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Electrostatics of edge channels

D. B. Chklovskii
Department ofPhysics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

B. I. Shklovskii and L. I. Glazman
Theoretical Physics Institute, University ofMinnesota, Minneapolis, Minnesota 55455

(Received 19 February 1992; revised manuscript received 6 April 1992)

We propose a quantitative electrostatic theory of the gate-induced confinement of two-dimensional
electron gas (2DEG) in the quantum Hall regime. The self-consistent electrostatic potential in the region
occupied by 2DEG changes in a steplike manner due to the formation of alternating strips of cornpressi-
ble and incompressible electron liquids. We obtain the dependence of positions and widths of these
strips on the filling factor. Incompressible strips are shown to be much more narrow than the compressi-
ble ones. The relationship between the widths of the adjacent compressible and incompressible strips is

found to be universal: It does not depend on the strip number, magnetic field, or gate voltage. Our
theory enables us to explain results obtained in experimental studies of edge-state equilibration.

I. INTRODUCTION

Magnetotransport along edge states that are formed in
high-mobility two-dimensional electron gas (2DEG) has
attracted significant attention in recent years (see, e.g. ,
Ref. 1). The concept of such transport allows one to in-
terpret a number of experiments performed in the integer
quantum Hall effect (IQHE) regime as well as in the frac-
tional quantum Hall effect (FQHE). Particularly, it al-
lows one to analyze the impact of leads and relaxation
processes between the electron states quantized by a
strong magnetic field on conductance measurements.
The overlap between electron wave functions belonging
to different edge states is exponentially small. This makes
the geometry of these states and separation between adja-
cent ones crucial factors in the understanding of all trans-
port phenomena. This geometry depends strongly on the
shape of the potential confining electrons. The bare po-
tential (formed by an external metallic electrode gate, or
by an etching process) is usually smooth on a scale deter-
mined by the magnetic length A, =(cfileH)'~, and one
can use the quasiclassical approach in the description of
edge-state geometry.

A naive one-electron picture is based on the assump-
tion that the bare potential bends Landau levels, and the
positions of the edge states are given by their intersection
with the constant Fermi level; see Figs. 1(a)—1(c). This
picture has a serious drawback from the experimental
point of view. A strong separation between the edge
states due to the smoothness of the confining potential
reduces the relaxation rate between edge states too
strongly: it is difficult to obtain equilibration length that
does not exceed significantly the sample size of any realis-
tic experimental parameters. From the theoretical point
of view, the one-electron picture fails to account for
screening and its modification in a strong magnetic field.
The latter modulates the electron density of states, mak-

ing the screening highly dependent on the filling factor,

which changes in the region of interest from its bulk
value to zero at the boundary of the 2DEG.

The effect of screening in the presence of the magnetic
field was included in a qualitative picture of edge states
by Beenakker and Chang. They divide the electron gas
into alternating strips of incompressible and compressible
states, the former originating from the discontinuities of
the chemical-potential dependence on filling factor JLt(v).

Existing treatments lack a quantitative approach that
could yield the geometric dimensions and positions of
those strips. Knowledge of them is necessary for the ex-
planation of transport experiments involving edge states,
in particular selective population of the edge states by the
point contacts and relaxation between them (see, e.g. ,

Refs. 4 and 5).
In this paper we present a quantitative electrostatic

treatment of the edge states in the case of gate-induced
depletion that is self-consistent and free of unjustified as-

sumptions about the external potential. We obtain the
dependence of the widths of compressible and incompres-
sible liquid strips on the filling factor. These widths scale
with the width of the depletion layer I that separates the
gate and the boundary of the 2DEG as 1 (compressible)
and as (anal)' for IQHE and as (Al)'~ for FQHE (in-

compressible). Here az is the Bohr radius

a~=A e/m, ze for a semiconductor with a dielectric
constant e and effective electron mass m, z. Length l is

controlled by the gate voltage V and is usually very large
0

(several thousand A). Therefore, we find the incompressi-
ble strips to be parametrically more narrow than the ad-

jacent compressible ones, the innermost being the widest

[see Figs. 1(d)—1(f)]. This can serve to explain the high
equilibration rate of all the states but the innermost one.
Our results provide an explanation for the experimentally
observed equilibration length dependences on magnetic
field in the IQHE regime. Difference in equilibration
rates for —,

' and —', FQHE edge states is also discussed.

The paper begins (Sec. II) with the formulation and
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II. ELECTROSTATICS OF GATE-INDUCED
DEPLETION IN ZERO MAGNETIC FIELD

The 2DEG density in GaAs/Al Ga&, As heterostruc-
tures is defined by the concentration of donors located
behind a spacer layer. In our model we neglect the
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solution of the electrostatics problem at the gate-induced
2DEG edge in the absence of magnetic field. In Sec. III
we study the magnetic-field-induced redistribution of
charge in the vicinity of the incompressible strip forming
the so-called dipolar strip. We generalize our treatment
to the case when several dipolar strips are formed in Sec
IV. In See. V we discuss tunneling through the in-
compressible strip and the relation of our theory to ex-
periment, including the influence of disorder. Section VI
contains our major conclusions.

donor concentration fluctuations and the discreteness of
their charge. This means that far from the boundaries,
the electron density is homogeneous and equal to that of
the positive background (no). The boundary of the
2DEG is created by applying a negative voltage —V to a
metal half-plane serving as a gate. We neglect the dis-
tance from the gate to the 2DEG plane and the spacer
layer thickness. Thus the positive background, the gate,
and the 2DEG all belong to the same plane (z=O) (see
Fig. 2). The validity of this assumption will be discussed
below. The half-space z &0 is occupied by the semicon-
ductor with dielectric constant e))1. As the system is
invariant in the y direction, the problem becomes
effectively two dimensional.

Let us first discuss what happens qualitatively. At zero
gate voltage (or some cutofF voltage in real devices), the
electron density (being zero under the gate) reaches its
bulk value no right at the gate edge. By applying a nega-
tive potential to the gate, electrons are repelled from it,
leaving a depleted strip behind. The width of this strip,
2l, is determined by V . Also, one may expect the density
of the 2DEG to grow gradually from 0 at the end of the
depletion to no in the bulk, where it compensates for the
positive background. In our treatment we rely on the
smallness of the parameter a~ /l -EF/V, which gives
the ratio of the screening length r, to the characteristic
length scale. This means that the x component of the
electric field is screened out completely. Hence the po-
tential is constant in the area occupied by electrons.
Then the problem is the one of a capacitor, both metal
plates of which are in the same plane. And there is a uni-
formly charged insulator of width 2l filling in the slit be-
tween the plates. Following Ref. 6, we solve the electro-
static problem for given V, 1, and no. Then we find l
from the condition that the electron-gas boundary should
be in mechanical equilibrium. This means that electric
field E„(x=l) should be zero both to the left and to the
right of the boundary (lim„ I oE =lim„ I+oE, =0).

A high value of the dielectric constant in semiconduc-
tors (e)& I) allows us to solve the Laplace equation in the
half-space z & 0 using the simplified boundary conditions

FIG. 1. Structure of spinless edge states in the IQHE regime.
(a)-(c) One-electron picture of edge states. (a) Top view on the
2DEG plane near the edge. Arrows designate electron flow
direction in the two edge channels. (b) Adiabatic bending of
Landau levels along the increasing potential energy near the
edge. Energy is measured from the Fermi level. Circles
represent local filling of the Landau levels: ~, occupied; o,
empty. (c) Electron density as a function of the distance to the
boundary. (d) -(f) Self-consistent electrostatic picture. (d) Top
view of the 2DEG near the edge. Shaded strips represent re-
gions with noninteger filling factor {compressible liquid),
unshaded strips represent integer filling factor regions (in-
compressible liquid). Arrows show the direction of electron
flow. (e) Bending of the electrostatic potential energy and the
Landau levels. Circles represent local filling of the Landau lev-
els: 0, occupied; 0, partially occupied; 0, empty. (f) Electron
density as a function of distance to the middle of the depletion
region.

)(z

n -t/

FIG. 2. Two-dimensional capacitor formed at the 2DEG
edge. Thick lines represent two conductors: the gate at poten-
tial —

Vg on the left, and the grounded 2DEG on the right.
Plusses represent a uniform positive background due to donors.
The dotted area is occupied by a semiconductor with high
dielectric constant e.
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dP(x, z)
dz

4~eno
(2)

) -esp(ri

The solution can be given as a sum p =pi+ pi of harmon-
ic functions Pi and Pz that satisfy separately the condi-
tions

—V x( —Ig7

P, (x,z =0)= (3)

dP, (x,z)
lx I

& l,
dz z~ —0

(4)

P,(x,z=0)=0, ~x &l

dg2(x, z)
dz o

4~eno
/x/ & l .

Both solutions have square-root singularities in the elec-
tric field (E„=—dgldx) at x =l which can be cancelled
out only if

VgaI=
4~ noe

(9)

The singularity at x = —I remains but should not cause
any problem because this boundary is fixed and electrons
are confined due to the existence of the work function.
The density of the 2DEG for I defined in Eq. (9) is given
by (see Fig. 3)

n(x)=
1/2

x —I

x+I no, x)l . (10)

These results deserve some discussion. It is important
to mention that I is the only scale in the electrostatic
solution. It defines the electron density variation as well
as the width of the depletion strip. I is proportional to
the gate voltage. Its numerical value for V = 1 V,
no=10" crn, and @=12.5 is 1=2200 A. We would
like to emphasize that this is a very large length. The
typical spacer thickness is about 500 A. The gate to the
2DEG distance is usually of the same order, =800 A.
This justifies bringing all the charges into one plane.
Also, for a typical value az =100 A, condition az/I (&1
is satisfied. In a real system we do not expect our solu-
tion to be accurate on the scale less than a~. At a large
distance from the gate x » I, Eq. (10) yields approximate-
ly

n(x ) =(1—l/x )no .

Both functions can be found using the theory of complex
variables. At z =0 the first one is given by

—V V
P, (x,z =0)= + arcsin(x /1 ), ~x

~
&1 . (7)

2

The derivation of the second function is reproduced in
the Appendix:

4meno
P (x,z =0)= (l —x )'

2

FIG. 3. 2DEG edge at magnetic field corresponding to the
bulk filling factor vo= 1.5. The dashed line is the electron densi-
ty at zero magnetic field. The solid line is the electron density,
and the thick line is the electrostatic energy at vo= 1.5.

Despite the fact that the width of the depletion strip
has been found for the gate-confined 2DEG, we believe
that our result can be also applied to the etched struc-
tures. In that case, the half-width of the forbidden gap
takes the place of the gate voltage due to the pinning of
the Fermi level by the surface states. The width of the
edge depletion (2l in our notation) has been studied ex-
perimentally by Choi, Tsui, and Alavi. They obtained
the value 5000+2000 A for a 2DEG density
no =1.2X10" cm, which is in a reasonable agreement
with our estimate.

III. DIPOLAR STRIP FORMATION
IN HIGH MAGNETIC FIELD

Our next step is to consider the effect of strong mag-
netic field H in the IQHE regime. Here we ignore the
electron spin. Due to the smallness of the parameter
A'cu, /eVg (where co, =eH/m, frc is a cyclotron frequency)
at any reasonable magnetic field, we expect that the
width of the depletion region given by Eq. (9) will remain
practically unchanged. Also, one might anticipate that
the electron density distribution (10) obtained from elec-
trostatics will not be altered significantly. This is because
of the huge amount of work needed to be performed
against electrostatic forces in order to produce a varia-
tion.

The only effect of the magnetic field from the electro-
static point of view is the periodic dependence of screen-
ing properties of the 2DEG on the filling factor v, caused
by the oscillations in the density of states. Screening at
integer filling factors (v=k, k=1,2, 3, . . . ) is absent,
while at noninteger v it is very strong. This should lead
to the formation of the alternating compressible and in-
compressible liquid regions. The latter ones are charac-
terized by different integer filling factors v=k. Near the
boundary, these regions should take the form of strips
parallel to the gate edge. The location of the kth in-



46 ELECTROSTATICS OF EDGE CHANNELS 4029

n 2+k2n 2 v2+k2
xk =l =l

2 k2 2 2 k2np nL vp
(12)

compressible liquid strip xk (measured from the middle of
the depletion strip) can be found by substituting
n (x ) =k /2nk. i,n Eq. (10) and solving it for x: dP'(x, z )

Jz z —p

4~en p —I &x &I

(15)
(no n—t ), ~x

—x, ~ &a, /2 .
E

where we use the notation nL =1/2+A, for the electron
density corresponding to one completely filled Landau
level, and vo=nolnt is the filling factor far away from
the boundary.

Let us ignore the effects of disorder for a while. Then
the density of states is given by a set of 5 functions cen-
tered at (k —1/2)iiito„and the screening length r, as a
function of the filling factor takes the following form:

0, x &x) a)/2
P', (x,z =0)= .

iiito, , x & x, +a, /2, (16)

The solution of the Laplace equation can be found as a
sum P'=PI +Pz+ P of harmonic functions P', Pz, and the
zero-magnetic-field solution P. The first two satisfy the
conditions

v=k
0, vAk .

(13)

d PI(x,z) =0, ~x
—xi ~

&ai/2,
dz

P', (x,z =0)=0, lx —x, I
& a, /2,

(17)

(18)

—V x& —Ig 7

p'(x, z=0)= 0 I &x &xi ai/2
Ado ~ x )xI+ai/2

(14)

This means that the electrostatic potential is constant
throughout any one compressible strip, just as in a metal.
The electric field in the incompressible ones is un-
screened. Our model is essentially similar to the one pro-
posed in Ref. 9 for a Coulomb island.

For simplicity we consider, initially, the 2DEG edge at
such magnetic fields that vp satisfies the inequality
1 & vp &2. This means that only one incompressible strip
is formed. An example of such a situation corresponding
to vp=1. 5 is shown in Fig. 3. The electrostatic solution
(10) does not give the minimum energy state anymore.
This is due to the fact that there is an additional energy
cost %co, involved in creating electron density exceeding
v=1. Clearly, we could gain in energy if we relocate
some of the electrons from the second Landau level to the
first one in the close vicinity of x&. This would create a
flat region in the density distribution with the density
corresponding to v= 1 (see Fig. 3). This region is an in-
compressible strip, as discussed above. The drop of the
potential between its edges should be Ace, /e in order to
bring the second Landau level to the Fermi level. On
both sides of the incompressible strip we have a compres-
sible liquid, where the electric field is completely screened
out. The discussed charge distribution can be thought of
as an electrostatic solution (10) plus some additional
charge creating the voltage drop. Because of its similari-
ty to the three-dimensional dipole layer, we call this addi-
tional charge pileup a dipolar strip.

In order to find the width of the incompressible strip
a &, we need to solve an electrostatic problem similar to
the one considered above. We solve the Laplace equation
in the half-space z &0 for the given boundary conditions
including a &. Then we find the strip width a] from the
requirement for the electric field to be zero at
x =x, +a, /2. The boundary conditions for this problem
are the following:

d 6'(x, z ) 4ne.
[n(x) nt —]

dz z —p e

4ire dn(x) x xix=x)

(19)

Here we make two approximations based on the small-
ness of the parameter a i/xi, which is confirmed below.
First, we extend conditions (16) and (18) to include x & l.
In so doing, we neglect the charge distribution tail from
the dipolar strip at the distances of order of x

&
away from

this strip. Second, we substitute the exact n(x) (10) by
the first two terms in its Taylor series around x, in Eq.
(19). Function P', can be obtained from Pi by making the
following substitutions: V ~fico„ I ~a i /2, and
x~x —x, . Pz is obtained in the Appendix. Just as in
the absence of magnetic field, both solutions display
singularities in electric field E, at the incompressible
strip edges (x =x,+a i /2). However, due to the symme-
try of this problem, they cancel out on both sides at the
same value of a& given by

2cfire,

ir e dn/dx ~,
(20)

This is the equation defining the dipolar strip width. The
magnetic-field-induced electron density in the dipolar
strip is given by (see Fig. 4)

a& dn

2 Qx

gati & 1

t[1—(1—t ')'~'], /t/ &1,

in terms of the normalized coordinate t =2(x —x i ) /a i.
Equation (20) can be obtained from a simple qualitative

consideration. On one hand, the drop of electrostatic po-
tential across a dipolar strip is fun, /e. On the other
hand, it is equal to the characteristic electric field E„in-
side the strip e(dn /dx )~„„a,/e times its width a

„

thus
1

yielding
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edge (M is the integer part of vo). Then M dipolar strips
should form at the edge. Their positions are given by Eq.
(12). The dipolar strip widths are defined by Eq. (20),
easily generalized for any number k = 1,2, . . . , M:

2%co~ 6
ak=

n e2dn/dxl„
(25)

FIG. 4. Magnetic-field-induced additional electron density in

the dipolar strip.

It is helpful to introduce bk =xk —xk „which is essen-
tially the width of a compressible strip to the left from
x&. At vp k »1 it can be found from

e 2dn /dx
l„-„afX —X)

%co (21)

nL

dn /dx
I„=„ (26)

I
dnIdxl, „=no

(xi+i)(x, —l )
2 2 1/2 (22)

Substituting x& from Eq. (12) in Eq. (22), we use it in Eq.
(20) to express a, in terms of vo:

8 sticks, l v
a/ = =adolf(vo) .

m e nL (vo —1)
(23)

Here we took into account that the combination
eke, /2menL is . nothing else but the Bohr radius
as=Pi elm, fre and f(vo) is a dimensionless function
(16/m)[vo/(vo —1) ]. Now we are in a position to check
the assumption we made about the smallness of a, . Mak-
ing use of Eqs. (12) and (23), we find

1/2
a1 4 vo

1/2 2+ 1VpX1

ag

I
(24)

Equation (24} justifies the crucial assumption regarding
the smallness of the dipolar strip width because a~ && l.

Equation (21) gives an estimate for a
&

that coincides with
Eq. (20) up to a numerical factor.

From both the qualitative and the quantitative deriva-
tions of Eq. (20), it should be clear that the appearance of
the dipolar strip is a property of the 2DEG more general
than the particular electrostatic problem under study. It
happens in any situation when in a zero magnetic field
the 2DEG has a small gradient of concentration. This
gradient can be caused by the potentials of inhomogene-
ously distributed ionized donors as well as by gate-
induced confinement of the 2DEG. The former case was
studied by severa1 authors. ' ' Efros' gave the forego-
ing qualitative argument leading to Eq. (20). His estimate
of the width of the regions occupied by incompressible
liquid, being expressed in terms of disorder-induced Vn,
agrees qualitatively with our Eq. (20).

Let us rewrite Eq. (20) in terms of filling factor vo.
From Eq. (10),

Combining Eqs. (25) and (26), we find

4
ak =—bkag Vp k »12=

'TT
(27)

A key assumption in the derivation of Eq. (27) is the
existence of the concentration gradient dn Idx in the
zero-magnetic-field solution, which, however, did not
enter the final expression. Hence the area of applicability
of this relation is more general than just the solution for
the gate-depleted 2DEG boundary. For example, it can
be applied to etched structures.

Going back to the original problem, we can rewrite
Eqs. (26) and (27) using Eqs. (10) and (12) in terms of the
filling factor vp:

1/2
4 Vpk

1/2 s 2 2
vo —k
' 1/2

aa vo —k
vpp k » 1

vpk
'

ak 1

(~)1/2

(28)

(29)

%e would like to mention here that the boundary condi-
tions (19) should be altered for the case when ak is much
smaller than the distance to the surface of the semicon-
ductor. Then we have

dg2(x, z )
[n(x) nL ]-

8Z z~ —0

2ne dn(x)
X Xix=x(

instead of (19). This leads to the value of ak larger than
in Eq. (28) by factor of 2'/ . We think that this correc-
tion is relevant only for the outer states.

For the inner edge states (vo —k ((vo} one gets
1/2

a„=— (as I )' (30)
vp

—k '

IV. AI.TERNATING STRIPS OF COMPRESSIBLE
AND INCOMPRESSIBLE LIQUID:
QUANTITATIVE DESCRIPTION

ak

bk

1/2
4 aa v —k0

1/2
vo

(31)

Now we generalize the above consideration to the case
when M Landau levels are completely filled far from the

Using az =100 A and i=2200 A, we see that for inner
edge states (vo —k=1), although ak is large, a very
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strong inequality a„/b„«1holds. It means that the ap-
proximation of independent and noninteracting dipolar
strips used above works very well. When we move to-
wards outer edge states, inequality a„/b„«1becomes
weaker and eventually fails at small enough k.

Another important condition of validity of our theory
is that the compressible liquids on both sides of in-
compressible strip k should screen well on the scale of ak,
i.e., behave like a good metal. We see two conditions for
such behavior.

(i) The electron (hole) concentration on the
(k+1)st (kth) Landau level at the distance ak from the
kth incompressible liquid strip is larger than ak

dn 2
ak

d
k)+

X =Xk

(ii) The size A,k' of electron wave functions for the
kth Landau level satisfies the inequality

(32)

Ak' ((ak . (33)

v2+f 2

f 2 f2 (35)

Their widths can be found from Eq. (20), with an extra
factor 2'/ . We use boundary condition (19') because we
anticipate the narrowness of fractional strips:

4ehf
He dn/dxi„ f

1/2

4+2c 1/2 v~ I /2f (Al)1/2
1/2 2 ~2

vp
(36)

One can show that at nas) 1 and k) vo/2, condition
(33) is violated earlier than (32) with decreasing magnetic
field. Using Eq. (30), we can rewrite (33) in the form

l )1/2
for vp k ((vp . (34)

vp k

Because of the large value of I, inequality (34) for the
inner channels (vo —k = 1) does not lead to substantial re-
strictions. With decreasing k, inequality (34) becomes
more critical. We do not think that the violation of in-
equality (33) leads to a collapse of the dipolar strip,
though our theory is not applicable in this case.

So far we have considered the IQHE regime ignoring
the spin splitting of Landau levels. The crucial thing in
our theory was the presence of a discontinuity in the
chemical potential (equal to A'co, ), which led to the forma-
tion of incompressible liquid strips. Thus our theory can
be generalized to include electron spin by substituting
spin-splitting energy instead of the cyclotron energy. In a
similar way, the edge states in the fractional quantum
Hall effect regime are formed. Then the quasiparticle en-
ergy gap 6f takes the place of A'co, in our theory. Posi-
tions of the incompressible strips (xf ) with filling factors
f (f=

—,', —'„—,', . . .) are given by the slightly modified Eq.
(12):

Here we used expression hf =cfe /A, e for the fractional
energy gap. If Eq. (36) yields ak & A, , then the incompres-
sible strip does not form.

V. TUNNELING THROUGH THK INCOMPRESSIBLE
LIQUID STRIP: COMPARISON

WITH EXPERIMENT

In this section we discuss our theory in relation to two
experiments (one in the IQHE regime, the other in the
FQHE regime). We start with the IQHE regime. Al-
phenaar et al. studied equilibration among edge chan-
nels using a technique due to van Wees. ' Current was
injected only in the outermost channel, and its redistribu-
tion among the remaining channels was measured. It was
shown that when filling factor vp decreases in the vicinity
of integer occupation (N —0.3&vp&N+0. 3), equilibra-
tion length Lz 1 z between the (N 1) and—Nth channel
grows rapidly and becomes too large to be measured at
vp=N —0.3. One of the most surprising results was the
fact that in spite of a strong dependence of L~ & z on vp,
it is a periodic function with the period 1 (for vo varying
from 5 to 12). Indeed, functions Lz, z(vo) for various
N collapsed on one curve if presented as functions of hv.
We would like to concentrate on this fact and show that,
according to our theory, Lz & z depends on magnetic
field only through hv= vp

—N for N &&1.
Tunneling between adjacent edge states is determined

by overlap of the corresponding wave functions. There-
fore, equilibration length Lz, z depends crucially on
the ratio a&, /A, . Substituting k =N 1))1 in E—q. (28),
we find

(8aslno)'
aN-1/~=

b +1 ~2E Av+ 1
(37)

where Es =e /2ase is the Bohr energy of the hydrogen-
like impurity in GaAs. This result proves that the equili-
bration length is a function of hv independent of N, and
explains the striking behavior of Lz, z versus v ob-
served in experiment. Substituting Vg =1 V and Ez =6
meV, one gets

4
5v+ 1

(38)

We see that in the range of interest
(N —0.3 & vo & N+0. 3); ratio a~, /)1. is quite large. It is
well known that, under these conditions, even a small
amount of disorder affects significantly the tunneling rate
causing its increase. ' ' The dependence
inL&, N-(a~ 1//(, ) that is valid in the "clean case" is
altered by disorder and changes the quadratic function in
the above estimate to almost linear dependence:
lnLN 1 z-(2a&, /A, )[lnA ]'/, where A ))1 at small
disorder and decreases with increasing disorder. For the
data of Ref. 4, the latter estimate seems to be more ap-
propriate.

It is interesting to mention that the number of com-
pletely filled edge states changes by one when hv changes
sign (M=N —1 for b,v&0, M=N for b,v) 0). It means
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that, in principle, one more equilibration length L~~+,
related to the width aN may become relevant. But from
our point of view, under the conditions of Ref. 4, the cor-
responding ratio

1/2
a~ eV 1 4

7T Eg
L

(39)

for 0 & Av & 0.3 is too large to make equilibration observ-
able, and the bulk of the sample is completely decoupled
from the Nth channel.

Now we would like to give a more detailed interpreta-
tion of the experimental observations made in Ref. 4. We
start with the magnetic field corresponding to vo greater
than integer number N (vo=N+0. 4). According to our
picture, there are N incompressible liquid strips dividing
the 2DEG edge into N edge channels and the bulk region
occupied by compressible liquid. Equilibration among N
edge channels occurs easily due to small distances be-
tween them. However, the bulk region is separated from
the Nth edge channel by a dipolar strip that is wide
enough to prevent their equilibration. At this magnetic-
field resistance measurement with nonideal contacts in-

jecting and detecting current in the outermost Landau
level only will yield the result R =hie N. Now we in-

crease the magnetic field, thereby decreasing vo. This
leads to the growth of the widths of dipolar strips. The
first dipolar strip to become wide enough to quench
equilibration (besides the Nth one, which is already very
wide) is (N 1). Thi—s leads to a gradual decoupling of
the Nth edge channel. When the value of vo crosses N,
the Nth dipolar strip becomes infinitely large and disap-
pears, creating a new bulk region out of the Nth edge
channel to take the place of the old one. However, this
should not affect the described measurement, as the N+ 1

incompressible region was already uncoupled. As we

keep decreasing vo, the (N —1) st dipolar strip grows
wider and wider, making the equilibration into the Nth
channel harder and harder to occur. This makes R closer
to its value for N —1 channels R =h le (N —1). Finally,
at some value vo=N 0.3, the (N ——1)st dipolar strip be-

comes so wide that no measurable equilibration through
it occurs. Then we find the quantized value of
R =h le (N —1). Further increase of magnetic field does
not affect R (forming a plateau on the R versus H plot)
until the width of the (N —2) dipolar strip becomes large
enough to quench equilibration into the (N 1) edge—
channel. And then the whole cycle repeats itself.

Thus our theory of edge states suggests a quite satisfac-
tory explanation of experimental observations of the
anomalous QHE with so-called nonideal contacts, which

probe only some edge channels. In the same experi-
ment, the usual "bulk" QHE was observed while using
standard probes. There is a significant difference in the
physics of "bulk" and anomalous QHE's. Quantization
of the Hall resistance in the former case is due to the lo-
calization of the bulk electron states. Quantization ob-
served with nonideal probes occurs at different values of
magnetic field and is due to the lack of equilibration.
This effect is not a macroscopic one (it should vanish in

sufficiently long samples) and usually the quantization is

not as good as in the "bulk" QHE. While disorder is cru-
cial for the observation of the bulk effect, it may destroy
the anomalous QHE. We have already discussed
disorder-assisted tunneling between the edge states. Now
we consider the effect of long-range disorder on the edge
states geometry using the approach due to Efros. ' ' '

The spatial scale of the random potential created by
the random distribution of donors is of the order of the
spacer layer thickness s. Let us use w to designate the
amplitude of the random potential. If w & %co, and
s &ak, then disorder does not change the general struc-
ture of alternating compressible and incompressible
liquid strips. Changes occur only at the edges of
compressible strips where the density of electrons (in
almost-empty Landau level) or holes (in almost-filled
Landau level) is less than the charge density needed to
compensate for the random potential. The strips of local-
ized compressible liquid appear at the edges of compressi-
ble strips (see Fig. 5). Equilibration between delocalized
states of compressible liquid involves hopping through lo-
calized strips as well as tunneling through the incompres-
sible strip. If the temperature is not too low, a typical
hopping length is of the order of s. It means that, even in
the presence of disorder with s &ak, the equilibration
process is dominated by the tunneling through distance
ak. Thus our conclusion about periodical dependence of
L~, ~ on vo remains valid when the random potential
satisfies conditions w &Ace, and s &ak. If disorder is

strong (to ) fico, ), then continuous incompressible strips
of the width ak do not exist. Many islands of compressi-
ble liquid are formed inside each strip. The only relevant
hopping length in this case is s, and we cannot arrive at
the periodical dependence of LN, z on vo.

Now we turn our attention to the FQHE regime. Let
us make an estimate of the positions and widths of the in-

compressible liquid strips under the conditions of experi-
ment performed by Kouwenhoven et al. This experi-
ment (similar to the one discussed above) was performed
at the bulk filling factor v0=1, and the existence of the
decoupled fractional edge channel was demonstrated on
the lengths exceeding 2 pm. According to our theory,
two dipolar strips are formed at fi11ing factors —,

' and 3.
Their positions are [Eq. (35)] x, /3 4t and x2/3 5

l.
Substituting Vg=3 V, no=1. 8X10" cm in Eq. (9), we

get 1=3600 A. From Eq. (36), using A, =90 A (8=7.8 T)

FICx. 5. Edge channels in the presence of disorder. Shaded

areas represent delocalized compressible liquid. Dotted regions
are occupied by localized compressible liquid. The rest is in-

compressible liquid.
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and c&/3 c2/3 0.03, we find19

a&/3 200 A=2. 3A, ,

a2/3 460 A =5. 1A,

(40)

(41)

In this paper we have studied the distribution of the
electron density in 2DEG near the gate-induced edge.
This is an electrostatic problem that can be solved analyt-
ically by exploiting the smallness of the 2DEG screening
length in comparison with the depletion width 2l. In the
absence of magnetic field, l is the only relevant length
scale for the electron density distribution. The magnetic
field does not change this distribution on a rough scale.
The exceptions are only the narrow strips near the lines
where an integer number of Landau levels is fully occu-
pied. A small portion of charge is redistributed, forming
dipolar strips in the vicinity of those lines. The dipolar
strip produces a steep drop in the electrostatic potential,
which brings the next Landau level to the Fermi level; see
Fig. 1(e). A complete analytical description of dipolar
strips is obtained. The width of such a strip of in-
compressible liquid is much smaller than the width of an
adjacent strip of compressible liquid. Moreover, these
widths obey the universal relation [see Eq. (27)], which
does not depend on magnetic field or their distance from
the 2DEG boundary. We associate the equilibration be-
tween two neighboring edge states with the tunneling
through the dipolar strip that separates them. This
should give a better estimate of the equilibration rate
than the one-electron model, because the dipolar strips
are relatively narrow. Formulas for the widths of these
strips obtained in this paper allows us to analyze the
dependence of the equilibration length on magnetic field
and gate voltage. In particular, we explain the experi-
mentally observed periodic dependence of the rate of
equilibration between the two innermost edge channels
on the filling factor in the IQHE regime. The knowledge
of incompressible strip widths was also used to discuss
the difference in equilibration rates for —,

' and —', FQHE
edge states.

Note added in proof. After submission of this paper we
learned from Kane that he had performed a similar cal-
culation of the dipolar strip.

This gives an idea of why only the innermost channel was
decoupled in the experiment. The same measurements
were done on another sample with higher electron con-
centration n 0

=2.3 X 10" cm and consequently smaller
l at given voltage. At Vg=3 V no decoupling was ob-
served (o2&2/A. =4.5), but at Vg=4. 5 U (a2&2/A, =5.6)
they saw the decoupling of the innermost channel. These
observations are in qualitative agreement with our
theory.

VI. CONCLUSION
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APPENDIX

We have to solve the Laplace equation b,P(r) =0 in the
half-space z & 0 with the following boundary conditions:

dg(x, z)

$(x,z=0)=0, IxI) I .
(A 1)

As boundary conditions are independent of y, the prob-
lem becomes two dimensional. Following Ref. 6, we
solve by means of the analytic functions theory. Let us
represent P(x,z) as an imaginary part of the analytic
function F(g), where g=x+iz F(g.) should satisfy
boundary conditions

Re =r(x ), Ix I (I,dF

Im =0, IxI&l.dF
(A2)

Now we introduce the analytic function

f(g) —t (12 (2)1/2
dg

(A3)

for which we know the imaginary part everywhere on the
real axis:

Im[f(x )]=r(x )(I —x )'~2, Ix I (I,
Im[f(x)]=0, Ix I

& I .
(A4)

1 I Im x
7Tl —1 X

(A5)

where c is a constant of integration. We set c =0. For
r(x )= (4m eno le), we obtain

$(x,z) = 4m.en 0 1m[(+i(1 —
g )' ] .

With this information we regenerate f( g) in the lower
half-plane using the Schwartz integral:

f(g)
1 I+~ lm[f (x)]d

Kl —oo X
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$(x,z) =
4rredn /dx I„
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