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Pinning of a two-dimensional Wigner crystal by charged impurities
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The magnitude of pinning of the classical Wigner crystal as a function of the distance between the
crystal and a charged impurity is calculated numerically. The pinning magnitude is shown to be very
asymmetric with respect to the sign of the impurity charge. Donors are found to pin effectively only in a
narrow layer at a finite distance from the crystal, whereas acceptors pin strongly in a relatively wide re-

gion adjacent to the crystal plane. It is shown that pinning of the crystal by a close acceptor cannot be
described by the conventional model of periodic coupling because at small distances the acceptor is built
into the lattice.

I. INTRODUCTION

A two-dimensional (2D) Wigner crystal formed in a
low-density electron system due to Coulomb repulsion
between electrons was discovered first on a helium sur-
face, where electrons have a huge effective mass so that
their kinetic motion is suppressed. ' The interest in this
object was revived recently when the existence of a corre-
lated dissipative phase in 2D heterostructures subject to a
strong magnetic field at filling factors close to v= —,

' was
observed. In this phase, the nonlinear resistance R
was shown ' to have a threshold in an external electric
field, similar to depinning of the collective motion of a
quasi-one-dimensional charge-density wave in Peierls
conductors and of electrons on a helium film adsorbed
on a dielectric surface. A two-dimensional Wigner solid
was also revealed at large filling factors v& 1 in Si metal-
oxide-semiconductor field-effect transitor samples with
extremely high mobility. '

Pinning by an arbitrarily small random potential is a
crucial property of an electron solid. This phenomenon
destroys the linear conductance at zero temperature and
results in a threshold behavior of the I-V dependence.
The pinning is also responsible for the loss of low-
frequency oscillations in the electron crystal that was in-
tensively studied in recent experiments on absorption of
sound and rf waves in the regime of fractional quantum
Hall effect. '

The existing theories of collective pinning are based
mostly on the model of white-noise random potential that
implies the existence of numerous shallow potential wells.
However, in real semiconductor structures the most like-
ly candidates for a pinning center are charged impurities
(donors and acceptors) for which this approach may be
inadequate. These centers are, generally, of two types:
the distant ones introduced intentionally into the materi-
al (dopants) and the residual itnpurities which are stnall
in number but can be situated close to the electron plane.
The first type creates a long-range random potential
which can, if it is strong enough, break the electron sys-
tem into separate regions. "' However, the magnitude
of this potential can be significantly suppressed by screen-

ing effects of a close metallic gate and of the 2D electron
system itself. The last mechanism of screening is espe-
cially effective when the spatial scale of the potential
which is equal to the distance between 2D electrons and
remote dopants (spacer width) is much larger than the in-
terelectron distance. In this work we consider the case
when the screening effects are strong, and the electron
density is almost uniform. We show that, in this situa-
tion, the remote dopants are extremely ineffective for pin-
ning: the magnitude of the pinning potential is exponen-
tially smaller than that of the one-electron random poten-
tial. Hence we concentrate on pinning of the classical
Wigner crystal by residual impurities situated in the
spacer.

Our goal is to find out at which distance a donor and
an acceptor are most effective for pinning. This issue is
not trivial because of a crucial role of the crystal defor-
mation in the vicinity of the impurity. In Sec. II, we
study a charged impurity at a distance d »a from the
electron plane, where a is the Wigner lattice constant.
The height of the pinning barrier V is shown to be pro-
portional to the small exponential exp( —4~d/&3a).
This results from the fact that potential of such an impur-
ity in the electron plane is smooth and has a large spatial
scale.

The opposite case of a very close impurity is con-
sidered in Sec. III. The ground state of the crystal with a
close donor differs from that with a distant donor. At
large d, the donor is situated opposite to the site of lattice
which is elastically deformed around it. At small dis-
tances, the donor binds an electron, and the resulting di-
pole favors an interstitial position and weakly interacts
with the rest of electrons. As a result of such strongly
nonlinear screening, the pinning energy V is small and
vanishes when d tends to zero. An analogous transfor-
mation happens with an acceptor: it favors an interstitial
at large d, while at small d it is built into the electron lat-
tice. In contrast to the donor, pinning by acceptor at
d ~0 is strong.

In order to find where the transition between the two
ground states occurs for both types of impurities and to
study the pinning barrier V in the whole range of d, we
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II. A DISTANT CHARGED CENTER

Consider the triangular lattice of the classical Wigner
crystal placed in a plane with the 2D coordinate r. Sup-
pose the lattice interacts with a positively charged impur-
ity (donor) which creates for each electron in the plane
the Coulomb potential

2

(1)
( 2+d2)1/2U(r) =—

where K is the dielectric constant and d is the distance be-
tween the impurity and plane. In this section we dwell on
the case when d )&a, where a is the lattice constant.

If the donor is shifted on distance s along the plane, its
energy V(s) will change periodically in s with the lattice
period. First, we shall calculate the dependence V(s) in

the approach of an absolutely rigid crystal. In this case
V(s) is given by the sum over all the lattice sites

V(s) = g U(r „—s),
m, n

r „=mal+na2,

carried out a numerical simulation described in Sec. IV.
We find that the transition points are d=0.45a for the
donor and d =0.63a for the acceptor, respectively. A no-
ticeable pinning by donor exists only in the narrow region
above the transition, d=(0. 5 —0.6)a. The acceptor pins
strongly everywhere in the small-d phase, d &0.63a, and
the pinning energy V is one order of magnitude larger
than that for the donor. Thus the interaction of the elec-
tron solid with charged impurities turns out to be highly
asymmetric with respect to the charge. This is caused by
the strongly nonlinear nature of the screening and is in
contrast to an identical role played by impurities of oppo-
site signs in the mobility of the electron gas. In addition,
the pinning energy V (for either kind of impurities) and
the cross section of scattering in the gas depend
differently on the impurity distance d, so that different
groups of impurities may dominate pinning of the crystal
and the electron mobility in the gas.

The main observable characteristics of the pinning by
many randomly situated impurities are the correlation
length g, and the threshold electric field E,h. The former
represents the scale at which the long-range order in the
crystal disappears; it can be found in experiments on
sound absorption from the characteristic pinning frequen-
cy. ' The quantity E,h manifests itself in the I-V mea-
surements as a critical field at which depinning occurs,
and the crystal begins to slide. Specific expressions for
both parameters depend on the pinning regime. In the
strong pinning case, the crystal is relatively soft and ad-
justs its phase to each impurity position, (, being of the
order of interimpurity distance n;

' . In the weak pin-
ning regime, the crystal is relatively rigid, and

(, »n; '~ As sho.wn in Sec. V for a homogeneous dis-
tribution of impurities in the spacer, acceptors always
create a strong pinning, whereas donors, depending on
their concentration, provide a strong or intermediate one.
Estimates for g, and E,h are given for both types of im-

purities assuming the strong pinning limit.

where the vectors

a &3aa=ac a= —e+
2 x 2

e (4)

=2" 1 4m
Pl Cx +

y P2 ya &3 &3a

represent basis of the reciprocal lattice. We can also omit
in Eq. (5) the term with p=0 which does not depend on s
and is irrelevant for the pinning. As a result, we get

4
V(s) = U„[cos(p,s)+cos(p2s)+cos[(p, —p2)s] I .

3a

(9)

The potential energy (9) is minimum at a site of electron
lattice s =0, is maximum at the triangle center
s=s, =(a/2, a/2&3), and has a saddle point at the mid-
dle of the triangle edge s =a, =(a/2, 0). At these points
the cosine sum in (9) is equal to 3, ——'„and —1, respec-

tively. The height V„of the barrier separating two adja-
cent potential minima is given by the difference

V„=V(s, )
—V(0)= ~U ~

.
16

3a
(10)

After substitution of Eq. (7) with ~p~ =4m/&3a into (10),
for the rigid crystal, we get

Se 4mdV„= exp
Ka 3a

We see that the pinning energy V„ turns out, at d ~ a, to
be much smaller than the magnitude of original potential
e /Kd.

The pinning barrier for the negatively charged center
(acceptor) can be obtained in the same way. Changing
the sign of the Fourier transform U in Eq. (9), we find

the minimum of the pinning potential at the triangle

are the basis of the triangular lattice. The sum (2) has the
translational symmetry of the crystal and can be expand-
ed in the Fourier series

V(s) = 1 gU e'~',
[a, Xa2f,

where the sum is evaluated over all the vectors p of the
reciprocal lattice, and

U~= Jd r e'~'U(r) (6)

is the Fourier transform of the donor potential. The
value of U decreases exponentially with increasing ~p~ as

given by

22P'8

KP

Hence, at d »a, the sum (5) is dominated by terms with
the minimal modulus ~p ~

=4~/&3a (as one can show, the
contribution from higher harmonics is less than 0.5%
even at d=a). There are six of these terms: +p&, +p2,
and +(p, —p2), where
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and is eight times less than that for the donor [Eq. (11)].
Note that this asymmetry of the pinning potential with
respect to the impurity charge even at large distances d
exists only for the triangular and honeycomb lattices of
electrons: sites and interstitial points in either of them
(which correspond to ininima and maxima of the poten-
tial) form different lattices and are, in the geometrical
sense, not equivalent.

We have obtained expressions (11)and (12) for the pin-
ning energy in the approximation of the rigid crystal. In
fact, the crystal area near the impurity is always de-
formed since electrons tend to screen the impurity poten-
tial. In order to take into account this deformation one
has to replace Eq. (2) by

V(s)=g U(r „+u „—s), (13)

center s=s„ the maximum at the lattice site s=o, and
the saddle point, as for the donor, at the edge center
s =s, . As a result, the pinning barrier for the acceptor is
given by

e 4~dV„=V(s, ) —V(s, ) = exp
ca v'3a

surface induced by a point charge. The surface charge
density en (r) can be found from the normal electric field
near the conducting surface, as given by

4n.e + d 2enr=+
jz K(r +z )'

z —d

(17)

At d ))a and pd ))1, the Fourier transform (6) of the
potential U(r) defined by Eqs. (15) and (18) has a form

'2 ' '1/2
2ne a g 1 61 a ~pd, (19)

pd 8 d 2n.
U

P

where the second term in brackets is assumed to be much
smaller than the first one. Comparison of Eqs. (7) and
(19) with p =4m /&3a yields for the pinning barrier V

' 1/2

where plus and minus correspond to the acceptor and
donor, respectively. The function u(r) can be found from
Eqs. (16) and (17):

r r&3ad 1 1
u(r) = ——u(r) =+- (1g)

r r 47Tr 1 (r+j )~

m, n Vp
= V„1++

2 31
(2O)

where u „ is the displacernent of electron at the site
(m, n). When the charge center is far enough from the
plane, the local displacement of the crystal can be treated
in a continuous approximation. This assumes that u „ is
a continuous function of the distance between the site
and the center projection on the plane, as given by

u „=u(ir „—si) . (14)

In this approximation the sum (13) takes a form (2) with
the renormalized potential

(15)

i/3a'
dlvu = n(r),

2
(16)

where n (r) is the electron concentration on a conducting

instead of original potential (1). As a result, we arrive at
formulas (11) and (12) for the pinning energy, where the
Fourier transform (7) should be evaluated for the new po-
tential U'(r). The sign of the effect of deformation on
the pinning can be easily predicted even without this
evaluation. For the donor, electrons are attracted to the
center, so that u(r)= (r/r)u(r) —As a re. sult, the
effective potential (15) is wider than the incipient poten-
tial (1); magnitudes of its Fourier components with large
p should be less than that given by Eq. (7). Hence the de-
formation of the lattice should diminish the pinning by
the donor (and, correspondingly, should enhance that by
the acceptor).

At large spatial scales d ))a the long-range Coulomb
forces dominate the equilibrium of the deformed lattice,
and the existence of the crystal structure plays a minor
role. Hence the displacement u(r) can be found for
d ))a in the "metal surface" approximation in which

where plus stands for the acceptor and minus for the
donor. The value V„ is given by Eqs. (12) and (11)for the
donor and acceptor, respectively.

Thus the deformation of the lattice by the impurity
changes only the prefactor in the V vs d dependence not
affecting the exponential term. In the limit of large d, the
deformation effects become small, and the pinning energy
tends to its value V„obtained for the rigid crystal. On
the other hand, the deformation changes V by the order
of itself already at d-(3-6)a, where Vz is still exponen-
tially small. We can conclude that in the region of d &a
where a noticeable pinning can exist, the deformation
effects are of a crucial importance for the pinning magni-
tude. Since, in this region, the screening of impurity by
electrons should be essentially nonlinear, numerical cal-
culations of the V vs d dependence are necessary. Be-
fore presenting results of our computation in the region
of intermediate d, we consider in the next section another
limit d «a which also allows an analytical treatment (at
least, for the donor). This will also permit us to make im-
portant qualitative conclusions about the form of the
V~(d) dependence at the intermediate d.

III. VERY CLOSE IMPURITY

When the charged impurity is situated sufBciently close
to the crystal plane, the ground state of the system
"impurity-crystal" differs essentially from that with a dis-
tant impurity. As we have seen in the preceding section,
the ground-state position of a distant donor is against
some site of the lattice symmetrically deformed around
this site. At very small distances d, the donor traps an
electron forming a stable dipole perpendicular to the
plane of the crystal. The rest of electrons rearrange
forming a triangular lattice with the dipole situated in a
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most favorable position (triangle center). In order to
demonstrate that this small-d phase will be the true
ground state of the system, let us consider the situation of
electrons in both competing states at very small d. In the
small-d phase, the electrons other than that bound by the
donor form an almost perfect triangular lattice since its
distortion by the short dipole donor electron is negligible.
In the large-d phase, the charge of one of the electrons at
the lattice site is almost entirely compensated by the
donor charge, the rest of electrons forming the vacancy
configuration. Since the interaction between the dipole
"donor electron" and the surrounding electrons in both
cases is negligible, at small d the difference in energy be-
tween the large-d and small-d phase is equal to the energy
of the vacancy formation in the Wigner crystal and is, of
course, positive. Thus, at some finite d, the abrupt transi-
tion of the ground state from the large-d to small-d phase
takes place. As easy to see, this phase transition should
be a "first-order" one because one phase cannot be ob-
tained from another by a continuous deformation.

The pinning energy in which we are interested is asso-
ciated with the interaction between the dipole and the tri-
angular electron lattice and, hence, should be weak in the
reformed phase. When the dipole is shifted in the plane
by s, its energy changes as

cd
V(s) = D(s),

2

where

(21)

B' B' B'
D(s)

Bz Bx By

is the normal second derivative of the lattice potential g.
The pinning barrier V is then given by

(22)

Cd
V = [D(s, )

—D(s, )], (23)

33/2
D, = Do, (24a)

D, = —',Do . (24b)

[As it has been shown in Ref. 13, the lattice potentials at
points s, and s, can be related to the Madelung constant

by means of an exact renormalization procedure.
Equations (24) are obtained by the same method. ] After
the substitution of Eqs. (24) into Eq. (23), for the asymp-
totic of pinning energy at small d we get

2 3/2
V =1.08 d (25)

where the middle of the triangle edge s, and the center of
triangle s, are the saddle point and the ground-state posi-
tion, respectively. Hence, at small d, the interaction be-
tween the dipole and the lattice is weak, and distortions
of the lattice caused by this interaction are negligible. In
the perfect lattice, the values of the two-dimensional La-
placian (22) D(s, ) and D(s, ) can be related to that at the
lattice site Do=8. 89en /a, where n is the concentra-
tion of electrons in the lattice, as given by

Analogous change of the ground-state configuration
should take place for the acceptor too. At large d, the
latter is situated against an interstitial position, the lattice
of electrons being elastically deformed around it. At
small d, the acceptor is built into the lattice playing a role
of one of the lattice sites. Corresponding gain in energy
due to this reconstruction of the lattice is obviously
equal, at d=0, to the energy of interstitial. As for the
pinning energy by the acceptor in the small-d phase, it is
dif5cult to define this parameter in a quantitative way.
The potential of the acceptor-lattice interaction does not
have in this case a translational symmetry, and the
definition of V as a height of the barrier between two
equivalent minima of the pinning potential which we use
for the donor (and for the acceptor at large d) becomes
meaningless. Below we shall characterize the pinning in
this phase by the energy increase at a small displacement
of the acceptor from its equilibrium position, i.e., by the
effective "Hook constant" of the acceptor-lattice cou-
pling k~. In the energy scale, the latter can be con-
veniently written as the energy V = k a /8 which corre-
sponds to the acceptor displacement by a half of the lat-
tice constant. Although V~(d) is hard to find analytically
even at smallest d, it is clearly finite at d =0 and has a
parabolic maximum at this point. The typical values of
V in the small-d phase should be obviously much larger
than that in the large-d phase where V is given by the
energy required to move an additional charge from one
interstitial position to another. This energy at d=0, ac-
cording to numerical calculations in Ref. 14, is as small
as 0.003e 2/Ka.

We conclude that the lattice reconstruction which
takes place at small d drastically affects the shape of the
V~(d) dependence for both types of impurities, although
in entirely different ways. Either of the dependences
should have an abrupt step at the value of d where this
"phase transition" occurs. In the case of acceptor, the
pinning should be stronger in the small-d phase, whereas
for the donor it is weak both at small and large d. Hence,
for the donor, V~ (d ) is expected to reach its maximum in

the intermediate region of d just above the transition
point. These predictions, we shall see in the next section,
agree with the results of numerical calculations.

IV. NUMERICAL CALCULATIONS

In this section we study numerically pinning of the
Wigner crystal by charged impurities. We simulated an
infinite triangular 1attice of electrons in which only the
electrons inside a rectangle with sides (m —1)a by
ma&3/2, where m is an even integer, were allowed to
move. The energy of electron-electron interaction was
calculated in the following way. The potential of mobile
electrons and of a part of the immobile ones (including
those forming the boundary of the rectangle) was calcu-
lated exactly as the sum of corresponding Coulomb
terms. The part of the positive background formed by
hexagonal Wigner-Seitz cells around these electrons was

also taken into account explicitly. The rest of the crystal
was treated as a triangular lattice of quadrupoles.

In order to study pinning effect we placed a charged
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impurity at a given distance d from the plane of the crys-
tal. The interaction between the impurity and an elec-
tron with coordinate r is given by Eq. (1). The lowest-
energy configuration for a fixed impurity position was ob-
tained by relaxing the mobile electrons in an effective
viscous fluid.

As mentioned in the preceding section, the ground-
state configuration of the electrons differs at small and
large impurity distances d. We discuss, first, how to find
the transition point d„ for a donor. The energy E, of the
large-d phase, which should be favorable at large dis-
tances, was evaluated as a function of d for the donor
placed opposite to the lattice site at the center of the sys-
tem. We obtained the small-d phase by adding to the sys-
tem an electron at an interstitial and placing the donor
opposite to it. After this, the system was allowed to re-
lax, and its energy E2 was calculated. It turns out that
both phases are stable and coexist in a wide range of dis-
tances d. The transition point d„was determined from
the equation

point d =d„=0.48. At larger values of d, it decays ex-
ponentially with the distance, in accordance with predic-
tion of Sec. II. At the smallest d, the pinning energy van-
ishes as V cc d, as given by the asymptotic (25). Howev-
er, the region of parabolic dependence (25) is very narrow
(d ~0.04) because at larger d the displacements of neigh-
boring electrons repelling from the stable dipole "donor
electron, " which were not taken into account in the
derivation of Eq. (25), become important. The height of
the pinning barrier turns out to be much smaller than its
asymptotic value [dashed curve in Fig. 1(a)] because it is
much easier to shift two neighboring electrons for the
saddle-point position of the dipole than three electrons in
the ground-state configuration. Therefore the deforma-
tion lowers the energy more effectively in the saddle point
than it does in the ground state. As a result, the energy
difference V between these two points begins to decrease
starting from d =0.14 and changes its sign at d =0.29

0.07

E, (d„)=E (d,„)—g, (26) Vp

where g= —3a~/4 is the chemical potential of the
Wigner crystal, aM=3. 921 is the Madelung constant.
(All the energies and distances in this section are given in
units of e n' /a and n ', respectively. ) The chemical
potential p in the right-hand side of Eq. (26) reflects the
fact that the total number of electrons in both competing
phases should be the same for the infinite system.

To take into account size effects we calculated the
difference bE(d, m )=E,(d, m ) —E2(d, m ) at four sizes of
the system (m =8, 10, 12, 14) and extrapolated it to m = ao

by means of
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bE(d, m ) =bE(d, ee ) +P(d ) /m . (27)
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The use of this equation can be justified by noting that
the main size corrections arise from the fixed boundary
conditions. After the electrons move towards the donor
in order to screen it, the rest of the lattice acquires a unit
charge. This results in an additional Coulomb energy in-
versely proportional to the system size, as given by Eq.
(27). The actual size dependence of b,E agrees very well
with this formula. The transition point found by the size
extrapolation is d„=0.48.

At a given distance d, we calculated the energy of the
system shifting the donor parallel to the plane of the lat-
tice. The pinning energy t/ was calculated as the energy
difference between the ground-state position (site for the
large-d phase and interstitial for the small-d one) and the
saddle point which is situated in both phases at the mid-
dle of the triangle side. We note that the size effects dis-
cussed above, when the energy of the two phases was
compared, turn out to be very small for the pinning ener-
gy V in either phase: we did not observe any change in

Vz for lattice sizes m =10 and 14. This is so because V
is determined by the difference in energy between two
close donor positions at the center of the system. Hence
the size correction is canceled out.

The resulting dependence V (d) is shown in Fig. 1(a).
The function V (d) has an abrupt step at the transition
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FIG. 1. (a) Pinning energy V~ as a function of the distance d
between a donor and the Wigner crystal plane with 77 mobile
electrons (m =10). Energy and distance are given in units of
e n' /sc and n ', respectively. Dashed curve shows the
asymptotic in the limit of small d [Eq. (25)]. The abrupt step at
d =0.48 is caused by the change of the ground-state
configuration of the system donor crystal (Sec. III). (b) Max-
imum coupling force F~ for a donor as a function of the distance
d for m = 10. The maximum force was found along the line con-
necting two neighboring lattice sites for the large-d phase
(d & 0.48), and along the line connecting the center of a triangle
and the middle point of its edge for the small-1 phase (d & 0.48).
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[this appears as a cusp in Fig. 1(a) where the absolute
value of V is plotted]. At this value of d, these two di-

pole positions become equal in energy, and the pinning is
determined by a small barrier between them. Therefore
the complete vanishing of the pinning energy at d =0.29
in Fig. 1(a) is an artifact of our definition of V: in the
close vicinity of this point V does not characterize the
actual pinning barrier.

In addition to the height of the pinning barrier V, we
also studied another important characteristic, namely,
the maximum pinning force F shown in Fig. 1(b) as a
function of d. This quantity is related to the threshold
value of an external electrical field at which depinning of
the crystal occurs. We calculated F as a maximum gra-
dient of the energy when the donor is adiabatically shift-
ed parallel to the plane along the easiest path connecting
two equivalent ground-state positions. For d )0.48 (or
d & 0.29) this path is the line connecting two lattice sites
(or centers of adjacent triangles). In the interval
0.29 & d &0.48 the ground state of the dipole donor elec-
tron is at a triangle edge center, and the easiest path is a
curUe connecting two adjacent ground states. The middle
point of this curve is very close to the center of the trian-
gle. Moreover, in the finite interval of d at d)0.29
where the triangle center remains a local minimum of the
energy, this curve degenerates to a broken line with two
segments going through the triangle center. For this
reason, in the entire interval 0.29 & d &0.48, we calculat-
ed the maximum pinning force along the line connecting
edge and triangle centers. The step in F at d =0.29 ap-
pears because the path of the donor reverses its direction
at this point: it is from the edge to the triangle center at
d &0.29, and from the center to the edge at d &0.29.
The values of F at both sides of the step result from
different slopes of a small barrier existing between these
two equienergetic positions.

Apart from the peculiarity at d =0.29, the dependence
F (d) is almost identical to V (d) in the whole range of
donor-crystal distances d [Figs. 1(a) and 1(b)]. This sug-

gests that, at least for d )0.48, the profile of the pinning
potential (unlike its magnitude) depends very weakly on
d. Hence this profile should be close to the simple form
given by Eq. (9), which was obtained for very large d and
predicts the energy change

47Tp

1n(yR /a )
(29)

where p is the shear modulus of the film [for the Wigner
crystal, p, =0.245 (Ref. 15)], and y —1 is a numerical
coefficient which can vary depending on the shape of the
film and details of the force distribution. To find the size
dependence V~(m)=k~(m)a /8, we model the system by
two springs connected in series: one with a constant
k&(m) and the other with a constant k 0, which describes
the local interaction of the acceptor with neighboring
electrons and does not depend on m. Using Eq. (29}with

y =1, we obtain

(triangle centers).
An analogous computation was done for an acceptor.

In this case, the transition between the large- and small-d
phases, described in Sec. III, takes place at d =0.68. In
the large-d phase, we defined the pinning energy V in the
same way as for the donor: the barrier height between
two adjacent equivalent ground-state positions. Here the
ground state is reached when the acceptor is against a tri-
angle center. For d &0.68, this is not appropriate be-
cause the acceptor is built into the lattice, and the pin-
ning potential is not periodic. Instead, we calculated the
Hook constant k of the acceptor-lattice coupling at
small displacements of the acceptor from the potential
minimum (k does not depend on the displacement direc-
tion due to hexagonal symmetry). We define the charac-
teristic pinning energy as V~

=k~a /8.
The entire V vs d dependence is shown in Fig. 2(a) for

different sizes of the system. As we expected, the pinning
in the large-d phase is very weak. In contrast, at small
values of d, the pinning energy V is large. Another
feature of the small-d phase is a very strong size effect.
Unlike the large-d phase, where the size corrections be-
come small already at m ~ 10, this size effect never disap-
pears when the system is enlarged. The reason for that is

a finite elasticity of the electron lattice which is deformed
as a whole when the acceptor is shifted by a small dis-
tance from a lattice site. The lattice deformability can be
estimated as the Hook constant k& of an elastic film with

a size R =am, when a force is applied at its center in a
small region of order of the lattice constant a. The value
of k~ is given by (see Appendix)

V
V(s) = cos

2
(28)

1

V (m, d)
1 2+ lnm .

V&0(d) mpa
(30)

when the donor is shifted by a distance s along the line
connecting two lattice sites. To check this point we cal-
culated the ratio F /V for d )0.48, which varies in the
interval 2.9—3.S. This is close to the value
F =~V /a =2.9V derived from Eq. (28). In the small-
d phase, d &0.48, the overall pinning profile certainly
cannot be approximated by Eq. (9) because its minima
form a honeycomb lattice in contrast to the triangular
lattice symmetry of Eq. (9}. We find, however, that, at
least at d &0.2S, the ratio F /V is also almost constant
and equals to S. This is very close to the value given by
Eq. (28) if one replaces a by a /v 3, which, in this regime,
is the distance between adjacent ground-state positions

The dependences 1/V vs lnm found in our simulation
for different d are shown in Fig. 2(b). All of them perfect-
ly fit straight lines with the slope calculated from Eq.
(30). Unfortunately, the dependence Vo(d), which can
be found by this fitting, does not have an exact meaning
because it depends on our choice of the numerical
coe%cient y in the argument of the logarithm which we

put to be 1.
Note that this problem with lattice elasticity does not

appear for the donor nor for the acceptor at large d.
Indeed, in these two cases, the interaction energy was cal-
culated only for the impurity situated against symmetry
points of the lattice, the net force acting on the lattice be-
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ing equal to zero.
In order to find the maximum pinning force F for the

acceptor at d (0.68, we moved it adiabatically from its
site along the easiest direction, which is the bisector of a
lattice triangle, and calculated the force acting on it. The
force as a function of the acceptor coordinate has a max-
imum, which we define to be the value of F, and then

changes its sign twice. The second zero corresponds to a
local potential minimum which appears after the accep-
tor passes between two electrons neighboring to its initial
position. This metastable state represents a short pair in-

terstitial vacancy. If one continues to move the acceptor,
increasing the pair length, new potential barriers appear.
However, they are not important because the correspond-
ing forces are smaller than F . (We note that our adia-
batic procedure permits one only to find the maximum
external force acting on acceptor at which equilibrium is
still maintained and cannot describe the dynamics if this
maximum is exceeded. ) The resulting dependence F (d)
for the small-d phase is shown in Fig. 2(c). Though the
acceptor coordinate at which the force is maximum
varies with the system size, the corresponding value F is

practically size independent at m ~10. This shows that
the maximum coupling force F is an intrinsic charac-
teristic and is determined by the local interaction of the
acceptor with neighboring electrons.
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FIG. 2. (a) Pinning energy Vp for an acceptor as a function of
the distance d from the crystal plane for sizes m =8, 10, and 14.
The abrupt step at d=0. 68 reflects the transition from the
large-d to the small-d phase. At d &0.68, Vp is defined by

Vp kp a /8, where kp is the effective Hook constant of the sys-
tern for small displacements of the acceptor from a lattice site.
At d &0.68, the actual values of Vp are multiplied by 10. (b)
Size dependence of Vp for an acceptor at three different values
of d. Results of numerical calculations are shown by circles.
The slope of the lines is calculated using Eq. (30), their absolute
positions are found by a trivial fit to the numerical results. (c)
Maximum coupling force Fp of an acceptor at distances
d & 0.68 for a lattice size m = 12 (115 mobile electrons).

V. PINNING BY MANY IMPURITIES

The pinning strength of a single charged impurity stud-
ied in preceding sections permits one, in principle, to pre-
dict properties of the Wigner crystal pinned by many ran-
dom impurities. The main observable parameters are the
threshold electrical field E,h, at which depinning of the
crystal occurs, and the static correlation length g, . The
latter represents the spatial scale where both the long-
range order and the translational symmetry are broken.
This manifests itself in the low-frequency oscillation spec-
trum of the crystal as a characteristic pinning frequency
co =ms/g„where s is the sound velocity of the acoustic
mode. Below we shall estimate g, and E,h for donors and
acceptors in a model where they are uniformly distribut-
ed in the space near the plane of the crystal.

In order to express g, and E,h in terms of the pinning
potential of a single impurity one should know, first of
all, the pinning regime. If the crystal is soft with respect
to the pinning strength of an individual impurity, it will
adjust its local phase to the position of each impurity, so
that g, -n, '~, where n; is the 2D impurity concentra-
tion (the strong pinning limit). If the crystal is, on the
contrary, rigid enough, the long-range order will be bro-
ken at much larger distances: g, ))n, ' (the weak pin-
ning limit). In order to find a criterion for strong pinning
we estimate the deformation energy per impurity and
compare it to the pinning energies calculated in the previ-
ous section.

Consider strong (attracting) pinning centers distributed
randomly with a concentration n, in a 6-doped layer at
some distance d from the plane of the crystal. In equilib-
rium, one of the lattice sites in the neighborhood of each
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impurity will be displaced in order to coincide with the
impurity projection in the plane. The deformation ener-

gy of the crystal per impurity c~,f is given by

e„,=k(u' )/2, (31)

where k is the effective Hook constant of a region with
size of the order of n, '~, and (u ) is the mean-square
crystal displacement near the mth impurity. The Hook
constant k is given by Eq. (29) with @=0.245e n ~ /~. '

Note that details of boundary conditions, such as Auctua-
tions of the effective film radius R from one impurity to
another around the value n; ', affect only the coefficient

y in the argument of the logarithm in Eq. (29) which is
assumed to be large: n;a ((1 (below we put @=1).
Next, we find the averaged square displacement ( u ) as-

suming that the deformed ground state in the presence of
impurities is reached by making each impurity coincide
with the site which was closest to it in the undeformed
state. In this approximation, all u are independent and
randomly distributed within the Wigner-Seitz cell of the
lattice; this yields

where n~ L, is the effective 2D concentration of corre-
sponding impurities. For acceptors, the latter is equal to
n~ =0.68n ' X~; for donors, it can be roughly estimat-
ed as nD =0.1n '

ND, where 0. 1n ' is the half width
of the peak in Fig. 1(a).'

Consider now the threshold electric field E,„at which
the static equilibrium disappears and the crystal begins to
slide as a whole. In the strong pinning regime when de-
formation effects are small, E,& can be estimated as

F n,
E P

Cn
(34)

where n; is the 2D concentration of impurities (we return
here, for a while, to a 6-doped layer of equivalent impuri-
ties). We assumed here that at the threshold each impuri-

ty acts on the crystal with its maximum coupling force
F, and therefore Eq. (34) is an upper bound for the
threshold field. An analogous formula can be written for
donors uniformly distributed in space with a concentra-
tion XD:

5

18&3n
(32)

E,„= fF (d)dd=0. 1
en Kn

(35)

where n is the electron concentration in the lattice. Sub-
stituting Eqs. (31), (32), and the shear modulus p into Eq.
(29) yields

025
ln(R /a)

(33)

g, -R =(n„+nD)

For reasonable values R/a =10—1000, this formula
gives a&,r=(0. 11—0.036)e n' /ir. As we have seen in

the preceding section, the height of the pinning barrier
V for donors peaks at the distance d=0.48n ' be-

tween the 6-doped layer and the crystal, where
V =0.06e n' /K. Thus, at d =0.5n ', both energies

EQ f and V are of the same order, and we are in the inter-
mediate pinning regime. Nevertheless, the strong pin-

ning seems to be a better description in this case, because
the weak pinning approach makes sense only if the strong
inequality V « cz,f is satisfied. The last condition can be

met, of course, for other values of d where pinning is
much weaker. Formula (33) is valid also for acceptors at
d &0.68n ', when they substitute electrons in lattice
sites (cf. Secs. III and IV). Obviously, acceptors in this
case provide strong pinning (and very weak pinning at
larger d). The best indication of that is a strong size
effect of the energy change at small displacements of an

acceptor from a lattice site (see Fig. 2). This shows that
even at small sizes the crystal is soft in comparison with
the strength of the acceptor-lattice coupling.

Suppose now that acceptors and donors are randomly
distributed above the plane of the crystal with 3D con-
centrations X~ and ND, respectively. As shown in Figs.
2(a) and 1(a), the pinning is dominated by acceptors at
distances d &0.68n ' and by donors at d =0.5n
The correlation length is given by the effective interim-
purity distance R:

where the dependence F~(d) is shown in Fig. 1(b).
Although acceptors at d & 0.68n ' are definitely

strong pinning centers, the estimate given by the first
equality in Eq. (35) cannot be used for them. In an
infinite system, the threshold field for the acceptors is
smaller than this value by at least two orders of magni-
tude. The reason is that the potential of coupling be-
tween the lattice and built-in acceptors is not periodic.
After an acceptor is forced to leave the lattice site (leav-

ing a vacancy behind), it becomes an interstitial and its
coupling to the lattice is extremely small (Secs. III and
IV). In what follows below we assume that this coupling
is exactly zero. Thus an acceptor is equivalent to a nail
which is broken when a force acting on it exceeds some
maximum value F . (This is not the case for a periodic
pinning potential when an impurity continues to interact
with the crystal even after its pinning barrier was bent
out by an external force, and the impurity shifted by a
few lattice constants. ) It is easy to demonstrate that, in a
system of "nails, " the crystal begins to slide starting from
very sparse fluctuations —large regions where nails are
absent.

Consider an empty region with area M/n„which cor-
responds on average to M acceptors (M »1). The force
acting on the boundary of this region is equal to
(Mn /n„)eE and is distributed over approximately M'~

boundary acceptors. The threshold electric field E,z for
this region is hence given by

(36)

and vanishes in the limit of large M. After the threshold
value of the electric field is exceeded for the largest empty
region in the system, the nails on the region boundary are
broken, and the region begins to grow. Since the force
per one boundary impurity increases as M', this growth
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never stops. (The situation is different for periodically
coupled impurities: the force is being redistributed over
all the impurities whose barrier was bent out, until the
region of these impurities stops to grow. Hence fluctua-
tions of impurities are not of crucial importance in this
case. ) One can conclude that pinning does not exist in an
infinitely large system of nails. In a large but finite sys-
tem with area 5, M corresponding to the largest empty
region is given by

(Sn„)e —1, (37)

where exp( —M} is the Poisson probability of the region
formation. Substituting M from Eq. (37) into (36) yields

n~F
E,h-

en ln' (Sn„)
(38)

VI. CONCLUSION

We have studied the distance dependence of the magni-
tude of the pinning potential V for two types of charged
impurities —donors and acceptors. Results are extremely

which differs from (34) by a large logarithm in the
denominator. Thus the threshold field for acceptors
turns out to decrease with the size of the system. The ap-
proximate nature of equality (37) means that M fluctuates
within an ensemble of equivalent samples by 5M-1.
This results in fluctuations of E,h, as given by
5 E, h-E, h/21n(Sn„).

Expression (38) can be generalized for the case of spa-
tially distributed acceptors with concentration N~ by
substituting into it the effective 2D concentration
n„=(0.7n '~ )N„and the average pinning force

F~ = (Fz ) given by

(Fp)=, , fF (d)dd=0. 52
0.7n -'"

where the integral is evaluated over the function F (d)
plotted in Fig. 2(c).

An important sign of the depinning mechanism de-
scribed above for acceptors is a long-time hysteresis of
the current-voltage characteristic at low temperatures T.
Suppose the voltage is gradually increased starting from
zero. After the threshold is exceeded, the system
switches from the ground state when acceptors are at lat-
tice sites to a metastable one: acceptors become intersti-
tials interacting very weakly with the lattice. Vacancies
decoupled from acceptors are carried away to the lead to-
gether with the sliding lattice. If the applied voltage is
now quickly decreased far below the threshold value, the
conductance remains high until the ground state for ac-
ceptors is restored. This relaxation process is thermally
activated and can be very long at low temperatures. The
following scenario of relaxation can be suggested. The
acceptors at interstitials interchange their positions with
neighboring electrons by means of activated hops and be-
come sites of the lattice. These electron interstitials
diffuse to the crystal boundary and are built into the lat-
tice. The hysteresis does not appear if the time of the
voltage decrease is longer than the relaxation time.

asymmetric with respect to the impurity charge: accep-
tors pin effectively only in a layer of a finite width adja-
cent to the electron plane, whereas donors have a sharp
maximum of pinning energy at some distance from this
plane. In addition, pinning by acceptor s is much
stronger. If residual acceptors are distributed uniformly
in the spacer, they always are in the strong pinning re-
gime. Donors, depending on their concentration, create
either strong or intermediate pinning. Thus, for a uni-
form distribution of charged impurities, we did not find a
regime where the weak pinning approximation applies.
The correlation length g, and the depinning field E,h are
estimated in the case of strong pinning. Since the con-
centration of residual impurities is usually unknown, we
did not try to compare expressions for g, and E,h with
experiment. A direct verification could be done in experi-
ments on samples with additional 5 layer of impurities in-
side the spacer at a given distance from the electron
plane.

We have shown that the strongest pinning
centers —close acceptors display an unusual behavior.
They are built into the electron lattice and do not interact
with it in a periodic way. The conventional model of pin-
ning based on a periodic lattice-impurity coupling' is not
valid in this case. Instead, an acceptor can be considered
as a nail which is broken after a force acting on it exceeds
some critical value F . The consequences of this are a
long-time hysteresis of the current-voltage dependence
and a decrease of the depinning field E,h with the system
size. This was shown under the assumption that, after
the maximum force F acting on an acceptor is exceeded,
it appears in an interstitial and goes away from the vacan-
cy left (or, better to say, the vacancy is carried away with
the lattice from the acceptor). Though the last statement
seems very likely, it is not proven here. Another logical
possibility is that the vacancy and the acceptor travel to-
gether. If this were the case, acceptors would not behave
like "nails, " and the size-dependent logarithm in the
denominator of Eq. (38) for E,h would disappear. We
cannot rule this out in the framework of the computa-
tional method used here. Our simulation was adiabatic:
electrons had time to relax at each position of a slowly
moving acceptor. This permits one to obtain successive
equilibrium states (and, particularly, the maximum cou-
pling force F~}, but does not describe the motion of the
acceptor with respect to the crystal when an external
force exceeds F . The last problem is essentially dynami-
cal and can be solved by molecular-dynamics methods,
for example, assuming the presence of strong damping.
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APPENDIX

We calculate the effective Hook constant of an elastic
film of radius R with fixed boundaries with respect to a
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K grad div u+ @au= —h (p)F, (Al)

force F applied at its center in a small region r ((R. The
local displacement u(p), where p is the 2D radius vector,
satisfies the standard equation

an incompressible film, K ))p, Eq. (A3) takes a form

1 q(F q)

pq q
(A4)

where K and p are "bulk" and shear rnoduli, respectively,
and the function h(p) which decays at ~p~ -r describes
the force distribution. First, we solve Eq. (A 1) at
R~~, r~O; in the final answer, we shall take finite
values r and R into account. Replacing h (p) by a 5 func-
tion and taking the Fourier transform of Eq. (Al) one
gets

Kq(q. u )+pq u =F,
whence

(A2)

1 Kq(F q) (A3)
pq (K+@)q

where u is the Fourier transform of u(p). In the limit of

u(0)= d qu =l 2 F dq

(2~) 4&@ Q

(A5)

The last integral diverges logarithmically and should be
truncated at small and large values of q at q;„—1/R and

q,„—1/r, respectively. Finally, for the effective Hook
constant k =F/u(0) one obtains

47Tp

In(yR /r )
(A6)

where y —l is a numerical coefficient which depends on
the form of the force distribution h (p).

The displacement at the center of the film p=O is found
from Eq. (A4), as given by
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