channels separating the dot
of Fig. 1(b) from the external world]. We will consider
only the resonant situation (w =1), which simplifies the
analysis of the main physical processes involved in dissi-
pative tunneling. To study other energies we can rewrite
the Lorentzian factor w(e) in the expressions for T's and
7

q
4

We will use pL(t) and IJ,R(t) as boundary conditions, in

particular we will take

pL(t) @=5—pL, (t) =5@'"'cos[cot],

while

(6.16)

(6.17)

That is, the leads are Uoltage sources because the values of
their chemical potentials are not affected by the transport
through the dot. We obtain the current entering the
right-side lead

blockade phenomena. The main physics on that
phenomenon lies in the fluctuation on the energy spec-
trum in a Hubbard energy U greater than the single-
particle energy splitting. The linear-response regime can
be studied with the use of the steady-spectrum approxi-
mation, but it still requires a self-consistent Green s func-
tion. Since this involves the specific state of occupation
of the dot states, the Green's function is less simple than
(6.11). However, this is not required if we consider sys-
tems with less-localized states because U is smaller. This
is the case of a double-barrier resonant tunneling device
(DBRTD) at finite temperature. This corresponds to a
dot whose confinement lengths in the directions y and z in
Fig. 1(b) have become infinite. Provided that the ap-
propriate integrations over the transverse degrees of
freedom are performed, the results of the next section will
be valid in this case.

We may also conceive alternative configurations
governed by independent electron physics. We search for
a device that, while resembling closely a tunnel-diode,
also includes the possibility of a side reservoir coupled to
the resonant state. For example, if the confinement
length in direction y in Fig. 1(c) becomes infinite, what we
call a dot is actually a quantum wire, being the reservoirs
I. and R both two-dimensional semiplanes, and the side
reservoir a second wire layered below (or above) the first.
Hamiltonians of the form (6.2)—(6.4) remain valid for
each transverse quantum number. For simplicity we

keep referring to our model system as "quantum dot."
I„(t)=Re[It, (co)exp(

idiot)],

— (6.18)
B. Resonant tunneling with decoherence

by evaluating I„(co)=(2e /it ) T(to)5p'"'
We have already identified the main parameters of the

transport equation and we can discuss the conditions of
applicability of the model. The study of the interacting
dot has been an object of great interest because it is relat-
ed to devices which operate through the Coulomb

First, we consider a resonant structure, in which the
electrons can lose coherence while they are inside the
structure [Fig. 1(b)], for example, due to collision with
phonons. The distribution function of the dot appears
explicitly in the kinetic equation (4.14), which becomes

[1 R~]5@~(t)=f—[T~ L(t t; )5PL(t, )—+T~ q(t —
t, )5Ptt(t, )+Tt, ~(t t, )5@~(t,)]dt; —. (6.19)

We proceed through similar considerations to that lead-
ing to Eq. (6.12) and show that the Fourier transform of
the time-dependent transmission probability has the form

LCO7
q Ty y1—

1 —l N7q TL,y+ TR, y

with

Tp
Ty L (ci))—

1 l 67'Tq
(6.20a)

1 ext

1 l co&
(6.21}

(6.22a)

Notice that the term which contains co on the left-hand
side arises from the failure of the term

Tq 27 ] 2T)
(6.20b)

Notice that we set m =1 and take c, giving w(s)=1.
Here ~, is the mean life of an electron in the dot in the
absence on electron-phonon interaction. Let us consider
the boundary conditions represented by Eqs. (6.16) and
(6.17). The local chemical potential becomes

l
+lag +q

1 p

(6.22b}

to cancel exactly as occurs in the steady state. This term
represents the fluctuation in time of the number of elec-
trons which suffer reiterated inelastic collisions inside the
dot. These electrons are lagged by a time
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This is about 7q=27&))7q for very strong dephasing
processes and becomes negligible when the dephasing
process is weak. Dropping the term of order co, we ob-
tain

Ty L
5p~(to) = ' 5p'"' .

TL,t,+Tg, t, 1 i—co(r~+ri, )
(6.23)

This shows that the chemical potential is measuring the
amount of electrons inside the well, no matter if they are
coherent or not with the source. Besides, it is interesting
to notice that the resulting time is not the tunneling time
through the left barrier, 7L, but a time which is essential-

ly twice the minimum between 7L, 7R, and 7&. This is be-

cause the density of states on the well, which is essentially
proportional to 7q =270, determines the dynamics.

The total current entering the right-hand-side reservoir
can be evaluated using Eqs. (5.10) or (6.1), and we obtain

r„(~)=-"r,(~)+-qr„(~), (6.24)

where the first term represents a coherent tunneling
through the central dot:

cohr 2e TR, L ext

1 /N7
q

(6.25)

which has the delay time showing two contributions, one
is twice the time the electron would need to get into the
well and the other is the contribution of the electrons
lagged by subsequent dephasing collisions. The transmit-
tances can be replaced using (6.17) and (6.18). Then, the
sum is performed keeping terms up to order co, and we

get the tunneling impedance:

1/6 (to) = 1/6 (0) icoL, — (6.27)

where 6 (0) is the dc conductance given by (6.1). The in-
ductance is

L =ra/6(0) . (6.28)

This is a very remarkable result because it shows that the
characteristic delay in the response of the device is in-
dependent of the presence of decoherence processes in-
side the dot. That is, even when the tunneling resistance
becomes the classical addition of the resistances associat-
ed with the barriers, the delay is still determined by the
quantum regime. Equation (6.28) is also valid out of reso-
nance. In this case, since both the time and the conduc-
tance contain the shape factor w(e}, the inductance re-

Its characteristic delay time is the mean life of the
coherent electron in the well, which is shorter than that
in absence of dephasing processes. The sequential part of
the current is

seqr ( )
2e R, P P, L 1

g ext
T T

CO p
Ttt, y+ TP, L 1 tco(27 &+1i—«}

(6.26)

suits energy independent.
These results are consistent with the experiments on

frequency dependence of the differential conductance in a
DBRTD at room temperature. Our model is particularly
applicable to that system because, having the state of a
two-dimensional degeneration, the problem of differential
charging effects is negligible, and hence the drop of the
time dependence in the Green's functions [Eq. (2.18)] is a
good approximation. Since the static field ( Vz, ) polarizes
the device (eVd, )sz) completely, the current is carried
out by the states of each transversal mode with energy
close to the corresponding resonance. Besides, the
differential conductance can be considered a linear
response relative to the oscillating field (eV„((l ). The
experiments show that a differential tunneling resistance
has associated an inductance with a value such that the
delay time associated is of the order of the inverse of the
breath of the resonance as given by a quantum calcula-
tion (without dissipation). For coherent tunneling,
theoretical results were obtained by Frensley from nu-
merical solutions of the density-matrix formalism. A
similar regime corresponds to the analytical results ob-
tained by Chen and Ting ' using a path-integral method.
Both show that at low temperatures the delay is deter-
mined by the natural width of the resonance. However,
the appearance of this characteristic time in the room-
ternperature experiment remained puzzling. The fact
that the electron-phonon interaction broadens the reso-
nance might suggest that the response could be made ar-
bitrarily faster by increasing the temperature. Our result
above, obtained in the linear-response regime at zero bias,
shows that this is not the case, since the response time is
quite stable against modifications in 7&. This result holds
also in the calculation of the linear response of a biased
DBRTD, which includes the integration over energy and
transversal momentum. A more complete discussion of
this experimental situation will be presented elsewhere.

C. Resonant dot coupled to a dephasing side dot

This case requires a model for the lateral dot S of
volume Qz. Since S is finite it should have a discrete
spectrum. However, since we assume that S is well cou-
pled to a dephasing process, its spectrum becomes contin-
uum and S is well described by a Hamiltonian H of the
same form as (6.3). Again, we neglect any effect of the
dynamics of electrons inside Sby assuming an instantane-
ous chemical potential ps(t)=ps(t). Then Eq. (5.8) be-
comes

— dIs(t}=2eNs 6ps(t), —
dt

(6.29)

where N&=N+Q& is the density of states in the volume
s.

Therefore, Eq. (5.7} gives the change in the number of
particles in the lateral dot and bee+mes

2~N, = f t T( t t, )S'IL(t, )+T, „(t t, )&i,„(t;)+Tss(t —t; }5ps(t;)l«; (I —~sl&Ps(t) . —a5ps
(6.30)
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Note that since we have not defined any dephasing pro-
cess inside the central dot its occupation does not appear
explicitly in the kinetic equation.

By using the Fourier transform of Eq. (6.30), we can
obtain

7= ( Xs /So ) [q. , +1s ]+q.
q ~S

(6.32)

Here the second term is a lagging analogous to Eq. (6.23),
which now is produced by the side dot, and can be
neglected for small interaction. The remaining term
expresses the simple fact that an electron can enter the
side dot after it was injected in the central dot either by
the L or the R lead. We have written this time in a way
which expresses the possibility of achieving its experi-
mental control. In fact, the total density of states in the
side dot is proportional to its size. On the other hand,
the value of ~s depends on the length of the barrier
separating the central and the side dot, and some local
density of states. Both can be eventually controlled by
adequate gate voltages. The approximation above in-
volves dropping a term of order co .

The current entering the right lead is again a superpo-
sition of a coherent part and a sequential one. The
coherent part is given by Eq. (6.25), now with the dephas-
ing time q.s of the form of Eq. (2.7) replacing r&. The
sequential part, however, now describes the electrons
which are affected by dephasing processes in the side
well. The sequential current is given by

"qI„(co)= ' ', (6.33}
h TL,s+TR,s 1 —iN(2~q+rd, l)

'

showing a total delay time of about 2~q+~d, ~
relative to

the voltage. This is the time required by the device to
reach the actual steady state after a dc voltage is applied.
If the coupling is very weak ~s &&~& this time is

(Xs/No)[~, +rs]. Since it is dominated by rs it can be-
come very large. However, since the actual importance
of the process is determined by the sequential transmis-
sion factor (6.15) which becomes of order r, /~s, the
transport through the device is not modified by the pres-
ence of the side dot. This situation represents a "nonin-
vasive" voltage probe which cannot follow the fast
changes of the system.

Equation (6.30) contains two other important physical
limits. First, let us consider that the lateral dot is very
large. This is represented by the condition Xs~ ~. In
that case there is not suScient current to shift the chemi-

TS,L 1
~Ps(~) — 5P'"

TI., s+Tz, s (1—
icoqq )(1—icoq.d,~}

(6.31)

where we see that besides the time spent by the resonant
electron in the central quantum dot, there is also an addi-
tional delay given by

2MXS TS S +q
+del +

L&S R&S L&S RS 1 & &q

cal potential, and this is manifested by the fact that
d5ps/dt ~0. Therefore the lateral dot behaves as a volt-

age source like the current leads L and R.
Now consider the limit in which Ns~0. This means

that the side dot is not able to support any additional
charge and its occupation factor would follow instantane-
ously that of the central dot to which it is connected. Its
chemical potential coincides with that characterizing the
nonequilibrium distribution in the central dot. The side
dot is then an ideal Uoltage probe. We see that the result-
ing kinetic equation is just (1.1) and (6.19). Of course, for
an actual side lead this is an ideal limit. In practice, any
attempt to reduce the density of states while keeping con-
stant the interaction rate should consider their relation,
expressed by Eq.(3.7), and the changes on Vs s ~

. There-
fore, an ideal voltage probe can be better achieved by a
dephasing field. A capacitive contact is suitable in this
category.

VII. FINAL REMARKS

In the present paper we have obtained a generalized
Landauer-Buttiker equation [Eq. (1.1)] that deals with ir-
reversible time-dependent transport in the presence of de-
phasing processes. This equation required the introduc-
tion of time-dependent transmission probabilities and
chemical potentials at interior points of the sample. A
conceptually striking feature is that this equation was de-
duced from the reversible Schrodinger equation, ex-
pressed within the Keldysh formalism, by applying the
appropriate boundary conditions and some suitable ap-
proximations. In order to simplify the structure of the
exact Keldysh kinetic equation, we introduced an
adiabatic-spectrum approximation, which considers that
both spectral densities and occupations change in time
but neglects some interferences in the time domain. A
further simplification is the steady-spectrum approxima-
tion, in which the spectrum is steady in time and trans-
port occurs because occupations are allowed to change.
This approximation applies to transport in the linear-
response regime which is the condition to obtain the
GLBE. When the steady state is reached, the traditional
Landauer-Buttiker equation is obtained. This connection
between the GLBE and the Keldysh formalism gives a
procedure to evaluate the transport parameters from a
model Hamiltonian. In particular, we give an explicit ex-
pression for the time-dependent transmission probability
in terms of the one-particle Green's functions. The re-
sulting equations are simple enough to be computed nu-

merically and even analytically in many cases. Besides
this practical value, the above relations give a deep in-

sight on the different quantities involved in the Keldysh
formalism, and how irreversibility appears in quantum
mechanics. The Keldysh self-energies represent the
boundary condition of injection of incoherent electrons,
associated with the "measurement" of the electron densi-
ties by the phonon bath or any dephasing process. The
electronic state at any time is the sum of all the alterna-
tive histories originated on those previous dephasing
events (or "measurements"). The propagation of each of
those alternative histories is performed by the product
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between the retarded and advanced Green's functions
which have the meaning of a density propagator. In
these functions the degradation of the coherent beam is
described by the imaginary part of the retarded and ad-
vanced self-energies, respectively. While the procedure
we devised [Eq. (2.18)] is quite general and does not have
particular restrictions about the type of interactions or
transport regime, we find that in order to obtain the sim-
ple expression of the form of (1.1), it is convenient to use
self-energies diagonal in the spatial coordinates represen-
tation and to apply the linear-response approximation
which considers only small excitations.

We have applied our formalism to the case of a
DBRTD in the presence of dephasing processes. We
found that even with strongly dephasing collisions, the
response of the device is characterized by wq, which at
resonance is twice the natural mean life of the resonant
state ~&. That is, the speed of the device has a natural
limit on this quantum time. This prediction is in agree-
ment with the room-temperature experiment on
differential conductance in a DBRTD.

We also considered a quantum dot with a dephasing
dot connected to its side. In this case, it appears a fur-
ther delay which is the time needed by the density in the
side dot to equilibrate the density in the central dot. This
delay is proportional to ~, +~+, the sum of the escape to
the leads and escape to the side (dephasing) times, show-
ing that the process is sequential. Besides, it is also pro-
portional to the ratio Nz/N0 between the densities of
states in the side dot and in the central dot. If the first
becomes zero, the response of the dot is instantaneous,
becoming an ideal voltage probe, satisfying Eq. (1.1). By
contrast, if this ratio is too big, the side dot behaves as a
voltage source. These examples clarify the concepts of
ideal voltage probe and voltage source in a time-
dependent problem. The first one is able to follow instan-
taneously the electronic density in a given point of the
sample. A voltage source is able to provide a constant
chemical potential independently of the current generat-
ed.

We should make some remarks on the use of the kinet-
ic equation in more general cases. The effect of the exter-
nal fields is considered exactly in the unperturbed Hamil-
tonian and in the Green's functions used to propagate
electrons and holes. This does not require any additional
effort in an actual computational algorithm to solve the
kinetic equation. The energies used also contain the
effect of self-consistent fields. The importance of the
self-consistent fields originated in changes of the electron-
ic density, was addressed by Landauer, and considered

by Datta and collaborators in the steady-state case. In a
general time-dependent problem it might be solved in the
adiabatic-spectrum approximation. In the simulation of
a realistic device it is difficult to select the correct bound-
ary condition. However, this is not a limitation. We
have seen that boundary conditions are easily described
using one-dimensional leads. We can always make a real-
istic model of the sample and the leads and impose volt-
age or currents as boundary conditions deep inside (at
least L& =vFr&) the real leads using the one-dimensional
model presented in Sec. III A. The kinetic equations by
themselves transform these artificial boundary conditions
in a length L& and produce the realistic boundary condi-
tions at the sample-lead interface. The value of r& can be
decreased locally to facilitate the achievement of this ob-
jective.

Once again, the picture of transport pioneered by Lan-
dauer and Biittiker has proved to be a powerful conceptu-
al tool toward the description of irreversible processes in
open systems. The formalism presented above, inspired
in this picture, is open to a broad range of applications.
It can be instrumented numerically without major
difficulties and, in some simple situations, it even allows
an analytical solution. Since the basis of the computation
rests on the evaluation of the Green's function in a
discrete system a complete treatment of the dynamics in
the linear-response regime can be devised with an exten-
sion of the currently existing methods for steady-state
transport. ' While some analytical work is still need-
ed to treat the far from equilibrium regimes and the
strongly interacting systems, the conceptual structure to
deal with these situations is already laid down in the
present work. Without a doubt, further analytical and
numerical works will suggest new experimental setups to
test and exploit the quantum dynamics that we are just
beginning to understand.
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