
PHYSICAL REVIEW B VOLUME 46, NUMBER 7

Optical and acoustic plasmons in two-layered quantum wires
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We present a theory of plasma oscillations in a two-layered quantum-wire structure. We find essen-

tially two modes which correspond to in-phase and antiphase charge-density oscillations in the two wires

and resemble optical and acoustic plasmon modes in multilayered two-dimensional electron systems.

I. INTRODUCTION

With modern lithographic techniques it has become
possible to prepare very accurately defined microstruc-
tured semiconductor systems. Recently, starting from
modulation-doped double-layered quantum wells in

Al„Ga& „As-GaAs, arrays of periodic two-layered quan-
tum wires have been prepared by deep-mesa-etching tech-
niques. ' The far-infrared excitation spectrum exhibited
two pronounced modes which were explained in analogy
to multilayered two-dimensional electronic systems
(2DES's) as localized optical and acoustic plasmon
modes.

There are already a number of publications on plasmon
excitation in one-layered quantum-wire systems; ' for
recent reviews, see, e.g., Refs. 14-17. Here we will give,
in a first step, a calculation of the plasmon modes in sin-
gle one-layered quantum wires and single two-layered
quantum wires. We will then extend these results to
periodic arrays of wires. Since the actual equilibrium
charge density in the quantum wires is not accurately
known, we will present calculations for two limiting
cases, (i) for a constant equilibrium charge density
n (x)=n„and (ii) for an equilibrium charge density n (x)
that corresponds to the self-consistent distribution in an
external potential of parabolic shape.

We assume that the original confinement in the growth
direction (the z direction) is very strong. Thus n(x)

(a)

represents a two-dimensional charge density. y and x
denote, respectively, the directions along and perpendicu-
lar to the wires in the plane of the original quantum well.
A sketch of single- and double-layered structures is
presented in Fig. 1. In the actual experimental structures
in Refs. l and 2 the spacing d between the two layers is
about 130 nm, the period is a =1100 nm, and the nomi-
nal geometrical width of the etched wire is t =550 nm.
The actual width w of the electron channel is smaller due
to lateral depletion. We treat m here as a free parameter
and estimate it from the experimental data.

Two-layered quantum-wire systems have also been
considered by Katayama' with emphasis on the calcula-
tion of the absolute transmission strengths. In our paper
we concentrate on a microscopic model to calculate the
resonance frequencies from microscopic, experimentally
known quantities and compare them with the experimen-
tal results.

II. THE BASIC EQUATIONS

The final aim of our calculations is to determine the
spectrum of the lowest eigenrnodes for a periodic array of
double-layered quantum wires. However, the general re-
sults are quite complicated, so it is more effective to ex-
plain the technical details first by considering a one-
layered single wire. We then expand these results to a
two-layered system and then to a periodic array of wires.

A. One single quantum wire

We consider a wire with a uniform equilibrium elec-
tron density n (x) inside the electron channel with edges
at +w/2:

(b)
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FIG. 1. Schematical configuration of one-dimensional elec-
tron systems (1DES's) in single- (a) and double-layered (b) quan-
tum wires prepared by deep-mesa etching. Trenches are etched
into an Al„Gai „As-GaAs heterostructure. The periodicity is
a, the geometrical width of etched wires it t, the actual lateral
extent of the 1DES is w, which is smaller than t due to lateral
depletion. The distance between the 1DES and the surface is z&

for the one-layered wires and z& and z2 for the two-layered case.
The distance between the two layers is z&

—z, =d.

n„—w /2 ~ x ~ +w /2
n (x)= .

0, ~x~& w,

—m'v =ep'(x, t),
Sn +n, v'(x, t) =0,

e +w/2 5n (s, t}dp' x, t =2- cfs
K —w/2 X S

+w/2
5n(s, t}ds =0 or v(x, t)~„=+&2=0,—w/2

5n «n, .

(2)

(4)
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Here Eq. (2) is the equation of motion, v (x, t) is the veloc-
ity of the electrons, Eq. (3) is the continuity equation in
the linear approximation, 6n is the perturbation of the
equilibrium electron density, 6n (x, t) «n„Eq.(4) is the
Poisson equation, y(x, t) is the electropotential, and m*
is the effective mass. We assume, for a moment, that the
wire is embedded in a material with a uniform dielectric
constant K.

Using the new variables

q1(x)=pox, —w/2&x &+w/2 . (16)

Using this expression for q1(x), the determination (12) for
n (x) and the integral

1
2 1/2 S—I s

(17)

confinement, we find for the dipole mode cod the solution
of Eq. (10):

2xX= 4e n,
COg

m*wk
(7)

we find from Eq. (10) the dispersion law

co~ —E/m *,

or

tp(x )=A, f ds, q1 ~+1=0 .—i x —s
(9)

Here A, is the eigenvalue of Eq. (9). If the equilibrium
density n (x) is not constant we have

~ Km —w/2 ds x s
(10)

instead of Eq. (9). Equation (10) can be solved analytical-
ly at least in two limit cases:

(i) n (x)=n„+w/2~+~,
KWK(ii) n (x ) =no(1 —4x /w )'/, no =
4~e

(12)

and evident manipulations, it is possible to reduce the
system (2)—(5) to the solution of the eigenproblem

1p'(x ) =A f ds, q1'~+, =0
x —s

B. The single double-layered stripe

In analogy to Sec. IIA we now have for a double-
layered stripe system the equations

i co 5n, +n, dv, /dx =0,
i~5n2+n dv2!dx =0,
vl ~+w/2 0~ v2 ~+w/2

(19)

(20)

(21)

which is the same as in Ref. 19.
This result means that the dipole plasmon frequency in

a quantum wire with parabolic external potential is only
determined by the curvature of this external potential
and, in contrast to, e.g., the "sharp" potential [Eq. (11)],
is independent of the density of the electrons in the chan-
nel. This unique behavior has also been found from
quantum-mechanical calculations of quantum wells and
dots with a parabolic external potential and is called
the "generalized Kohn theorem. "

The charge-density distribution (i) corresponds to an
infinite 2DES and (ii) corresponds to the self-consistent
solution of the equilibrium problem if we assume that the
external confining potential V(x) in the quantum wire
has a parabolic shape:

V(x) = V11+ —,'Kx

e, d e, d
$Q)V )

= p) XyZ + ((p2 XyZ1

e, d e, d
lCOV2= tP) X Z= + g2 X Z=

m' 2 m'

(22)

(23)

Here K is the curvature of the parabolic potential.
In the first case (i) we can use a Fourier transform for

the solution of the equation

2e m,2

q(x)= ds .
km*

(13)

q1(x) =qosin(qx), f + cos(qg) d(=0,
(14)

with a continuous eigenvalue spectrum corresponding to
the continuous values of the plasmon wave vector q.

In the case (ii) of an electron channel with a parabolic

Eq. (13) is reduced to the well-known dispersion law' ' '

277e n
(15)

2e + w/2
q1, (x,z) = f 5n, (s)

K —w/2

Xln, ds, (24)
L

[(x —s) +[z —(d/2)] ]'
+ w/2

1p2(x, z) = f 5n2(s)
K —w/2

Xln
L

2 2 1 2j(x —s) + [z+(d/2)] ]
'

(25)

Here L is the length of the electron channel in the y
direction.

In general, this system of equations can only be solved
numerically. In the following we would like to give two
special representations that correspond to the energeti-
cally lowest modes of the system and are the only modes
observed in the experiments in Refs. 1 and 2. In this case
the numerical evaluation is easier, and, within additional
approximations, it is possible to give analytical results
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ico5n++n, dv+/dx =0,
2e +w/2

i(vv+ (x }= f 5n+ (s)M+ (x s}ds—,
K —w/2

1 x
M~(x) =—+

x +d
u+(x)lp /2=

(27)

(28)

(29)

(30)

The system (27)—(30) is similar to the system (2)—(5), so
it can be reduced to one equation as for Eq. (8}:

4n e i dv
a)+=, , u+(x ) =A+ M+(x —s) ds,

Km wA+ —1 ds
(31)

U+(X}~y)=0 .

The same possibility exists for the variables

5n =5n, —5n2, u =v, —
v2 .

In this case we have

(32)

that elucidate the physics behind the mathematical for-
mulation. All eigenfrequencies co& and effective dielectric
constants K+ given in the following correspond to these
lowest modes.

The system (19)—(25) has two special representations in
which the total number of variables can be reduced. First
let us assume that it is possible to define

5n+(x)=5n, (x)+5n2(x), v+(x)=v, (x)+v2(x) . (26)

In this case we have, instead of Eqs. (19)—(25),

2m. e n, dN2-
Km w

(39)

K
K K2 K.

K+A, +
(40)

One remark is important for the interpretation of the
experiments. ' So far we have assumed that the two
wires are embedded in a homogeneous material with a
uniform dielectric constant K. The real experimental
structures in Refs. 1 and 2 are more complex and consist
of trenches with a dielectric constant K& 1 etched into
the GaAs with the dielectric constant K2=12.8. Then we

have the situation that for the parallel mode co+ the elec-
tric field is distributed mainly outside the double-layered
structure, and the real distribution of the dielectric ma-

terial surrounding the stripe becomes important. In prin-

ciple, this fact can be taken into account in the calcula-
tions. However, it is a very complex task for the actual
deep-mesa-etched structure. So we introduce an effective
dielectric function K+, treat it as an additional free pa-
rameter, and extract this parameter from the experimen-
tal data. To be accurate we also have to introduce an
effective dielectric constant K for the antiparallel mode
co . However, in this case the electric field is localized
mainly between the electron channels. So the dielectric
constant a. in the determination of o), Eq. (39), is very
close to the dielectric constant of GaAs, i.e., K K2.

Since we know co+ and co from the experiment, we can
determine K+ from the relation

4n, e
N

Km wA,

+1
v (x)=A, J M (x —s)v' (s)ds,

(33)

(34)

Using the determination co (39) and the experimental
values from Refs. 1 and 2, co =4 meV, K=K2=12.8,
d =133 nm, m *=0.067m„we can estimate the width w

of the electron channel, which gives

w=420 nm . (41)
M (X)=——

+4d
d=d/w, v i~)=0 .

(35)

(36)

f M (x —s)v' (s)ds= —u" (x)X2nd .—1
(37)

In the limiting case d /w « 1, Eq. (34) can be written as

co Km
U + V =0~ U —I+w/2

2m.e n, d

The solution of this equation for the lowest mode is

(38)

The physical reasons for the two types of excitations
are evident. For the first mode, the electron motion in
neighboring stripes is parallel (in phase); and in the
second case, it is antiparallel (out of phase). These types
of localized plasma oscillations resemble freely propaga-
ting "optical" and "acoustic" plasmons in multilayered
2DES's.

If the parameter d /w is small compared to 1, Eqs. (31)
and (34} can be simplified. Equation (31) in this limit is
similar to (9), with n, in Eq. (7) replaced by 2n, The.
simplification of Eq. (34) is more essential. In this limit
we have

From this we deduce that the ratio d/w=0. 27 is not
really a small value. So numerical calculations are neces-
sary to give a more accurate estimate of w (approximately
20 —30%%uo).

—idiom q7I =elpI+eyI+$+eyI $+. . .

2e +(w/2)+a 5n(+, (S)
V(+)(x)= ds—(w/2)+a X —$

2e +( w/2) —a 5n( —](s)
ds .

k —(w/2) —a X S

(42}

(43)

(44)

Now we can use the special property of the lowest modes
~+. We are interested in the solution that has no disper-
sion along the x direction. In particular, this means that

5n(+)(/+a) =5n((g'), 5n( )(g—a ) =5n&(g) . (45)

C. The periodical system of single-layered stripes

The original equations of plasma oscillations for a
periodical system of electron stripes are quite complicat-
ed. For example, the equation of motion in the case of a
periodical system of single stripes [see Fig. 1(a)] has the
following structure:



3974 V. SHIKIN, T. DEMEL, AND D. HEITMANN 46

Using Eqs. (45) we can transform the determinations (43),
(pr+ i a"d (44» (pi

III. NUMERICAL CALCULATIONS
AND DISCUSSIONS

2e + wi2
VI+&(x)=

k f dg,

2e +~a(x)= dg .—wn x —(+a

(46)

(47)

For a solution of Eqs. (9), (10), (31), (34), (52), and (53),
it is convenient to use the system of Tschebyscheff poly-
nomials: T (x) and U (x). We can assume that, e.g. ,
in the case of Eq. (9),

g'(x) =(1—x )' [vo Uo(x)+ v2 U2(x)
As a result, the eigenproblem for the periodic system of
single stripes can be formulated as a single-stripe eigen-
problem with a special type of integral kernel:

+1 4e n,2

ui(x )=Xf P(x s)v—i(s)ds, ri)g=—1 Km WA,

P(x)= —+ +, vive+i=0,
1 1 1

x x —a/w x+a/w

(48)

(49)

f vl(s)ds =Afd, s u, (s)P(x —s) .
0 —1

(51)

This equation has the same structure (including boundary
conditions) as, e.g., Eq. (9), because, if f uvids =y, it is

+1
y(x)=A, f P(X —s)y'(ds), y'~+, =0 . (52)—1

D. The periodical system of double-layered stripes

where co& includes the renormalization of the eigenfre-
quency in Eq. (7) due to the interaction with the neigh-
boring stripes.

For the calculations below it is convenient to transform
Eq. (48):

f 'u, (s)ds =Af,ds v/'(s) f P(s' s)ds'—, (50)
0 —1 0

or

+v2;U2;(x)+ ] . (55)

This determination of y'(x) satisfies the boundary condi-
tion in Eqs. (5) and (9) and has arbitrary coefficients u2;,
i =0, 1,2. . . . Using the presentation (55) for y' and the
corresponding properties of the polynomials T (x) and
U (x), it is not difficult to reduce Eqs. (9), (10), (31), (34),
(52), and (53) for a numerical solution of the matrix prob-
lem with respect to the coefficient U2;. The convergency
of the presentation (55) is good. The eigen-numbers cal-
culated with a 6X6 matrix are within 1% accuracy iden-
tical to calculations with an 8X8 matrix. The most in-
teresting results of these calculations for the periodical
system of double-layered stripes are presented in Fig. 2.
They correspond to the solution of Eq. (53) with a uni-
form distribution of the dielectric constant K and a con-
stant equilibrium charge-density distribution in the wire,
n(x)=n, . The calculations show that the frequencies of
the lowest modes do not strongly depend on the shape of
the confining potential and the electron distribution n (x).
To give some examples: The ratio between the co+ and
the (u modes for d /w =0.25 (0.5, 0.75, 1.0) is

(u+ /(u =2.54 (1.60, 1.30, 1.18) for a model with
n (x)= n, =const. For the model with n (x)
~ (1—4x /w )'i we calculate (u+/(u =2.60 (1.61, 1.30,
1.18).

For the normalization of co+ in Fig. 2 we use the fre-

The final eigenplasma-mode equations in the case of a
periodic array of double-layered stripes can be formulat-
ed in analogy with Secs. II A and II B. The period a, the
width of the electron channel w, and the distance between
the wires d are defined in Fig. 1(b):

+1
y(x)=A~ f y'(s)Q+(x —s)ds, y'~+, =0, (53)—1

Q~(x )=—+ +
x g 2+4(d2/ 2)tug 2 4(a 2/tv 2)

+ x —2(a/w)
[x —2(a/w)] +4(d /w )

2.0

1.5

3

1.03

.5

0.
1.0

motion

I+ -I

I+ -I

motion
I I I I

1.5 2.0
x+2(a/w)

[x+2(a/w)] +4(d /lu )

4e n,
COg-

Kym WA, +

(54)

As above, the modes co+ and co have different effective
dielectric constants, K+ and K, respectively. The gen-
eralization of Eq. (53) for an arbitrary equilibrium distri-
bution n (x) corresponds to the transition from Eq. (9) to
E(l. (10).

FIG. 2. The calculated normalized plasmon frequencies

co+/co~ vs d/w with a fixed parameter a/w and for a constant
charge distribution n(x)=n, in the channel. The solid lines

correspond to a /w = 100, the dashed lines correspond to
a /w =2. The frequency co~ for the normalization is

co~ =4me'n, /~m*w. The insets show schematically the charge
distribution for the in-phase, "optical" plasma oscillation (top,
co+) and for the out-of-phase, "acoustic" plasma oscillation
(bottom, co ).
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quency co:

w =448 nm . (56}

This result for w seems reasonable, because, due to the
lateral depletion, w is smaller than the nominal geometri-
cal width of the deep-mesa-etched structure, t =550 nm.
This lateral depletion length, id=0. 5(t —w), follows to
be Id =50 nm, which is consistent with other determina-
tions, e.g. , those in Ref. 24. It is also suitable to compare
the estimations of w from Eqs. (56) and (41}. The agree-
ment between these numbers is quite good.

From the experimental value' of co+=64 cm ', from
the estimation (56) of w via co, and from the determina-
tion (40) of ~+ we find

]c+=6.9 . (57)

~+ should be given approximately by the average
0.5 (Kt+K2) of the dielectric constants of vacuum, a, = 1,
and of GaAs, F2= 12.8. Thus the result (57) is reason-
able.

We would now like to comment on Ref. 18, which con-
tains a discussion of a similar problem. The most impor-
tant result of this paper is the direct demonstration of the

4me n,
COp-

Km w

This choice is convenient for a comparison with the cor-
responding numerical calculations of co by Eliasson
et al. ' Our results for co/co in Fig. 2 in the limit
a/w» 1, d/w»1 coincide with the calculations in Ref.
12 (see Fig. 1 there).

As indicated above, due to the assumption of a uniform
~, the presented theory can be directly used for the inter-
pretation of the soft mode co only. With the experimen-
tal values from Refs. 1 and 2, i.e., a =1100 nm, d =133
nm, n, =4.2X10" cm (from SdH measurements},
K2= 12.8, m ' =0.067m„and the experimental resonance
frequency of co =34 cm ', we can determine from Fig. 2
the width of the electron channel in the double-layered
structure and find

possibility of exiting in a double-layered structure both
the co+ mode and the co mode using excitation with a
uniform electric field. In particular, it describes nicely
the experimentally observed asymmetry of the transmis-
sion strength for the two modes. In detail there are some
open questions in the paper concerning the prediction of
a universal gap Qo in the general plasma dispersion law

co(q„)in Fig. 3 of Ref. 18. In Ref. 18 the effective one-
electron potential U(x) in the many-electron system is
characterized by a frequency Qo [Eq. (Bl)], which is

identified with the dipole plasma frequency [Eq. (B15)].
But it is well known ' ' (see the discussion of the
generalized Kohn theorem above} that the dipole plasma
frequency is governed by the frequency Q, =K/m' of
the external potential [Eq. (18)], whereas the effective
one-electron potential, which is characterized by the fre-
quency Qo and can be measured in Shubnikov-de Haas
experiments, ' ' is drastically reduced in the systems of
interest here due to screening. Thus the real gap 0,
should have the scale Q, "Qo(w/ab), where a„is the
Bohr radius. ' Since ab = 10 nm for GaAs we have

w/ab» 1. Therefore it is important to take this renor-
malization of Qo into account. Moreover, in our micro-
scopic ansatz we have the possibilities of investigating the
properties of co+ in their dependence on the microscopic
parameters, d/w, a/w, the distribution n (x), and the dis-
tribution of dielectrica.

In this paper we have concentrated on the experimen-
tal situation in Ref. 1 and restricted ourselves to excita-
tions with the electric-field vector perpendicular to the
quantum wire (q =0). It is also interesting to consider
excitations with q„&0,where plasmons propagate freely
along the wires. Such excitations have recently been ob-
served in far-infrared experiments on single-layered
quantum-wire arrays, and in Raman experiments on
multilayered quantum-wire systems. One finds that
each of the different plasmon branches at (q„,q'=0) ex-
hibits a dispersion with increasing q . This is in agree-
ment with the theoretical treatments for one-layered wire
systems. ' In particular, recent calculations by Li for
five-layered quantum-wire arrays confirm beautifully the

d ~ d~spersun observed by Egeler et
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