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We propose the use of quantum dots in semiconductor lasers to reduce the Auger rate, the dominant

process limiting the performance of today's semiconductor lasers in the thermal infrared. We will see

that many Auger processes cannot occur in quantum dots that are surrounded by a very large potential

energy barrier because continuum energy states are not available as final states. We present many possi-

ble materials that can be used for these quantum dots and barriers. We also derive an analytical expres-
sion for the Auger rate in a quantum sphere, in which there are two electrons and two holes, in terms of
Slater integrals, reduced matrix elements, and Racah coefficients of total-angular-momentum quantum
numbers. We note that the total angular momentum must be conserved for Auger processes in a quan-

tum dot, unlike the linear momentum conservation law required in the bulk. We present a practical ex-
0

ample of a 150-A-radius InSb quantum dot surrounded by CdTe barriers, whose room-temperature band

gap is at 4.8 pm (258 meV), and whose room-temperature Auger lifetime is calculated as 135 ns, which is

at least two orders of magnitude better than the Auger lifetime in other lou-temperature semiconductor
lasers. We present partial Auger rates and tabulate them in a Grotrian diagram labeled by the bound

states involved. We calculate and discuss the temperature dependence of quantum-dot Auger rates. In
calculating the (nonparabolic) band structure and energy states, we use a multiband envelope-function

approximation in eight-band k p theory, which also included some of the effects of higher-order bands.
Single and multiparticle eigenstates are chosen to diagonalize the total angular momentum. We include
valence-band mixing in calculating our single-particle quantum-dot states.

I. INTRODUCTION

The Auger rate is the dominant' process limiting the
performance of today's semiconductor lasers in the
thermal infrared, whose wavelengths are between 2 and
10 pm. Lasers in this wavelength regime, such as the
lead salt lasers, are already being used in spectroscopy be-
cause many substances have characteristic spectra in the
thermal infrared. A room-temperature semiconductor
laser in this wavelength range (greater than 2 ptn} would
also be of great importance in optical fiber communica-
tion, where many substances, such as fluoride fibers,
silver halide fibers, ' chalcogenide and pnictide fibers, '

have theoretical intrinsic losses that are one or two or-
ders of magnitude lower than those of currently used sili-
ca fibers.

Recently, Auger processes have been proposed as an
important nonradiative-recombination mechanism which
explains experimental data in semiconductor microcrys-
tals grown in oxide glass. In this paper, we consider the
possibility of using quantum dots that are surrounded by
materials forming a very large potential energy barrier to
reduce the Auger rate for a semiconductor quantum-dot
laser. We will see below that in the presence of these po-
tential barriers, many Auger processes cannot occur be-
cause continuum final-energy states are not available,
especially for those processes involving initial electrons
and holes close to the band extrema. While quantum
dots have already been proposed for semiconductor lasers
as a method of increasing laser eSciency because their
density of states can be made more peaked at the desired
frequency than that in the bulk, we propose the use of

large potential barriers with quantum dots as a way of re-
ducing the Auger rate. In Sec. III, we present possible
materials that can be used for these quantum dots and
barriers.

In order to make contact with the notation and results
in the literature, we review the general expression for the
Auger rate in Sec. II. We shall see that the confinement
in all three dimensions in a quantum "box" necessitates a
di6'erent form for the integrals to be evaluated. In a par-
ticular case where closed-form solutions are available, the
spherical symmetry of a quantum sphere allows the
eigenstates to be simultaneously those of energy and total
angular momentum, as discussed in Sec. IV A. An analyt-
ical expression for the Auger rate and its selection rules
in a quantum dot are derived in Sec. IV B. In Sec. V, we
present a practical example of an InSb quantum dot in
which the Auger rate is substantially reduced with
respect to that in the bulk. We also calculate and discuss
the temperature dependence of the Auger rate. We con-
clude with a summary in Sec. VI.

II. THE GENERAL EXPRESSION
FOR THE AUGER RATE

In this section, we present equations that are used to
calculate the Auger rate in general. We do this not only
to summarize some well-known important points, but
also to contrast those issues that may change as we go
from the three-dimensional bulk to the zero-dimensional
quantum dot. We will review conservation of linear
momentum for bulk Auger processes. We will note that
the Coulomb interaction is taken between the envelope
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and not the Bloch lattice periodic parts of the wave func-
tions. Finally, in Sec. IIB, we sketch a general method
for calculating Auger rates in the presence of more com-
plicated geometries and with more sophisticated wave
functions.

Fermi's golden rule gives the Auger rate as ' '

g„= g g ~Vf~ o(E; Ef—), (l)
initial initial states final states

where X;„;„,l is the number of initial states, and where V,f
is the matrix element of the Coulomb interaction between
the participating electrons; and E; and Ef are the total
initial and total fina energies for the Auger process. The
Auger processes result from the Coulomb interaction be-
tween the electrons. Thus, the interaction potential V
taken between two electrons is

2

V(r, —rz}= exp( —
A, ~r, —rz~), (2)

4~el r, r I—
where r, and r2 are the positions of the two electrons, e is
the dielectric constant, and k is the inverse screening
length. The initial- and final-state wave functions to be
used in the matrix element in (1) are Slater determinantal
in the N«„si ngle-particle wave functions, 4; (r, ),

very cumbersome for an arbitrary number of electrons
and holes and is discussed further" in the atomic physics
literature.

For Hamiltonians that are independent of the electron
spin, the electron wave functions are products of a spin
function and a spatial function

4, (r}=P,(r)y, (o) .

Equation (5} then reduces to the well-known expres-
sion, '

Vif f f tv*, (r, )yz (rz)~zf 4z (r] )'((] (rz)~)z]

X V(r, —rz)PI(r, )gz(rz)d r,d'rz,

with 62, =5,2=1 when the electrons have the same spin;
with 52l=1 Al2=0 when the transition preserves both
electrons' opposite spins; and with 52l =0 Al2=1 when
the transition Aips both electrons' opposite spins.

A. The Auger rate in the bulk

In a bulk semiconductor, the translational symmetry of
the lattice and Bloch's theorem allows us to write the
electron wave functions as a product of a Bloch function
u;, which has the periodicity of the lattice, and an en-
velope function, which in this case is a plane wave

&elec
~'i(&x„„) @z(&x„„)

elec elec
P„(r)=u„(k,r)exp(ik r)

1 g A„(k,G)exp[i(G+k). r], (8)

where v. represents both spin and spatial coordinates

r=(cr, r)

with 0. denoting the up or down nature of the z com-
ponent of the electron spin. The matrix element of
g, &,. V( r, —r, ) between Slater determinantal initial and
final states is often calculated' in the literature, especial-
ly in atomic physics,

Vif f f «i«zl. @1(+1)@2(+2) @I(rz)@2 (rl }]

X V(r, —rz)4I(r, )C z(zz),

where 4; and 4,', i =1,2, denote the wave functions of
the two initial and final electrons, respectively, involved

in an Auger process. Antisymmetric wave functions in

combination with angular-momentum recoupling can be

where k is a reduced-zone wave vector, and 6 is a re-
ciprocal lattice wave vector. This translational symmetry
will give rise to the well-known' conservation of linear
momentum rule in bulk Auger processes.

Beattie and Landsberg showed that the Coulomb term
in (2) acts only on the envelope and not on the lattice
periodic Bloch functions u when the wave number associ-
ated with the Auger process momentum exchange is a lot
smaller than an inverse lattice spacing; this is a conse-
quence of the slowly varying nature, on the scale of a lat-
tice spacing, of the Coulomb potential between the elec-
trons (holes) participating in the Auger process. To show
this, we insert (8) in (7). The first integral in (7) becomes,
as the inverse screening length A. goes to zero (which is a
good approximation as we discuss in Sec. IV B},

2

*, r 2 r2 V r, —r2 l rl 2 r2 d r d r2=
eV

Gl, G2, G1,G2

5(G, +Gz —G', —G;+k, +k,—k; —k;)

[G,—G', +k, —k',
/

When the wave number associated with the Auger process momentum exchange k&
—

k& is a lot smaller than an inverse
1attice spacIng as is the case for Auger processes involving energy exchanges on the order of an eV or less, then the
dominant terms in (9) are those with G, =G', and Gz =Gz. Equation (9) then simPlifies to
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(10)

in the bulk. Thus, the Coulomb term in (2) acts only on the envelope and not on the lattice periodic Bloch functions.
This fact will be used following Eq. (12) and in Eq. (43). Note the conservation of linear momentum in bulk Auger pro-
cesses.

B. The Auger rate in a more general potential

In a more general potential, such as that of a quantum wire or dot, the translational symmetry of the lattice is lost in
certain directions, such as those of quantum confinement. The spatial part of the electron wave function becomes'

P(r}= g C(k, n)exp(ik R, )u„(k,r —R;),
i,k, n

where R; denote lattice sites, k denote wave vectors in the first Brillouin zone, and n is the band index. In general, C
must be calculated from an appropriate (tight-binding or k p) Hamiltonian, and Eq. (7) becomes very tedious. The first
integral in (7) becomes

1 rl 2 r2 Vrl —r2 1rl

C
& (k&, n 1)C2 (k2 n 2)C

&
(k'&, n 1')Cz (kz, n 2')

i l, k&, n1 i2, k2, n2 i 1',k&, n1' i2', k2, n2'

Xexp[i( —k&.R;&
—k2 R;2+k& R';&+k2 R,'2) j

X f fd'r, d'r, V(r, —r2)u„,(k„r~ —R;~)

X u„z(kz, r2 —R;2)u„,.(k', ,r, —R';, )u„2 (k2, r2 —R,'2) . (12)

Equation (9) and the statements following it show that for those Auger processes involving energies in the infrared,
V(R, , —R,2) is slowly varying on the scale of a lattice spacing and can thus be factored out of those integrations over a
unit cell. Thus, the exponential term in (12) and all terms to the right of it can be replaced by V(R;, —R;2)
X ( u„, ~

u„', ) ( u„2~ u„'2 )5(R;„R,)5(R,2, R,'2 ). This fact will also be used in (43).
The summations over the lattice sites i 1,i2 in (12) can be approximated as integrations with the appropriate normali-

zation,

1
; r, 2 r2 Vr, —r2 ', r, 2r2 r, r2= u„l un', u„2u„'2

k& n1 k2, n2 kl, nl k2, n2' unit cell

X f d R;2' „2(R;2)P~i,(R;2)

x fd'R;, Vf „,(R;, )V(R;, —R;, )V„', , (R, , )

(13)

where Vz „J(R)=Ci(kj.,nj)expfikj. R;~I, j=1,2. Note

that the spatial integrals can sometimes be evaluated in
closed form; however, the summations over wave vector
and band index may be difficult because the Bloch func-
tion overlap integrals are functions of these parameters.
Observe also that the spatial integrals can be efficiently
evaluated numerically even when 9' does not have the
simple exponential (sinusoidal) spatial dependence. This
follows from the fact that the R;1 integral is, mathemati-
cally, the electrostatic potential seen at R;2 as a result of
the charge distribution 9'f, „,(R;, )P~, , (R;, ). The vast

1'

literature written on solving numerical Dirichlet prob-

lems could make the computation of such integrals
representing "electrostatic potential" efficient, even when
the geometries are complicated (as for a quantum box in-
stead of a quantum sphere), or when the wave functions
become complicated (as when the wave functions are
solved numerically in the presence of the electron-
electron direct and exchange interactions).

For a particular potential with a specific symmetry,
Eqs. (6) and (11) can be written in equivalent ways to al-
low more insight in a (simpler} evaluation of (5). For ex-
ample, in Sec. IV, we will invoke the spherical symmetry
of the quantum dot to write all single and multiparticle
states as total-angular-momentum eigenstates.
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III. THE USE OF QUANTUM-DOT BARRIER HEIGHTS
TO REDUCE THE AUGER RATE

We propose the use of quantum dots in semiconductor
lasers to reduce the Auger rate. We note that the Auger
rate must be zero when the magnitude of the energy of
the final state E2 is less than the potential barrier formed

by the (conduction and valence) band-edge differences be-
tween the well and barrier materials. The reason is that
when the 2' state is a bound state of the quantum dot,
such a "bound-to- bound" process is really not a true
Auger process. Since the Fermi golden rule describing
the Auger rate applies only for a time-dependent pertur-
bation and since all the bound states of a quantum dot
can be solved, at least in principle, using the complete
Hamiltonian including the Coulomb interaction (2), then
there is no Auger rate to compute for this time-
independent description. Appendix A invokes an exam-
ple from atomic physics to explain why bound-to-bound
processes are not true Auger processes. The Auger rate
could be nonzero for bound-to-unbound Auger processes
because the 2' particle is now unbound, and it can leave
the vicinity of the quantum dot, thus making the
Coulomb interaction time dependent, as shown in Fig. 1.

Thus, to greatly reduce the Auger rate, we would like
E2 as required by energy conservation not to lie in a con-
tinuum of energy states. One way to do this is to sur-
round the quantum-dot well with very large potential
barriers. The potential barrier seen by conduction-band
electrons and valence-band holes must be at least Eg „,
where Eg is the energy band gap of the well material in
the bulk, plus, say, 100 meV. This 100-meV "safety mar-

E'

E,

gin" is needed because the quantum-dot energy band gap
will be bigger than that in the bulk because of the zero-
point energy of the confinement in three dimensions.
This 100-meV safety margin is also desirable to eliminate
the Auger processes associated with a11 the occupied
states at room temperature. (We choose 100 meV =4k& T
at room temperature because we expect quantum-dot
lasers to be useful for room-temperature operation, where
some present day semiconductor lasers cannot operate as
a result of these Auger processes. ) Thus, in order to
greatly reduce the room-temperature Auger rate by using
quantum dots, we would like the material serving as the
barrier to have a band gap Eg I, of at least

Eg ~
' 3Eg +8k~ T 3Eg +0 2 eV (14)

bE, „(A, B)=bE, , (A, C) bE, „(B,C)—

This equation is evaluated for various materials in the
fourth column of Table I.

It is not enough for the energy band gap of the barrier
material to satisfy (14). We also require that the band
lineup between the barrier and well materials be such
that the discontinuity in both the conduction and valence
bands, AE, and AE„be at least E, preferably with an
additional 100 meV of added safety margin. These band
discontinuities are still the subject of much discussion in
both the theoretical and experimental communities. '

No theoretical model appears to explain all semi-
conductor heterojunction band lineups with complete sa-
tisfaction. There is also some error in the measured
values of these band lineups. The experimental data seem
to agree with the most successful theories to around 0.1

eV, at best, and to about 0.4 eV for junctions involv-
ing' ' ' HgTe, CdTe, ZnTe, and HgSe.

The last two columns of Table I give the most widely
accepted values of the band lineups to date. With the ex-
ception of the HgTe-CdTe and InSb-CdTe heterojunc-
tions, for which the measured values' ' ' are given, all
the band discontinuities are obtained from the transitivity
rule and the data given by Margaritondo. ' The transi-
tivity rule assumes that there is some reference energy
level that is constant on both sides of a heterojunction
and thus,

Barrier, m' Well, m' Barrier, m

E

FIG. 1. The energy levels associated with Auger processes in

a quantum dot. Bound-to-unbound Auger processes are al-

lowed, as shown here for a CCCV process. If energy conserva-
tion requires that E2 be less than the potential barrier, then the
Auger rate must be zero (see Sec. III).

for three semiconductors A, B, C. The band lineups
given in Table I are obtained from the most widely ac-
cepted value(s) in both theory and experiment, as dis-

cussed in a very informative recent review. '

For realistic quantum-dot lasers, we would also like the
well material to be lattice matched to the barrier materi-
al. ' Lattice-matched materials are known to give much
better quality laser media in both the bulk and quantum
wells because of the removal of surface states, which con-
tribute to loss, associated with point defects in lattice-
unmatched materials. Empirically, it appears that' a lat-
tice match of about 1.5% or so is absolutely necessary,
and a 0.3%%uo accuracy occurs for the best quality semicon-
ductor lasers of today. Thus, we require the lattice con-
stant of the barrier a& to be related to the lattice constant
of the well a through
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TABLE I. The band gaps, lattice constants, and band lineups for possible quantum-dot well and barrier materials. To greatly

reduce the Auger rate, the magnitude of the E2 energy should be less than the potential barrier formed by the (conduction and

valence) band-edge differences between the well and barrier materials. Note that no materials were found to satisfy the band gap and

lattice constant requirements for In-Ga-As-P, which would be useful in Aber optics. InAs and InSb appear promising as materials for

which this Auger rate can be vastly reduced. The band lineups appearing in the last two columns were taken from Margaritondo's re-

view (Ref. 13), except as indicated. The band gap and lattice constant requirements are obtained from (14) and (16). All other data

are taken from standard sources (Ref. 20). Compatibility of well and barrier crystal structures is discussed in the text.

Material

Quantum-dot
well

E
(ev)

Qw
e

(A)

Required barrier
characteristics

Minimum Possible

Eg $ (eV) Q$ (A) Material
Eg

(eV) (A)
LE,
(eV)

Possible barrier
materials

bE„
(eV)

Ino. 72Ga0. 28As0. 61PO. 39

InAs

InSb

Hg Te
HgSe

HgS

Te

PbTe
SnTe
Pbs
PbSe
SnSe

'Reference 16.

0.9538
0.36

0.163

—0.15
—0.30

—0.2

0.33

0.'25

0.26
0.37
0.26
0.26

5.87
6.0584

6.4788

6.4623
6.084

5.8517

5.91

6.454
6.313
5.9362
6.1243
6.02

3.06
1.28

0.689

0.65
1.1

0.8

1.19

0.95
0.98
1.31
0.98
0.98

5.78-5.96
5.968—6.149

6.382-6.576

6.365-6.559
5.993-6.175

5.764-5.939

5.821-5.999

6.357-6.550
6.218-6.408
5.847-6.025
6.032-6.216

5.93-6.110

ZnTe

CdSe
CdTe
CuI
AgI

CuCI
CdTe
ZnTe
CdSe
InP
Cds
InP
Cds

CdTe

2.26

1.74
1.44
2.95
2.22
3.17
1.44
2.26
1.74
1.27
2.42
1.27
2.42
1.44

6.101
or

6.05
6.477
6.604
6.502
6.42
6.477
6.101
6.05
5.86875
5.832
5.868 75
5.832
6.477

1.6
1.2
0.34
0.42

0.3
0.7
1.1
0.85
2.21'

4 70'
0.1 —0.4

-01
-01

0.53

Qb
0.985 + 1.015

Q~

as calculated in the fifth column of Table I. The band
gaps and lattice constants given in Table I are obtained
from standard sources.

Closely related to the issue of lattice matching to avoid
defects is the issue of picking well and barrier materials
with the same crystal structure. With the exception of
the lead salt semiconductors (the last five entries), all of
the semiconductors listed in Table I have the zinc-blende
structure. We expect that the interface between two
lattice-matched, zinc-blende crystals to have a reasonable
quality. In fact, we know that HgTe-CdTe, ' HgSe-
CdSe, and InSb-CdTe (Ref. 19) heterojunctions have
been successfully grown. The lead salt family of sernicon-
ductors have the halite crystal structure. The fabrication
of the PbTe-CdTe heterojunction, a halite —zinc-blende
junction, has not been reported yet in the literature.
However, the PbTe-Ge heterojunction, another halite—
zinc-blende junction, has been reported, ' albeit with
some problems at the interface. These problems may
make use of halite quantum dots with zinc-blende bar-
riers impractical for lasers. We were not able to find any
barrier materials, halite or zinc blende, which fit the band
gap and lattice constant constraints discussed above for
the last four entries in Table I.

Some comments about Table I are in order. The ma-
terials in the first column were chosen to have a band gap
in the infrared, where energies are small enough for
Auger processes to be strong enough to limit laser action
in the bulk. Note that no materials were found to satisfy
the band gap and lattice constant requirements for In-
Ga-As-P, which would be useful in fiber optics. InAs and
InSb appear most promising as materials for which this
Auger rate can be vastly reduced. Two values for the
band discontinuities for the InAs-ZnTe junction are
given, because of discord in the theory and experiment,
with the top one being the "more" accepted one. Notice
that b,E„ in the InAs-ZnTe junction and b,E, in the
InAs-CdSe junction may not be large enough. Perhaps
the quaternary Cd-Zn-Te-Se will produce large enough
potential barriers in both the conduction and valence
bands for InAs quantum dots. Good quality InSb-CdTe
heterointerfaces have already been achieved. ' Theoreti-
cal calculations of hE, by Harrison' seem to indicate
that CuI, but not CuC1, will also make good potential
barriers for InSb quantum dots.

The band structures of the inverted band-gap sernicon-
ductors HgTe, HgSe, and HgS can be treated with the
same formalism as used in this paper. The literature con-
tains much about the HgTe-CdTe and, to a lesser extent,
the HgSe-CdSe heterojunctions. Some of the other en-
tries in Table I for these inverted gap semiconductors
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provide possibilities that may have better band lineups,
although hE, and AE, for these materials are not yet
available. The same comments hold true for the semicon-
ductor Te.

Other ways of obtaining a desirable band lineup

at a heterointerface

We thus see that it is very likely that InAs and InSb
quantum dots surrounded by barriers made of the materi-
als listed in Table I will exhibit very low Auger rates.
One wonders if other small band-gap materials that could
be lattice matched to a large band-gap material exist. A
lot of materials could have the right band lineups, but the
lattice-matching requirement rules out most of them.
Perhaps one could relax this lattice requirement by grow-
ing a monolayer of some other material between the well
and the barrier to ease the strain. However, it is likely
that there still will be enough strain to cause defects
which contribute to laser loss.

Finally, we note that a sheet of dipole charges placed at
the heterointerfaces could change the values of AE, and
AE„. In fact, the interface dipoles, resulting from
quantum-mechanical tunneling, at a heterointerface is
one successful model for describing band lineups, as dis-
cussed' ' in the literature. We now suggest putting
artificial delta-doped sheet charges which simulate inter-
face dipoles. Again, the problem with designing the band
lineups in this way is that doping the quantum dot could
also result in surface states that contribute to laser loss.

IV. THE QUANTUM SPHERE

ture of the Bloch wave functions near the III-V semicon-
ductor band edge; and L is the orbital angular-
momentum operator associated with the spatial part of
the electron's envelope wave function.

As discussed above, in calculating the Auger matrix
element, the Coulomb interaction acts only on the en-
velope part of the wave functions. Thus we have written
Eq. (17) so that each of the separate angular-momenta
acts on a different coordinate space. That S should ap-
pear separately in the total-angular-momentum operator,
(17), is not surprising, since the real space part is decou-
pled from the spin part of the electron wave function for
spin-independent Hamiltonians. The Bloch Lz and en-

velope L angular momenta appear as separate terms in
(17) because the Bloch wave functions only have physical
significance in the coordinate space inside a unit cell of
the lattice, whereas the envelope wave functions are
defined on lattice sites only and are considered to be slow-

ly varying over distances comparable to a unit cell. Thus,
the Bloch angular momentum and the envelope angular
momentum act on state spaces that are effectively
separate.

In the standard literature, the k p Hamiltonian is writ-
ten in the basis of eigenstates ~J,J, ) of J=S+Ls. This
basis is available in the literature. The eigenstates of the
envelope angular momentum L are spherical harmonics:
YL I (Q)=(Q~L, L, ). In a spherically symmetric poten-

tial U(r ) the radial part of the envelope wave function,
which has Yl I (Q) as its angular part, satisfies an en-

z

velope Schrodinger equation,

F=J+L=S+L~+L, (17)

where S is the spin of each electron, of which the z com-
ponent is +—,'; Lz is the "Bloch" angular-momentum
operator whose eigenstates denote the s, p, p, or p, na-

A zero-dimensional structure with closed-form expres-
sions for both the eigenstates and the Auger rate is a
quantum sphere. We calculate the (nonparabolic) band
structure and energy states using a multiband envelope-
function approximation in eight-band k p theory, which
also included some of the effects of higher-order bands.
Single-particle and multiparticle eigenstates are chosen to
diagonalize the total angular momentum. We present
here an analytic expression for the Auger rate in a semi-
conductor zero-dimensional structure. We will assume
infinite potential barriers, which are a good approxima-
tion for the very deep potential wells needed to greatly
reduce the unwanted bound-to-unbound Auger recom-
bination. We include a practical example in which the
room-temperature Auger rate has been reduced by using
quantum dots surrounded by large potential energy bar-
riers.

A. Eigenstates in a spherical representation

Recently, it has been shown that in a spherically sym-
metric potential, such as that near an impurity or that
imposed by the energy band-gap differences in the two
semiconductors comprising a quantum sphere, the
single-electron wave functions must be eigenstates of the
total angular momentum F defined as

d [rf(r)] L(L+1)fi

=E(rf(r)) . (18)

For U(r) equal to a constant Uo (as in the well or barrier
regions of a quantum sphere) the solutions are spherical
Bessel functions of the first kind,

f„l (r)=jr(K„Ir),
with

1/2

(19)

I( „L= 2'
$2, (EnL,

—Uo) (20)

as the nth value of K„L, which satisfies the boundary con-
ditions. In the well (similarly, for the barrier) region of a
quantum sphere, K„I is real (imaginary) for bound states.

1. k-p theory with total-angular-momentum eigenstates
as a basis

Instead of working with the standard k.p Hamiltonian
(J,J„'K~H ~

J',J,'; K ) and its basis
~ J,', J,', ), we work with

a unitary transformation of the Hamiltonian UHU
which diagonalizes total angular momentum and its cor-
responding basis U~J,', J,', ). The unitary transformation
that allows the k p Hamiltonian in the ~F,",F»J L;K )
basis to be written in terms of the standard k.p Hamil-
tonian, (J,J,;K~H ~

J',J,';K) was recently derived,
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J J'
(F,F,;J,L;K iHiF', F,';J',L', K ) = g g (J,J,;L,L, =F,—J, iF,F, ;J,L )

J = —JJ'=z z

X (J',J,';L', L, =F,' J,'—IF',F,';J',L')

X J dQqYr'(~ q )(QK)Y, ,
(Q~)(J,J„'KiHiJ', J,';K) . (21)

The standard k-p Hamiltonian is given in the literature. The parameters we used in this Hamiltonian are given in Ap-
pendix B. Note that since the k p Hamiltonian in the standard

i J,J, ) basis was constructed to include remote bands,
the overlap integrals of the Bloch functions should be reasonably accurate.

The energy eigenstates in a quantum sphere must also be eigenstates of the total angular momentum F. To obtain
these eigenstates, we use the same unitary transformation that helped us to transform the Hamiltonian (21). Thus, we

can write the energy eigenstates 4;'(r) as,

e,',(r) =(riF,', F,', &

J,. L,.

= g Cx J ~ f~,(Kr) g g (cr, iJ,J, )Yq, , (Q)(J,",J;„'L,L„'KiJ,L;F,F,",;K)
J., L. J. = —J. L. = —L.

l lz l lZ l

= g C, ,f,(Kr)(o „QiJ,', L,', F,', F,', ),
l

(22)

where fr (Kr ) is the radial part of the envelope function for each different angular-momentum term in (28) and (30),

where K is determined by the external potential U(r), where 0, is now the spin coordinate associated with J,', Q is the

angular part of the spatial coordinates, where (J,J„'L,L, ;KiJ,L;F,F,;K) is a Clebsch-Gordan coefficient, and
where

C, , = (J,L;F,', F,",)KiF,',F„'K ) (23)

are determined by diagonalizing the k p Hamiltonian in the iF,F„'J,L ) basis.
The k.p Hamiltonian in the iF,F,;J,L ) basis has been diagonalized for F=—,', —,

' by Sercel and Vahala. In gen-
eral, one can show that for F —'„ this 8X8 k p Hamiltonian in the iF,F„J,L ) basis is block diagonal because of
parity selection rules. Each of the two blocks (p =0, 1) has the form

HF p=o 1

E, +—,'K

—igPK E„—

—ihPK

—ijPK

igPK

y)K y2K+a
2

y K
b

y,K'
2

E,—

ihPK

y2K
b

y,K
2

y,K'
d

2

yK—a
2

ijPK

yK
2

y,K'

y, k
E

(24)

for total angular momentum F greater than or equal to —,'.
The F=—,

' Hamiltonian was given previously. Here,

E, „are the conduction- and valence-band-edge energies
P is the Kane momentum matrix element, i =v' —l, y;
are the modified Luttinger parameters as discussed in
Appendix B, and K =K„+Ky+Kz Numerical values
for the constants a, b, c,d, g, h,j in (24) are listed in Table
II. The bases iF,F,;J,', L,') for each of the t.wo Hamil-
tonians (24) are listed in (25) and (26) below.

One of the 4X4 Hamiltonians (24) has the energy
eigenstates (simultaneously eigenstates of the total angu-

lar momentum with the eigenvalues F,F, ) (p =1),

4(r)= A (oQriJ= ,',L ='F+ ,';K)c-—
+8 ( o Qr

i J= ,',L =F ,';K)———
+C(o Qr i

J= ,', L =F+—,';K )—

+D(o Qri J= ,',L =F ';K)——
and the other has eigenstates (p =0),

(25)
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4(r) = A ( aAr
~

J= ~, L =F T—';K ) c
+B(oA,r ~J= ,',L—=F ,

'—
,K—)

+C(o Qr
~

J= ', ,L—=F+ ,';K—)

+D ( cr Qr
~
J= ~,L =F+ ,';K—)s . (26)

The subscripts C and S distinguish between the conduc-
tion and split-off hole bands for the J=—,

' case. The con-

stants A, B,C, D, are the coefficients (23) determined by
explicitly finding the four eigenvectors of each of the
4X4 Hamiltonians. Remember that each of the two 4X4
Hamiltonians has four eigenvectors whose eigenvalues
are the electron, heavy-hole, light-hole, and split-off hole
energies at a particular wave vector.

bound-to-unbound Auger rate is minimized. Thus we can
approximate the bound-state energies by finding those en-
ergies that force the radial part of the envelope wave
function in (22) to vanish. We illustrate this point by gen-
eralizing an example found in the literature.

As discussed in the literature, for hole energies that
are close enough to the valence-band edge such that the
conduction and split-off hole bands seem remote, the
Hamiltonian (24) can be approximated by the 2X2 ma-
trix sitting at its center, with the modified Luttinger pa-
rameters replaced by the true Luttinger parameters.
These bound hole states have energies E with wave vec-
tors satisfying

(a+ 2)'j L, 2(KHHR )j t.3(KLHR )

2. Finding the bound state en-ergies and wave functions:
band mixing

+ b Jt 2(Kt HR )JL,3(KHHR ) =0 . (27)

In our studies, we want our quantum dots to be sur-
rounded by large potential energy barriers, so that the

For these bound hole states, the corresponding wave
functions are

@0(&)= I (~&
l
J= '„L=L2)—( —b )JL3(KHHR )[JL2(KLHR )JL2(KHH r ) JL2(KHHR )jL2(KLH r ) ]

+ (~f)
l

J= ,', L =L3 -&(a+2)JL2(KHHR ) [Jt 3(KLHR )JL3(KHHr ) JL3(KHHR)Jt 3(KQHr )]] (28)

TABLE II. Numerical values for the a, b, c,d, g, h,j constants in the Hamiltonian (24). This Hamiltonian, expressed in a basis of
total-angular-momentum eigenstates ~F;,F, ;J, ,L;K ), is obtained from a unitary transformation of the standard k.p Hamiltonian
given in the (Ref. 23) literature. F is the total-angular-momentum quantum number. Note that the numbers for F=

2
match those

given in the literature (Ref. 23).

F p

1.5
1.5
2.5
2.5
3.5
3.5
4.5
4.5
5.5
5.5
6.5
6.5
7.5
7.5
8.5
8.5
9.5
9.5

10.5
10.5
1 1.5
1 1.5
12.5
12.5

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

1

0
1

1

0
1

0.577 350 27
0.258 198 89
0.632 455 53
0.308 606 70
0.654 653 67
0.333 333 33
0.666 666 67
0.348 155 31
0.674 199 86
0.358 057 44
0.679 366 22
0.365 148 37
0.683 13005
0.370 479 29
0.685 994 34
0.374 634 32
0.688 247 20
0.377 964 47
0.690 065 56
0.380 693 49
0.691 564 07
0.382 970 84
0.692 820 32
0.384 900 18

—0.577 350 27
—0.774 596 67
—0.516 397 78
—0.755 928 95
—0.487 950 04
—0.745 355 99
—0.471 404 52
—0.738 548 95
—0.460 566 19
—0.733 799 39
—0.452 91081
—0.730 296 74
—0.447 213 60
—0.727 606 88
—0.442 807 44
—0.725 476 25
—0.439 297 69
—0.723 746 86
—0.436 435 78
—0.722 315 12
—0.434 057 37
—0.721 11026
—0.432 049 38
—0.720 082 30

—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27
—0.577 350 27

0.000 000 00
1.600000 00

—0.400 000 00
1.428 571 43

—0.571 428 57
1.333 333 33

—0.666 666 67
1.272 727 27

—0.727 272 73
1.230 769 23

—0.769 230 77
1.200 000 00

—0.800 000 00
1.176470 59

—0.823 529 41
1.157 894 74

—0.842 105 26
1.142 857 14

—0.857 142 86
1 ~ 13043478

—0.869 565 22
1.120000 00

—0.880 000 00
1.111 111 11

2.000 000 00
1.200 000 00
1.959 591 79
1.399 708 42
1.916629 70
1.490 711 99
1.885 618 08
1.542 778 43
1.863 081 96
1.576 453 96
1.846 153 85
1.600 000 00
1.833 030 28
1.617 379 66
1.822 580 40
1.630 729 83
1.814072 42
1.641 303 61
1.807 015 81
1.649 884 00
1.801 070 89
1.656 985 21
1.795 995 55
1.662 958 84

2.000 000 00
0.894 427 19
2.190890 23
1.069 044 97
2.267 786 84
1.154 700 54
2.309 401 08
1.206 045 38
2.335 496 83
1.240 347 35
2.353 393 62
1.264 91106
2.366 431 91
1.283 377 90
2.376 354 10
1.297 771 37
2.384 158 24
1.309 307 34
2.390457 22
1.318760 95
2.395 648 23
1.326 649 92
2.400 000 00
1.333 333 33

—2.000 000 00
—2.683 281 57
—1.788 854 38
—2.618 614 68
—1.690 308 51
—2.581 988 90
—1.632 993 16
—2.558 408 60
—1.595 448 07
—2.541 955 64
—1.568 929 08
—2.529 822 13
—1.549 193 34
—2.520 504 15
—1.533 929 98
—2.513 123 45
—1.521 771 82
—2.507 132 68
—1.511 857 89
—2.502 172 97
—1.503 618 82
—2.497 999 20
—1.496 662 95
—2.494 438 26
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to within an overall multiplicative normalization factor.
Equation (27) is useful when the conduction-band

states are treated as decoupled from the valence bands.
In our numerical models, however, we diagonalized the
full (for F~ —,') 8X8 Hamiltonian (21), whose two 4X4
blocks each has four eigenstates of the form (25) or (26).
The I' =

—,
' Hamiltonian and eigenstates appear explicit-

ly in the literature. Thus, in our numerical model, the
conduction- (valence-) band states necessarily have some
valence- (conduction-) band character, according to (25)
and (26). Our energies are found by requiring that the en-

velope wave functions of the dominant terms [the first
term of (25) and (26) for conduction-band states and the
next two terms of (25) and (26) for valence states] in (25}
vanish on the surface of the quantum dot. In our model,
the bulk energy bands E(KC i H HH soH) are nonparabolic
functions of the wave vector, according to (24).

To include conduction-band (and split-off hole) charac-
ter in the hole wave functions, note that complex wave
vectors, ' and thus modified spherical Bessel functions,
must appear in the equation above because real wave vec-
tors are associated with energies abooe the conduction-
band edge (or below the split-off hole band edge). These
complex wave vectors and modified spherical Bessel func-
tions correspond to Tamm states, which often appear in
surface science studies, ' where the translational sym-
metry of the bulk semiconductor is lost.

For the bound electron states, we could simply ignore
the Tamm states and choose the two conduction-band
eigenvector(s) of the eight represented by (25) and (26)
such that the conduction-band part of these wave func-

tions [the first terms in (25) and (26)] vanish at r =R for
all angles. This is equivalent to to what is usually done in
quantum-well calculations. Such a description would be
appropriate for electron energies that are close to the
bulk band edge. For energies further from the
conduction-band edge, we should include some valence-
band character in the form of Tamm states in the
conduction-band wave functions. This is illustrated
below.

As conduction-band energies become further removed
from the conduction-band edge, k p theory tells us that
the conduction-band wave functions will pick up some
valence-band character which is mostly light hole. The
reason is that the split-off hole band is further away from
the conduction band than the light-hole band; and the
heavy-hole band couples to the conduction band through
remote bands only. All of this should be clear from the
standard k p Hamiltonian. One can show that the most
strongly bound electron states have energies E with wave
vectors satisfying

'P Kci—%'
jo(KcR )j i{'%'R )+ j0(i&R }ji(KcR}=0

(Ec Ei,)—
(29)

analogous to (27) above. Note that the hole wave vectors
i%' are imaginary in Eq. (29) when we are solving for
conduction-band states, for which E=Ec(Kc}=—E„H(i%'). The ground-state electron energy has the
form, to within a normalization factor,

e, (~)= &~QIJ= —,',L=O)j, (i& R)[j 0(i& R)jo(Kc") Jo(KcR)JO(i&'r)]

E—E
+(OQ~J= ~»L =1)i

V

1/2

j0(i&R )[j,(i&R )j,(Kcr ) j,(KcR )j,(—'Ri)r] (30)

(31)

where the evanescent Tammi~ 2 states j„(i%'r) should be included. Numerically, we found that the Tamm states con-
tribute about 15% to both the single-particle conduction-band energies and the Auger Slater integrals. After noting the
size of their contribution, these Tamm states were not included in our first cut, rough calculation because we felt that
an error of this magnitude is easily available from uncertainties in our band parameters, especially the band lineups. '

When the Tamm states are not included, Eq. (30}reduces to

E E 1/2

4 ( )=A' j(K )( Q~J= ,',L =0)+ -j (K )& Q~J= '„L=l)-
V

as in the literature.
Because of the recent interest in quantum-box lasers,

we may be interested in calculating the induced dipole be-
tween any conduction-band electron and any valence-
band hole. Observe that in calculating the gain propor-
tional to the square of the dipole between these two states
of a quantum-box laser, one must note that the overlap
integral between the envelope functions of the two
aforementioned ground states is not unity, as had previ-
ously been assumed, because the hole ground state is an
admixture ' of light- and heavy-hole states.

3. Multipartiele states

In calculating the Auger rate, we used Eq. (5), and thus
assumed that the initial and final states have the form (3).
Antisymmetry with respect to two particle interchanges
as in {3) is not the only requirement for our wave func-
tions. We also require that in this spherically symmetric
system, multiparticle states must, diagonalize the total
multiparticle angular momentum, which is a sum of
terms like (17). In atomic physics, these two require-
ments, eigenstates of total angular momentum and of the
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correct antisymmetry, are met through the use of"
recoupling coefficients and" coefficients of fractional
parentage.

Recoupling coefficients are needed whenever three or
more angular momenta are added together. The reason is
that there are a number of different ways to choose which
two angular momenta are added together first and in
what order the remaining angular momenta are to be
coupled to the first two. The product of the square-rooted
quantities and the three Racah coefficients in the last
three lines of (54) below is analogous to the recoupling
coefficients of atomic physics. The coefficients of frac-
tional parentage are found by requiring that the correct
linear combination of recoupled angular momenta states
be antisymmetric with respect to two-particle inter-
changes. When there are no more than two particles in
each single-particle energy level, as in the case computed
below with just two electrons and two holes, the formal-
ism of the coefficients of fractional parentage is not need-
ed.

It is well known in semiconductor physics that the
conduction-band electrons and valence-band holes will
thermalize independently of each other and will have
separate Fermi energies. Thus, at this order of approxi-
mation, we can recouple angular momenta in the follow-
ing way. We will assume that the two initial electrons in-
volved in a CCCV Auger process (the two initial holes in-
volved in a CVVV Auger process) have a definite angular
momentum, as do all single-particle states and the total
N, ~„system. Since the Coulomb interaction potential is
rotationally invariant, the two final electrons resulting
from a CCCV Auger process (the two final holes resulting
from a CVVV Auger process) must also have a definite
angular momentum. Thus, we write the initial and final
states as those linear combinations of Slater determinants
(3), which allow us to replace 4&, ) I4z ) by

not sensible since the band parameters are often not pre-
cisely known. In particular, the band lineups have an er-
ror of' ' at least 100 meV for the small band-gap ma-
terials in which the bulk Auger rates are large. Such er-
rors would allow more unbound states to be accessible as
final states in an Auger process. Equation (3) should be a
good approximation (for weakly interacting particles) to
the actual multiparticle states because the form of this
equation is what one would expect when the Coulomb
and exchange interaction between particles are accounted
for. The general conclusions of this work with respect to
trends in and elimination of the Auger rate are not ex-
pected to be modified much by inclusion of the electron-
electron Coulomb interaction.

4. Notation for single partic-le states

We will label single-particle states as n(L)F (e.g.,
1S3&2) where n denotes which orbital, e.g., which root of
(27) to take; F is the single-particle total-angular-
momentum quantum number; and where (L) is a letter
($', p, D, . . . ) denoting the envelope angular momentum
of the dominant portion of the wave function. This dom-
inant portion of the wave function is the first term of (25)
or (26) for conduction-band states. For hole states, this
"dominant" portion is a misnomer because the heavy-
and light-hole states both mix the second and third terms
in (25) and (26). For F ~

—,
' holes, we use the second term

in (25) and (26) because in the absence of k p theory, the
second and third terms in (25) and (26) would not be
mixed. For F=—,

' holes, we use the third term in these

equations because the second term does not exist. The
implicit assumption in this notation is that the micro-
scopic (Bloch periodic) part of the wave functions in all
conduction-band states have J=—,', and all light- and

heavy-hole valence-band states have J=—', .

IF„F;F,F, ) =
Flz (F2z Fz F lz )

IF, ,F„)IF2,F2, )

B. The Auger rate in a quantum sphere

X (F„F„;F2,F2, IF„F2;F,F, ), (32)

and I +~ & I @q ) by

IFI,F~', F',F,') = IFI,F1 ) IF2, FZ, )

X ( IF'),F'(, , F~,Fq, IFI,F2','F', F,') (33)

in (5).
In our calculations, we will use single-particle states in

(3) and single-particle energy levels. The reason is that
we expect the electrons to be weakly interacting; our nu-

merical calculations indicate that the Coulomb repulsion
energy between particles is just a few meV, which is

smaller than the bound-state zero-point energies which
are of the order of 10—100 meV. Including the Coulomb
interaction between particles in a more precise fashion is

In calculating the Auger rate in a quantum sphere, we
will denote the initial particles as 1,2, and the final parti-
cles as 1', 2'. In our notation, particles 1, 2, and 2' will

always be in the same band. Thus, for CCCV (similarly,
for CVVV) processes, particles 1, 2, and 2' are electrons
(holes for CVVV) and particle 1' is a hole (electron). In
our quantum-sphere calculation, we will assume that
there are only two electrons and two holes in the sphere
so that we can use (32) and (33) without finding the
coefficients of fractional parentage.

1. The bound-to-unbound Auger rate in a quantum dot

If all four energy states E, ,E2,E', ,E'2 involved in an
Auger process are bound (discrete) states, then the Auger
rate for that process in a quantum dot is zero, as we dis-
cuss in Sec. III. Thus, all we need is to find expressions
for the bound-to-unbound Auger rates in a quantum dot.
From (1), this rate is



46 REDUCTION OF THE AUGER RATE IN SEMICONDUCTOR . ~ . 3987

~ V) 5(E; E—f )P(1,2, 1',2')g(E2 ),
initial states final states

where the joint probability of occupation is, for a CCCV process,

P(1, 1',2, 2') =f,(E, )f, (E~ }f„(E,. )[1 f,—(E2. ) ]—[1 f,—(E, ) ][1 f,—(E2 ) ][1 f„—(E,. ) ]f,(E2. )

with f,(E) and f„(E}as Fermi-Dirac occupation probabilities at temperature T,

(34)

(35)

f, „(E)=
E—

Efc,fu1+exp
B

(36)

These formulas come from a grand canonical ensemble for weakly interacting, identical particles.

2. The density ofanal states

The density of final states g (E2 ) for a bound-to-unbound Auger process in a quantum dot is the bulk density of states

(per unit volume) in the barrier material,

' 3/2
2mp

4~
' 3/2

2mp1

4m

' 3/2
mbarr c(E' —V )1/2 bar

mp

m barr, lh

for electrons

3/2
m barr, hh

mpmp

3/2

for holes,

(37)

where VB is the barrier height, the effective masses are
those in the barrier region, mp is the free electron mass,
and where we have assumed that the energy bands in the
barrier material have a parabolic dispersion relation.
This is a valid assumption when E2 is close to the barrier
band edge: E2 —VB small. Note that there is no extra
factor of 2 for spin degeneracy in (37} because the
different spins of the continuum states will be summed
over explicitly.

In counting the number of states, boundary conditions
(either set the wave function equal to zero at some large
distance from the quantum dot or use periodic boundary
conditions) are applied to the wave functions in the bar
rier region, which is the region that looks infinitely large.
Equation (37) is exact for continuum states in the conduc-
tion band because there is a one-to-one correspondence
between the wave vectors calculated for states in the bar-
rier region and those in the well region. Equation (37) is
not exact for continuum states in the valence band, be-
cause as we have seen above, the spherically symmetric
quantum-dot barriers necessarily mix the heavy-hole,
light-hole, and split-off hole states. Each type of hole has
a different energy wave-vector dispersion relation. The
correct hole density of states is obtained by finding the
precise hole wave functions in the barry r and well re-
gions. At the heterointerface, we demand continuity of
the wave function and its derivative. (In practice, this is

I

often done only for the envelope part and not the lattice
periodic part of the wave function, a procedure which is
not correct by first principles. ) The density of states is
found by counting the number of states per unit energy
which satisfies the boundary conditions at the edge of the
semiconductor wafer sample. To perform the calculation
precisely is very hard because the boundary condition at
infinity (the edge of the semiconductor wafer sample) is
an equation in terms of sums of products of six or more
modified and ordinary spherical Bessel functions. [For
holes, this equation for the boundary condition at infinity
is determined mainly by the largest wave vector associat-
ed with the wave function, which is the heavy-hole wave
vector. Equation (37) is thus a good approximation, espe-
cially if the heavy-hole mass is a lot bigger than the
light-hole mass in the barrier region, for the hole density
of states because each continuum hole state must have
some heavy-hole character in the barrier region. ] Of
course, in the limit that the quantum-dot radius becomes
very large and E2 becomes large compared to the barrier
height, Eq. (37) becomes exact.

3. Calculating the matrix element

In preparation for calculating the Auger rate matrix
element, we expand the screened Coulomb potential in
terms of radial and angular parts,

exp( —
A, ~ri —r2~ ) Ii+&&2(A,r } K&+ i&z(A,r )

4~ Irn(~1~41} I (~m2~( 2) ~r) l2[ I=0m= —I Ar& Ar&
(38)

where 8;,P;,0;,i =1,2, are angles in spherical coordinates; and I&+,&2(A,r& ), K&+,&2(A,r& } are modified spherical
Bessel functions of the first and third kinds, respectively. The inverse screening length A, is very small for dynamic '
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processes such as Auger recombination and is usually taken to be zero. Thus, the expression above reduces to the fa-
miliar expansion of the Coulomb potential in terms of 2' pole moments,

1
" 4~

1

Yl (~1 01) 1 (02 42) (39)

where

Y,* (0, )=( —1) Y1 (0, ) . (40)

Using the notation of (4), we evaluate the direct term in the integral (5) above,

D = f—f«,«2)1 (r1)$2(r2) V(r1 r—2)QI(r, )$2(r2)

1
«2y2(r2)y2(r2) f «,y;(r, )y;(., )

r, —r2

Using the reasoning of Eqs. (9) and (10), the integral of interest can be written with the help of (32) and (33) as,

(41)

D= F„F2;F,F,
~

F', , F1;F',F,')
1

r, —r2

(F„F„;F2F2, IF1 F2'F,F, )(FI,FI„'F2 F2, IF1 F2'F F, )
1z'~ 2z z 1z i Fi, (F2 =F —F

l )

X F),F)z', F2,F2z F(,F]z', F2,F2zr, —rz
(42)

Use of (22) gives

1 I I ~ I I
F1,F1 ', F2, F2z

I I

F1,F1z,'F2, F2z
r) r2

CK2 J2 L Cx. i

I
J2,L2, Jp, L

X g Cx J I C. . . g R1(121',2')

I

X y (
—1) &J1,L1,F1,F1.IY1, IJ1L1F1FI,)

where the Slater integrals are

X ( J2,L2,.F2,F2, I Y1 m I J2,L2', F2,F2z ), (43)

I

R1(1,2, 1',2')= r2dr2 r,dr, f1* (K2r2)fq, (K2r2)
l 1+, fL (K, r, )fq, (KIr, ),

0 0 2 2 1

(44)

and where R is the radius of the quantum dot; where fL (Kr) is the radial part of the envelope function for each

different angular momentum term in (28), (30), (25), and (26); and where the standard basis of Bloch functions
I J;,J;, ),

at the I point have the normalization,

I tz Iz
(45)

Appendix C discusses a numerical method for evaluating Slater integrals by solving a second-order ordinary
differential equation. From the discussion in Appendix C, the r, integral in (44), defined as
V&(r2, L, ,L', ,K, ,K', )—:V&(r2), satisfies

d2

dT

l(l+ 1)
[rV&(r)]= 42r[rf~ (K,r)f—, (K',r)],

T
(46)

an equation whose numerical solution we can find.
Remembering that o. now denotes the spin coordinates of J, which is not acted on by YI, we can use Racah

coefficients W(abed;ef) to write the angular integrals, using standard phase conventions' ' in (43) as
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„.5, , &L)IIIIIL ) )(I,—m;F', ,F;, II,F;;F„F),&

X[(2F'+1)(2Li+1)]' W(ILiFi J„'L F' )( —1) ' ' ' ', (47)

(Jz Lz Fz Fz. IYI, IJz Lz'Fz Fz. &=5~ +F 5, , & zlllllLz)(l, m;Fz Fz, ll, Fz;Fz,Fz, )

X [(2Fz+1)(2Lz+1)]'~ W(ILzFz Jz;LzFz )( —1)

where we have invoked the Wigner-Eckart theorem,

(Lz,Lz, l Y( ILz,Lz, ) =5q +q. (Lz,Lz, ', l, m ILz, l;Lz, Lz, )(LzlllllLz),

(L„L„IYI IL', ,L'„)=5, (L'„L'„;I,—ml L', , I; L„L„)(L, II III Li ),

(48)

(49)

(50)

and where the reduced matrix elements are

'"
I I, I.

4~ 0 0 0 (51)

The 3j symbol above is nonzero when I +L'+L:—J, is even, for which

I L' L I iz (J,—21 )!(J,—2L')!(J, 2L)!—
0 0 0 (J +1)!

We can now rewrite (42) with the help of (43), (47), and (48) as

( —,'J, )!

(-,'J, —I)!(-,'J, —L')!(-,'J,. L)! (52)

D F] F2 F Fz F] F2 F F
r2

Cg J L C. . . g Cs q L C. . . QR((121',2')
2 2 2 Ki,Ji,L i

J2,L2,J2,L2 J),L),J),L )

X5q q, (L) IIIIIL', ) [(2FI+1)(2L,+1)]' W(ILIF, J, ;L)FI )

5q q, (LzlllllLz)[(2Fz+1)(2Lz+1)]' W(ILzFzJz;LzFz)( —1) '

X X
F&z'(F2z =Fz F )z F)(F2 =F —F) )

(F),F)„'Fz,Fz, IF),Fz,F,F, )(FI,F)z,FzFz, IF) Fz', F',F,' )

I

( —1) 5F +F, (I, —m;F'~, F~, II,FI;F„F&,)
m= —1

+~ (l, m;Fz, Fz, ll, Fz,Fz, Fz, ),2z™+F2z (53)

where we have used the fact that the CK J L coeScients and RI are independent of all F;, quantum numbers. We have
also used the fact that l, L'„Lz are integral, and that J„J2 F& F2 are odd multiples of —,'. The last three summations in
(53) above can be written in terms of a Racah coefficient, '

D = F) F2'F Fz F ) F2'F Fz
1

r&
—r2

Cg g I C r s s g Cg g I C s s z QRI(1&2&1 &2 )2' 2' 2 Kl, J1,LiI I
J2,L2,J2,L2

X5, (L i III IIL i )[(2Fi + 1)(2Li + 1)]' W(ILIFi Ji,L iF', )

X5, (LzlllllLz)[(2Fz+1)(2Lz+1)]' W(ILzFzJz, LzFz)
IX5,5F~( —1) ' ' [(2F)+1)(2F +1z)]'~ W(F)FzF, Fz;FI) .

z' z
(54)

Note that (54) requires that total angular momentum be conserved for Auger processes in a quantum dot, as we would
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expect for an interaction which is scalar, the Coulomb potential, in a spherically symmetric system. This is to be con-
trasted to the situation in the bulk in which the total linear momentum must be conserved. The exchange (the second)
term in the integral (5) above can be obtained from (54) by replacing the subscripts 1 by 2 and vice versa.

4. Checking the matrix element

Since we were unable to find detailed discussions in the literature on the Auger rate in a semiconductor quantum dot,
we discuss here and in the InSb example below some of the ways in which we checked our numerics. In checking the
matrix elements calculated from (54), we note that the coefficients C can be checked in the limit of small wave vectors
with the expressions in Sec. IV A. The Racah coefficients were checked with' ' tabulated values and known expres-
sions. (The relative sign of the different angular momenta recouplings have been crucial in atomic physics calculations. )

The most difficult thing to check in (54) is the Slater integral because this integral cannot be evaluated in closed form
for many values of L, , l. One exception to this occurs when L; = l =0 for i = 1,2, 1',2', where we found that

f 2 4m .r,dr2 r, dr,jo(K2r~ )jo(K2r2 ) jo(K, r, )jo(K', r, )
0 0 r)

2K)K2K )K2

X Si[(K)+K', +K2+K2)R ] +1 1

K) +K ) K2+K2
+Si[(K, +K', K~ —K—

2 )R ]
1 1

K)+K ) K2+K2

+Si[(K)+K', +K2 K~ )R ]-
K)+K')

+Si[(K,+K', K2+K~—)R],+
K, +K,

+Si[(K)—K(+K~ —K2)R] + +Si[(K)—K) —Kg+Kg)R]1

K) —K) K2 —K2 K& K& K2 K~

+Si[(K,—K', +K2+K2)R ]
K) —K)

1

K2+K2

—1 1+Si[(K K' —K —K' )R ] — +
1 1 2 2 (55)

where the Si(x) = fodtsint/t are sine integrals, and the

normalization integrals are

f&,2d, [. (&,)]q
R sin(2kR)

o 2&2 (2kR )
(56)

[As expected, the right-hand side of (55) is symmetric
with respect to interchanging the labels 1, 1' with 2, 2', or
interchanging primed with unprimed K;. Also, both
sides of (55) correctly approach —,', ~R for small R. ] We
found that our numerical evaluation of the Slater integral
agreed to at least eight decimal places with the exact ex-
pression above; the errors seem to come from approxi-
mating Si(x) in the exact expression with products of
sinusoids and rational polynomials, which are only accu-
rate to eight decimal places.

V. SAMPLE CALCULATION: ELIMINATING
THE ROOM-TEMPERATURE AUGER RATE

IN AN InSb QUANTUM DOT

In our example, we will assume there are two electrons
in the conduction band and two holes in the valence
band. The reason is that quantum-dot gain calculations
indicate that the threshold carrier density in the quan-
tum dot for both holes and electrons is a few times 10'

cm, which is equivalent to having a few electrons and
holes in each quantum box with a typical dimension of
100 A. We calculate the Auger rate by using (54), (35),
and (37) in (34).

An example of a quantum dot in which large potential
barriers can greatly reduce the Auger rate is an InSb
quantum dot with CdTe barriers. InSb has a room-
temperature, bulk band gap of 163 meV, a spin-orbit
splitting of 850 meV, a low-frequency dielectric of 17.7E'o,

light-hole, heavy-hole, and conduction-band effective
masses at the I point of 0.015mo, 0.4mo, and 0.014mo,
respectively. In our calculations, we do not include the
temperature dependence of the above parameters in the
bulk. The reason is that we want our calculated Auger
rate temperature dependence to come only from the car-
rier statistics. Our calculated Auger lifetimes are thus ex-
pected to be most accurate near room temperature. CdTe
has a room-temperature' ' ' bulk conduction-band
edge which is 420 meV above that of InSb and a valence-
band edge which is 850 rneV below that of InSb. CdTe
has heavy-hole and conduction-band effective masses of
0.35mo and 0.11rno, respectively.

It is difficult to compare our results with anything in

the literature since we were able to find only one Auger
calculation for a quantum dot in the literature. Howev-
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er, that paper presented equations for the Auger rate
which are valid in the bulk. We do not know if they ac-
tually derived an expression similar to (54) above. We
also do not know if they used a basis of total-angular-
momentum single-particle and multiparticle eigenstates;
nor do we know if they included the band mixing result-
ing from using such a basis. In the following paragraphs,
we discuss why our results should be considered plausi-
ble.

Table III shows the 19 conduction-band and the first
19 of the 448 valence-band single-particle bound states in
a 150-A-radius InSb quantum dot surrounded by CdTe
barriers. All energies are measured from the valence-
band maximum. The integer p designates which eigen-
state, (25) or (26), was used in finding the bound states.

It is not practical to tabulate the (19X 19/2) X448 pos-
sible entries that can go into a Grotrian diagram of all
CCCV Auger processes, although they are available upon
request. Figure 2 shows part of a Grotrian diagram for
the CCCV Auger process in our InSb quantum dot. In la-
beling our Grotrian diagram, we will denote multiparticle
states as [n, (L& )z nz(Lz)z ]n', (LI )z, , where it is under-

1 2 1

stood that linear combinations of the products of the two
single-particle states inside the square brackets above
must be taken so that the two initial particles 1 and 2
form a state with definite angular momentum in accor-
dance with (32) above. Similarly, it is understood that the

Conduction-band
stateLevel

number Energy State

Valence-band
state

Energy p State

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

244.25
300.39
300.39
356.38
356.38
379.89
412.18
412.18
446.39
446.39
467.80
467.80
510.90
510.90
523.31
523.31
526.60
574.13
574.13

1Sp s

1Pp s

1P) s

1D2 s

1D i.s

2So.s
1F3 s

1F2 s

2Po. s

2P) s

1G3 s

1G4.s

2D2. s

2Dls
1Hss
1H4s
3So s

2F3 s

2F2 s

—13.70
—17.94
—20.35
—26.50
—27.99
—33.78
—35.39
—35.48
—36.64
—45.13
—45.17
—46.30
—52.80
—55.17
—55.82
—56.96
—57.25
—58.53
—67.31

1S) s

1P)s
1P2.s

1D2s
1D3s
2Sl.s

1F3 s

2Pi s

1F4.s
1G4.s

2P2. s

1Gs.s

2D2s
3Pi. s

1Hs s

1H6. s

2D3 s

3Sl s

2F3 s

TABLE III. The 19 conduction-band and the first 19 of 448
e

valence-band single-particle bound states in a 150-A-radius InSb
quantum dot surrounded by CdTe barriers. All energies are
measured from the valence-band maximum. The integer p
designates which eigenstate, (25) or (26), was used in finding the
bound states. The single-particle notation is n(L)F, where n

denotes the orbital, F is the single-particle total-angular-
momentum quantum number, and where (L) is a letter
(S,P,D, . . . ) denoting the envelope angular momentum of the
dominant portion of the wave function.

two final particles 1' and 2' must form a state with
definite angular momentum. Quantum numbers for the
2' state are not given in this diagram because the Auger
lifetimes given assume that we have summed over all pos-
sible 2' states which can satisfy energy and angular-
momentum conservation with the given 1, 2, and 1' parti-
cles. The implicit assumption in this notation is that the
microscopic (Bloch periodic) part of the wave functions
in all conduction-band states have J=—,', and all light-
and heavy-hole valence-band states have J=

—,'.
The long horizontal line in Fig. 2 indicates the energy

of the CdTe conduction-band edge, above which E2 must
lie in order for the Auger process to be allowed. In the
region below the long horizontal line are shown those
states for which Auger processes are not energetically al-
lowed because of the large potential barriers formed by
CdTe. When the electrons 1 and 2 are in the initial states
[1Si/zlS1/z] or [1St/zlP1/z] or [1St/z 1P3/2], the CdTe
potential barriers prevent the first 32, the first 9, and the
first 9 hole energies, respectively, to participate in an
Auger process, as we indicate schematically. As a check
of the diagram, note that all Auger rates are zero when
F, =Fz, as expected, because the direct term (54) is the
same as the analogous exchange term when F~ =F2 ~ In
quantum boxes, which are probably easier to fabricate
than quantum spheres, total angular momentum would
not be conserved in an Auger process, and many more of
the energetically allowed states, which lie above the long
horizontal line in the Grotrian diagram, would have finite
Auger lifetimes. Thus, it becomes imperative that such
quantum boxes be surrounded by large potential barriers
in order to energetically exclude many possible Auger
processes. The lifetimes given in the Grotrian diagram
do not include the temperature-dependent occupation
factors (35).

As one check of our results, we expect that Auger pro-
cesses involving only lower-order multipole transitions to
have smaller lifetimes than processes that involve
higher-order multipole transitions. This is confirmed by
the lifetimes given in our Grotrian diagram. The order of
the transition is determined by the three Racah
coefficients in (54) and the total single-particle (and mul-
tiparticle) angular momenta F; that enter into that equa-
tion. We note that the CCCV Auger processes involving
the states [1S,/z 1P, /z]2P, /z (9.0 ns) or
[1S&/zlP&/z]2D~/z (27.4 ns) have only 1=2,3 in (54) and
thus have shorter lifetimes than CCCV Auger processes
involving [1S&/z 1P&/z]1G&&/z (81.1 ns) or
[1S&/zlP, /z]1H»/z (277.0 ns), which have only l=5, 6 in
(54).

Using the temperature-dependent occupation factors
(35) with the Grotrian diagram and summing all contri-
butions to the Auger rate gives the Auger rate tempera-
ture dependences shown in Figs. 3 and 4. (The data
presented in both figures are the same, but the axes are
labeled differently. ) In our calculations we included all
terms for which (35) evaluated at 780 K is greater than
7X10 for CCCV processes and greater than 7X10
for CVVVprocesses. For the CVVVprocesses, we needed
to include terms with very small occupation probabilities
because those transitions which would have had much
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FIG. 2. Part of a Grotrian diagram for the CCCV Auger process in a 150-A-radius InSb quantum dot surrounded by CdTe bar-
riers. The ordinate is the final particle energy E& in meV. In the region below the long horizontal line are shown those states for
which Auger processes are not allowed because of the large potential barriers formed by the CdTe. Multiparticle states are denoted as
[n &(L ~ )F nz(Lz)F ]n'~ (L ~ ), , where it is understood that linear combinations of the products of the two initial single-particle states,

1 2
1

1 and 2, inside the square brackets above must be taken so that they form a state with definite angular momentum. Similarly, the two
final particles, 1' and 2', must form a state with definite angular momentum. All possible 2' states which can satisfy energy and
angular-momentum conservation with the given 1, 2, and 1 particles have been summed over to obtain the given lifetimes. The life-
times given in the Grotrian diagram do not include the temperature-dependent occupation factors (35).

larger occupation probabilities are not energetically al-
lowed as a result of the large potential barriers formed by
the CdTe. We chose these numbers so as to minimize our
use of Cray time. We calculated some of the terms we
did not include and estimate that our answers are accu-
rate to about 5% at 780 K and much better than that at
room temperature.

We see from Figs. 3 and 4 that the room-temperature
Auger lifetime for this InSb quantum dot with a band gap
at 4.8 pm (258 meV) is about 135 ns. This is to be com-
pared with the calculated Auger rates for other semicon-
ductors with band gaps in the infrared. For GaSb with a
band gap of 670 meV (1.8 )Mm), the Auger lifetime at 77 K
for a carrier concentration in the bulk of 2/( ', nR ) was-
calculated to be about 0.01 ns and measured to be about
to 1 ns for our volume of 43m(150 A) . (These numbers

are obtained from their formula for the Auger rate per
unit volume R„=Cn p, where C has calculated and mea-
sured values of 2.4X 10 cm s ' and 2.2 X 10
cm s ', respectively. ) A 4.5-ns Auger lifetime was
found at liquid-nitrogen temperature for a conventional
10-pm Pbo 8z Sn& &8Te laser, whose active region injected
carrier concentration is 0.8 X 10' cm for our volume
of 4'(150 A) . (This number comes from their value of

250 Acrn pm ' of the Auger current per unit volume
and agrees with their assessment of the Auger lifetime. )

Room-temperature bulk InSb seems to have calculated
Auger lifetimes between 0.1 and 1 ns, depending on
how the atomic orbitals and nonparabolic energy bands
are calculated.

The Auger rate temperature dependence:

the eBect of carrier statistics

As a quick check of the temperature dependence ob-
tained for the CCCV process, note that at low tempera-
tures the Auger rate appears to vary as exp( —To/T),
where To can be measured from Fig. 3 to be about 660 K.
This makes physical sense because at these very low tem-
peratures the dominant contribution to the Auger rate
comes from those energy levels lying closest to the InSb
band gap but which have enough energy so that E~ is a
(continuum) state lying above the potential barriers.
From the Grotrian diagram, we see that the dominant
contribution to the Auger rate comes from the initial
state with two of its electrons having energies E, =244. 2
meV and Ez =300.4 meV, and with one of its final-state

electrons having energy E', = —45.2 meV, where we have
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where TO=720 K in good agreement with the value ob-
tained from Fig. 3. Of course, to get an accurate picture
at very low temperatures, other loss mechanisms, such as
phonon-assisted Auger processes, must be considered in
addition to the CCCV and CVVV Auger processes dis-
cussed here.

Figure 3 shows that at low temperatures, the Auger
rate has an exponential dependence on inverse tempera-
ture. At higher temperatures, the Auger rate deviates
from this temperature dependence, reaches a peak
around 450 K, and then becomes smaller at even higher
temperatures. All of this can be understood from the car-
rier statistics. Recall that in the bulk, the Fermi-Dirac
occupation probabilities in (35) can be approximated as
Maxwellian in the nondegenerate limit, '

0 0.005 0.01 0.015 0.02 0.025
1/Temperature (1/K)

n —Ef,(E)= exp
C B

—E—T exp
kBT

FIG. 3. The inverse temperature dependence of the CCCV
0

and CVVV Auger rates for a 150-A-radius InSb quantum dot
surrounded by CdTe barriers. Two electrons and two holes are
assumed to occupy each quantum dot. Note that the CVVV
Auger rate is much smaller than the CCCV rate because the
bulk potential barrier seen by the holes is much larger (850
meV) than that seen by the electrons (420 meV). The exponen-
tial dependence of the Auger rate on inverse temperature at low
temperatures and departures from this dependence at higher
temperatures is expected from the carrier statistics, as in (57).

—T exp
kBT

2~kB T
(m 3/2+~ 3/2)

f„(E)= exp
V B

where
' 3/2

2~m, kB T
Ne =2

7

(57)

(58)

E2 Efc E I EfU
exp — ' +:—exp

kBT kB T

—T0

IO9

los

lo~

IO6

l05

IO"
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IO2

0
I I

200 400 600
Temperature (K)

800

FIG. 4. The temperature dependence of the CCCV and
CVVV Auger lifetimes for a 150-A-radius InSb quantum dot
surrounded by CdTe barriers. Note that the room-temperature
Auger lifetime is about 135 ns.

calculated the conduction-band and valence-band Fermi
energies to be at Ef, =270.4 meV and Ef„=—13.1 meV
at T=20 K. Since the occupation factors must satisfy
f(E&)=l and f(E'2) «f(E2),f(EI ) at these low tem-
peratures, we expect the Auger rate to vary as

and where n,p are the electron and hole bulk populations.
The T dependence simply expresses the fact that as
the temperature is increased, Ef, becomes smaller and

Ef, becomes larger in order to keep the total electron
hole populations constant. Equation (57) comes from ap-
proximating the bulk expression for the total carrier con-
centration

n=N, —J

2
p =Nv

de'
E

1+exp e—
kBT

E' d E'

1+exp e—
B

(59)

For a semiconductor quantum dot, the integrals in Eq.
(59) becomes sums over discrete energies. However, Eq.
(57) is still a good rough approximation (in the nondegen-
erate limit) in the sense that the total number of carriers
with wave vector less than KF can still be approximated
by (KFL ) l(3m ), where L is between t/'2R and 8R, the
length of a side of the inscribed and circumscribed cubes,
respectively. Equation (57) shows the qualitative tempera-
ture dependence that we see in Figs. 3 and 4. (InSb
melts at 800 K, above which the Auger rate is not cal-
culated. ) Of course, one must remember that the
Coulomb matrix element also has a weak temperature
dependence.

Indeed, when (57) is used we obtain the following ex-
pression for the bulk CCCV Auger rate per unit
volume:
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(4~~)'IK —&) I'
r

(E E—)'l2

mc(mc+ mH )
n p(2mc+ H )

5/2 4

fi

Xexp
E —E

k, r (60)

where the threshold energy, defined as the minimum E2
for which energy and momenta conservation can be
satisfied in the bulk, ' is measured form the band ex-
tremum,

(m&+m2+m', )E
ET—E2-

(m, +m2+m', —mz)
(61)

where the masses are evaluated at each of the four ener-
gies, 1,2, 1',2', where the overlap integrals and wave vec-
tors are evaluated at threshold, and where P, a dimen-
sionless number between 1 and 2, accounts for the ex-
change integral.

The important thing is that we can now compare (61),
the bulk threshold E2, with the quantum dot "threshold"

dots described in this example provide the exponential in-
verse temperature dependence at low temperatures and
the cubic dependence on carrier concentration of the
Auger rate, as was seen for bulk Auger rates.

Note that if the carrier and quantum-dot concentra-
tions are chosen so that there is exactly one conduction-
band electron and one valence-band hole per sphere, then
there are not enough carriers to allow Auger processes to
occur. One electron and one hole per quantum dot may
not be enough carriers to produce gain in a quantum-box
laser, since calculations seem to indicate that each quan-
tum dot needs a threshold of at least two electrons and
holes. Also observe that linear momentum conservation
is not required for Auger processes in quantum dots, as it
had been for bulk Auger processes. As long as energy
conservation is satisfied, Auger processes wi11 occur as
outlined in this paper. In this paper we have chosen the
quantum dots to be surrounded by very large potential
barriers, so as to make continuum energy states inaccessi-
ble for those Auger processes involving electrons and
holes near the band extrema.

Observe also that should the energy of the final particle
2' occur just above the top of the energy barriers enclos-
ing the quantum sphere, then the density of final states
for particle 2' is vanishingly small. In practice, this ob-
servation may be difficult to utilize because the band line-
up (in both the conduction and valence bands) in the bar-
rier region is often a subject of debate for many materials.

—z ~ —rrET, quantum dot E2 " barr, cb (62) VI. CONCLUSIONS

which in this case is 420 me V above the InSb
conduction-band edge. Using the effective masses at the
band extrema given above, the exponential in (60) at
room temperature becomes exp( —0.213) in the bulk and
exp( —9.930) in our quantum dot. This four-orders-of-
magnitude difference between the bulk and quantum-dot
Auger rates puts our calculated room-temperature life-
time of 13S ns in the right order of magnitude. We now
see how the large potential barriers formed by the CdTe
can greatly reduce the Auger rate as compared with the
bulk.

It has been claimed that in a quantum-dot laser, the
carrier statistics are no longer important since the separa-
tion between the quantized energy levels can be made
large compared to k& T. However, in the numerical exam-
ple above, the separation between the quantized energy
levels was chosen to be small so that the quantum-dot
zero-point confinement energies in the conduction and
valence bands are small. We want small zero-point ener-
gies so that most of the electrons and holes are located
near the band extrema. In this way, the large potential
barriers surrounding the quantum dot can prevent energy
conservation from being satisfied for many Auger pro-
cesses. In other words, large zero-point energies would
mean that the criterion (14) must be made more strict,
and many of the materials listed in Table I would no
longer provide suitably large potential barriers to greatly
reduce the Auger rate. Thus, large zero-point energies
are often undesirable for many of the barrier materials
listed in Table I; and the carrier statistics in the quantum

In this paper, we derive analytical expressions for the
Auger rate in a quantum sphere in terms of Slater in-
tegrals, reduced matrix elements, and Racah coefficients.
We show that, unlike the situation in the bulk, linear
momentum conservation is not required for Auger pro-
cesses in quantum dots. We note that total angular
momentum must be conserved for the process, which is a
consequence of the spherical symmetry of the problem.
We use a basis of total-angular-momentum single-particle
and multiparticle eigenstates. We show that the room-
temperature Auger rate can be vastly reduced by sur-
rounding the quantum dot with very large potential ener-

gy barriers, thus making continuum energy states un-
available as final states for many Auger processes. We
discussed possible materials where the Auger rate is mini-
mized and presented a practical example of this. We
presented partial Auger rates in a Grotrian diagram. We
calculated and discussed the temperature dependence of
the quantum dot Auger rates. The Auger rates in a quan-
tum sphere laser can be reduced by requiring quantum
spheres of uniform size and shape to be constructed in
carefully chosen materials.
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APPENDIX A: BOUND-TO-BOUND PROCESSES
IN QUANTUM DOTS AND THE CONFIGURATION

INTERACTION IN ATOMS

We now show that bound-to-bound "Auger" processes
are not Auger processes. We do so by first showing that
quantum-dot bound-to-bound "Auger" process is analo-
gous to what is termed configuration interaction ' (CI)
in atomic physics literature. Having done so, we show
that the electron-electron interaction, allegedly responsi-
ble for the quantum-dot bound-to-bound "Auger" pro-
cesses, will merely mix the quantum-dot multielectron
bound eigenstates and lift some energy degeneracies. As
in the atomic physics literature, we show how the CI is
included in time-independent perturbation theory. Thus,
the CI in atoms, as well as the bound-to-bound "Auger"
processes in quantum dots, are part of the time-
independent description of atoms and quantum dots. As
such, the CI in quantum dots, as in atoms, is not an
Auger process.

The electron-electron repulsion is responsible for both
Auger processes and the CI. Thus, if we write the full
Hamiltonian as

H~o~ =Ho+H
where

(A 1)

N p.
HD= g +U(r;)

2mI
(A2)

H'=
;) 4&ETI~

(A3}

as the electron-electron repulsion energy, then we have
presented the eigenstates of H0 in our paper. The effects
of (65}are what we now consider.

Without loss of generality, we consider quantum dot
CCCV bound-to-bound "Auger" processes for now. In
this case, we would have an electron in state 1 (a
conduction-band bound state) making a nonradiative
transition to the unoccupied bound state 1' in the valence
band, while another conduction-band electron (in bound
state 2} is excited up to bound state 2', also in the conduc-
tion band. In order to satisfy energy conservation, the
energy E,- of the initial state, consisting of electrons 1,2,
and the core electrons, must equal the energy E& of the
final state, consisting of electrons 1',2', and the core elec-
trons. The CI of atomic physics considers the effects of
(65) on the different (nearly degenerate) multielectron
eigenstates of H0. For example, Dyall and Larkins
have calculated the CI of nsnp, ns np n's, and
ns np n "d, with n' between n +1 and n +4, and n" be-
tween n and n +3 (except Ne) for n =2 (Ne), n =3 (Ar),
n =4 (Kr), and n =5 (Xe). (These multielectron states
are nearly degenerate in energy. ) For Xe, we would have
a CI (Refs. 38 and 39) between

with N as the total number of electrons in the atom or
quantum dot and U(r,. ) as the potential energy seen by
each electron [either the spherical square-well potential
in the quantum dot or the nuclear attraction potential
Ze l(4mer; ) in the atom], and with

2

5s'5p and 5s 5p 6s', (A4)

l~ &=ot)ot2IC& and lf &=ot)os Ic&, (A5)

where a;~ is the creation operator for the bound electron
i,i =1,2, 1',2', and ~C) denotes the core electrons which
do not make any transitions in the process. For the Xe
example in (66), the labels 1,2 denote 5p electrons, and
1',2' denote 5s, 6s electrons, respectively, so that

~i ) =~[Kr]4d' Ss'5p ),
~f ) =

~ [Kr ]4d ' 5s Sp 6s ' ),
I
c ) =

1
[Kr]4d ' Ss 'Sp ),

(A6)

where [Kr] denotes the electron configuration of ground-
state Kr. For quantum-dot CCCV Auger processes, the
labels 1,2 denote the initial electrons (not holes), and
1',2', the final electrons (not holes) in the bound-to-bound
process, as described already in our paper, so that

~i)=~1,2, other e s),
[f) =~1',2', other e s),
)C) =

)
other e s ) .

(A7)

Observe that in both the quantum-dot and the Xe exam-
ples, none of the electrons in both ~i ) and

~f ) are contin-
uum (unbound or free) electrons, as we are studying
bound-to-bound processes.

Having shown that the quantum-dot bound-to-bound
"Auger" problem is analogous to the CI in atomic phys-
ics, we use the atomic physics literature to show how
(A3) affects the states (AS). In atomic physics, the
CI ' is calculated with (A3) as a time-independent per-
turbation. Denote the eigenvalues of HD associated with
(A5) as E; and E& (which are nearly degenerate), respec-
tively. For now, we assume that at this multielectron en-
ergy E; =E&, only these two states will be strongly mixed
by H'. (It is easy to include more states in this nearly de-
generate time-independent perturbation theory. ) Time-
independent perturbation theory approximates the eigen-
vectors of H, , as

iy+&=c, ii &+can+if &,

where

(A8)

E (tlH'lf &

'

c, c,
=E

C~ C~
(A9)

among other states.
In both the quantum-dot and the atomic physics prob-

lem, there are two (sometimes more) multielectron states
involved: One state has a hole and two (relatively) low-
energy electrons, and the other has an electron replacing
the hole and a (relatively) high-energy (excited) electron.
(The nomenclature "hole" is also used in atomic physics. }
To show that quantum-dot bound-to-bound "Auger"
processes and atomic CI are analogous is just a matter of
keeping track of the electrons involved. In both cases,
the two relevant multielectron eigenstates of H0 have the
form
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E +Ef +

(A10)

and where, to within a normalization constant,

with E' =E +(mlH'lm &, m =i,f Upon diagonaliza-
tion of (A9), we have the eigenenergies

2 }/2
E —Ef + I(t IH'lf & I'

p2— fi

2mp

E (E +b, )
(B8)

m, /m, (Eg+ —', &)

In real semiconductors, it is known that slightly different
numerical values of the Kane momentum matrix ele-

ment are needed for each hole and conduction band, in

order to match experimental values.

—E'+E'
i f
2

I I

+1(t IH'lf & I'

(A 1 1)
1/2

(A12)

APPENDIX C: EVALUATING COULOMB
INTEGRALS BY SOLVING A DIFFERENTIAL

EQUATION

Integrals of the form

Thus, the electron-electron interaction H' will mix the
quantum-dot multielectron bound eigenstates according
to (A8) and lift energy degeneracies according to (A10),
as is the case for CI in atoms. As in the CI of the atomic
physics literature, quantum-dot bound-to-bound "Auger"
processes can be included in a time-independent descrip-
tion of the quantum dot, as discussed here. Such a time-
independent description is not that of an Auger process.

APPENDIX B: THE PARAMETERS USED
IN OUR jt-p HAMILTONIAN

The modified Luttinger parameters are

V( ) f p(r )d r

can be evaluated by noticing that

V V= —4mp .

Thus, if we write

p(r)= &pi (r)&, (II)
1, m

so that

p~ (r)= f dII I'I* (II)p(r)

then (C2) has the solution

(Cl)

(C2)

(C3)

(C4}

y
true

~true

2P
2(E, E„)—

p2

3(E, E„)—

V(r)= g Vt„(r)I't «),
I, m

(B2) with each term solving

(C5)

The Luttinger parameters are chosen so that the hole
effective masses, mhh, m}h, at zero wave vector are their
experimental values,

dr

1(l + 1)
[rVI (r)]= 4n[rp, (r)] . —

2
(C6)

~true+ 2~true
m}h

~true 2~ true

m
(B3)

(B4)

Invoking (39), the solution of (C6) is

1

Vt (r)= r' dr'pi (r')
&+&

p 21+ 1 T1+} (C7)

The Kane momentum matrix element is chosen to match
the experimental conduction-band effective mass m, at
zero wave vector

Instead of evaluating (C7), we solve (C6) numerically, as

discussed below.

g2 g2 4p2 2p2

m, mo 3E 3(Es+b)
(B5)

Numerical solution of second-order ordinary
dift'erential equations

1 1~true +
2mo m}h /mo mhh /mo

(B6)

where mp is the free electron mass and Eg is the band

gap. Thus, we set

Most second-order ordinary differential equations can
be written, possibly with a change of variables, as a
second-order ordinary differential equation with no ftrst
deriuatiue term. An equation of the form

y "(r)+F(r)y(r) =G(r) (C8)

and

1„,true
t'2

4mp m}h /mp

1

m},},/mp
(B7}

can be solved numerically with the Noumerov or royal

road method, which is accurate to sixth order in the grid

spacing h =x„+,—x„,
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F„, y„,+[ —(2 —
,",h—'F„)]y„

n —1 n 1

h+ 1+ Fn+1 yn+112

h
( G„,+ 10G„+G„+,), (C9)

12

where F =F(r ), y =y(r ), and G =G(r ). The tri-
diagonal matrix equation (C9) can be solved in an efficient
and stable manner by using Gaussian elimination with
partial pivoting.

In generating (modified or ordinary} spherical Bessel
functions or in solving Poisson's equation, we want nu-

merical solutions of the equation

tions y(r) =rVI(r) of Poisson's equation. Given values of
F,G, and initial values yo, y1, iterative substitution in
(C9} will yield accumulated errors in y that are
fourth order when F is non-negative, and, possibly, ex-
ponentially large when F is negative. This is much
worse than the sixth-order error which limits this
method. The reason is that the difference equation (C9)
has two natural solutions, and the error in the initial con-
ditions allows an "unwanted" solution (sinusoidal for F
non-negative and exponential for F negative) to be
picked up. To avoid this problem, we solve the set of
equations (C9) as one matrix equation with boundary
conditions at ro, rz. The boundary conditions used were
easy to derive analytically; the singularity at F(r =0) can
be avoided by considering F(r)y(r) together as r~O
For spherical Bessel functions generated in this way,

y "(r)+ C—l(1 + 1)
y(r) =s(r),

2
(C10}

where C=+k and s(r)=0 for the ordinary and
modified spherical Bessel functions y(r) =rji(kr), respec-
tively; and where C=O and s(r)= 4rrrpr (r) f—or solu-

limF„(r)[rj„(kr )]= .
r~O

—Pk~ for n =1
0 for n=Oor n~2.

For the solutions (C7) of Poisson's equation,

(Cl 1}

lim VI(r) =0,
r —+0

(C12)

4m

hmF (r)[rV (r)] ( —2) d" pim(r ) for l =1
r~O

0 for l=Oor l+2.
If pim (r ) =0 fo«' & R, then solutions (C7) of Poisson's equation satisfy

4m. 1
lim r VI ( r ) = dr'r'+'p, (r') .r~g 2l+ 1 g I

O
lm

(C13)

(C14)

The Noumerov method usually requires equally spaced grid points. Since it is often desirable to make more function
evaluations in regions where certain terms are rapidly varying, as in the case of the r term for small r in the equation
above, the equally spaced grid points may not be desirable. In such cases, a change of variables

(=g(r)

can be made so that rapidly varying terms are sufficiently sampled. If we also define

1/2

(C15)

y(g)= d
y(r) (C16)

then (C10) can be written as

dy 3 dg
df2 4 dr

dg 1 dg
dr 2 dr

dg
dr

—3
l(1+ 1)

r 2

dg
—2

.y(g) =
—2

(C17)

for which the Noumerov method can be used. One possible change of variables, which is good for the r terms, is

g= ar +P lnr

and
1/2

(C18)

y(g) = a+—
T

y(r) (C19)

for which (C10) becomes
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d (2

—4
P l(l + I )

2

—2 —2

(C20)

For our quantum-dot Bessel functions, this change of variables was not needed. However, the effect of the screened
Coulomb potential of the nucleus on the different electron shells in an atom often necessitates such a change of vari-
ables.
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