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Strong anisotroyy of hole subbands in (311)GaAs-A1As quantum wells
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Strong anisotropy features (e.g., saddle points) displayed by excited states of (311) valence-band
GaAs-A1As quantum wells are determined through the exact solution of the effective-mass equation in-

cluding the spin-orbit interaction. Qualitative changes in the topology of the subband energy surfaces
occur as the well width is varied. The relevance of the present calculations for the interpretation of re-
cent resonant magnetotunneling experiments on p-type (311)A double-barrier heterostructures is dis-
cussed.

I. INTRODUCTION

The study of optical and transport properties of high-
quality p-type semiconductor quantum-well (QW) hetero-
structures grown along lower symmetry directions has re-
cently aroused considerable interest because of their tech-
nological possibilities and for providing a source of basic
research. Hayakawa et al. ' reported that the threshold
of single-quantum-well (SQW) lasers can be lowered by
using (111)Bsurfaces. Mobility enhancements of a two-
dimensional hole gas (2DHG) have been observed by
Davies et al. in modulated p-type GaAs/(AIGa)As het-
erostructures grown on the (311)A GaAs surface. Such
high-quality samples allowed them to study the fractional
quantum Hall effect (FQHE) for holes. Evidence of a
weak hole Wigner crystal in a GaAs/A1GaAs structure
grown on an undoped GaAs (311}A substrate and modu-
lation doped with Si has also been reported.

Recently, the resonant magnetotunneling spectroscopy
(RMTS) technique has been used to map out the disper-
sion curves of p-type (100) QW's. It has also been used
to probe the conduction-band anisotropy of n-type
QW's, and more recently, to study anisotropy effects in
strained Si/Si& Ge„quantum wells. By using this
technique to probe p-type A1As/GaAs (311)2 tunneling
devices along different in-plane directions, a saddle-point
("camel's back") structure in the energy versus in-plane
momentum dispersion curves E(kl ) for one of the sub-
bands of the valence quantum well has been mapped out
in recent experiments.

In this paper we present an exact solution of the
effective-mass equation including the spin-orbit (SO} in-
teraction for an isolated QW under flat band conditions
grown in a general crystal plane direction. We investi-
gate the anisotropy of hole subbands in (311) valence-
band QW's pointing out the usefulness of flat band calcu-
lations to interpret the dispersion curves probed by
RMTS. Remarkably, (311) AlAs/GaAs/AlAs wells
display a much richer variety of anisotropic energy sur-
faces compared with (100) QW's, whose subbands are
much less anisotropic.

II. FORMALISM

Our treatment is a natural extension of the formalism
proposed by Andreani, Pasquarello, and Bassani, which

does not include the SO interaction. We adopt, however,
a procedure based on the transfer-matrix technique
which is more suitable for QW's grown along lower sym-
metry directions, especially when the effective-mass
Hamiltonian lacks inversion symmetry. Our starting
point is the 6X6 Luttinger Hamiltonian for the bulk in
its standard representation, ' Htt(k„,k, k, ), where k„,
k, and k, are the components of the k wave vector along
the cubic axes of the crystal. The explicit form of H~ is
given in Appendix A, relation (A 1). The QW problem is
solved by considering the solution of the effective-mass
equation in each bulk semiconductor. " Let k, , kz, and
k3 be the components of k such that k3 is along the sam-
ple growth direction. k„,k, and k, are related to k„kz,
and k3 by a simple rotation, namely,

k„=x
&
k&+x2k2+x3k3

k =y&k&+y2k2+y3k3

k, =z)k)+z2k2+z3k3

where for a (311) substrate k3 is along the (311)direction
and k, and k2 are taken along the (2, 3, 3) and (0, 1, 1)
directions, respectively, with k (j =1,2, 3)= i r7 (fi= 1). —

The Hamiltonian for the QW problem is obtained by
substituting (1) into Hit (k„,k, k, ) and adding the
confining potential:

H=Ht't(k), kq, k3 }+V(Z),

where Z is along the (311) direction and V(Z) vanishes
inside the well ( La, /2 & Z & L—

ts /2) and equals —
Vo in

the barriers.
We adopt essentially the same considerations used by

Andreani, Pasquarello, and Bassani, taking into account
that we now have a six-component envelope function
F=(F„F2,F3,F4,F5,F6) which satisfies the effective-
mass equation HF=EF. The boundary conditions re-
quire continuity of the components of F and J3F at each
interface, where J3 is the Z component of the probability
flux operator. J3 is formally obtained by taking the
derivative with respect to k3 of each element of the kinet-
ic matrix operator H~(k„kz,k3) and substituting
k3 = —iV3:——id/dZ in the resulting matrix expression.
The values of k3 compatible with a given energy E and
in-plane component k~1=(k, , kz) are the roots of the
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sixth-order polynomial equation in k3 obtained by substi-
tuting (1) into the secular equation for Hii(k„,k, k, ), re-
lation (A2). To calculate the energy levels E(ki) we use
the flat band condition of the heterostructure potential.
For each E we find the eigenfunctions of the Luttinger
Hamiltonian with a given kll and with the corresponding
values of k3, as indicated in Appendix A. Finally, we
construct four 12 X 12 matrices related to the wave func-
tion and the probability flux in both barriers and inside
the QW. By ordering the corresponding matrices for the
barriers as prescribed in Appendix B we end up with a
6X6 determinantal equation obtained from the total
transfer matrix of the heterostructure T relating the
twelve coeScients of the wave-function expansion in the
left (L) barrier with those in the right (R) barrier. We
have thus to invert two 12 X 12 matrices and calculate a
6X6 determinant which gives the subband dispersion in
an implicit form.

tra interaction with the split-oK band (b, =340 meV).
There are two conspicuous nontrivial anticrossings for
Lii, =45 and 68 A between the sixth (vi) and seventh {vii)
bound states and between the seventh (vii) and eighth
(viii) bound states, respectively. The complex interaction
between hole states is particularly demonstrated in the
case of the fourth {iv) bound state for increasing values of
L, since it becomes equidistant from its neighbor and

~ ~

hnext-neighbor bound states, which in their turn approac
asymptotically (anticross) each other. Figure 2 shows the
dispersion curves E(ki) along two orthogonal in-plane
directions for a (311)QW with L~ =42 and 60 A. These
QW's illustrate the general trend of E(ki) with increas-
ing L . It is clear from Fig. 2 that the ground state foring

14both QW's does not exhibit any significant anisotropy.
In the case of the 42-A well, the fourth (iv) hole subband
is the one which presents the most significant anisotropy

III. DISCUSSION OF THE NUMERICAL RESULTS
0.0 0.0

We have adopted the following values for the Luttinger
parameters and the split-off energy' in our calculations:
&I =6.85 &2=2. 1 &3=2.9, and 5=340 meV for GaAs
and yl=3. 45, y2=0. 68, y3=1.29, and 5=275 meV for
AlAs. There has been some spread in the reported exper-
imental values of these parameters for GaAs, especially13

for yz. A discussion of this point in connection with the
QW problem will be presented below. The dependence of
E(k =0) on the well width, for 36 A&Ling &80 A and

ll

V =550 meV (AlAs barrier) is shown in Fig. 1. For the0
first four bound states, by increasing L~ the distance be-
tween neighboring states continuously decreases, as in the
electronic case. However, for holes this means a stronger
mutual interaction between subbands. It should be noted
that even for k =0 there is some mixing between hole

ll
9states contrary to the case of (100) QW's, since the kinet-

ic matrix Hamiltonian for a [311]QW has finite nondiag-
onal elements. For states of higher energy there is an ex-
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FIG. 1. Hole energy at k
ll

=0 vs I- ~ for an isolated
A1As/GaAs/A1As (311)QW (Lnttinger parameters and split-off

energy according to Ref. 12).

FIG. 2. Hole dispersion curves for an isolated
AlAs/GaAs/A1As QW with La, =42 A (a) and Ls =60 A (b) in

zero electric and magnetic fields. The continuous line refers to
the (011)direction and the dashed line to the (233) direction.
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among the first five dispersion energy surfaces: along the
(233) direction E;„(kz»} is relatively flat, whereas along

the (011) direction E;„(ko»)has a much more pro-
nounced negative curvature (negative effective mass). As
L ~ is increased E;„(k233} becomes even flatter and even-

tually its curvature becomes positive (positive efFective
mass), whereas the curvature of E;„(ko») remains nega-

tive for greater L~.
The form of the subband energy surface E;„(k~~)de-

pends critically on L~. For L~ =60 A, E;„(ki) exhibits
a clear-cut saddle point with the biaxial symmetry of the
crystal, as depicted in Fig. 3. The corresponding density
of states has three maxima: at the saddle point (ki =0), '

which may produce a distinct optical signal in photo-
luminescence experiments, and at the two energies indi-
cated in Fig. 3. These two extra maxima also reflect the
anisotropy of this subband, since the E;„energy surface
attains two distinct plateaus for higher values of k~~ along
the (233) and (011)directions, not depicted in the figure.
The sixth subband E„;also presents a saddle-point struc-
ture, as is evident from Fig. 2(b). By comparing the
whole set of dispersion curves for the two QW's we notice
two basic differences: change of curvatures and relative
separation of the subbands. Both these qualitative
features are probed by the RMTS technique. '

%'e have also investigated the existence of saddle
points for QW's with Ls, (60 A by varying y2 for GaAs
and keeping y, and y3 fixed as well as the y parameters
for the barrier. For barriers high enough, as in our case,
the QW subbands are less sensitive to changes in the
latter. For instance, the energy surfaces E;„(k~~) and

E„;(k}) of a 48-A-wide well exhibit a saddle point in the
range 2.4&y2(2. 6. The energy surfaces are approxi-
mately paraboloids with negative curvature for ye&2. 4
and paraboloids with positive curvature for y2 & 2.6. The
topology of the energy surfaces of E;„andE„;is thus
very sensitive on the value of y2. These qualitative
features and the overall differences in curvature and rela-
tive separation of subbands could be exploited to deter-
mine the Luttinger y parameters by fitting the experi-
mental dispersion curves of a P-type (311)QW.

In the RMTS technique it is important that the mag-
netic length 1~ )L~ in order to avoid significant distor-
tions of the measured dispersion curves, in which case the
magnetic field 8 basically transfers in-plane momentum
to the tunneling holes. Also, in narrow QW's an applied
bias produces a rigid shift of the hole subbands. ' Fur-
ermore, the QW dispersion curves for finite width bar-
riers are the same as discussed here provided the barriers
are thick enough.
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FIG. 3. Saddle point displayed by the fourth (iv) subband of
Fig. 2(b) and the corresponding density of states (DOS). Arrow
number 1 indicates the saddle-point energy (see text). The lack
of smoothness of this curve is due to the method used to calcu-
late the DOS, based on a histogram counting of states.

IV. CONCLUSIONS
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APPENDIX A

The Luttinger Hamiltonian for the bulk including the
spin-orbit interaction reads'

In summary, we have determined a saddle-point struc-
ture in the hole subband energy surfaces of an isolated
(311) QW under flat band conditions by solving exactly
the effective-mass equation including the SO interaction.
The formalism can be used to treat more complex poten-
tials by digitizing them and using the transfer-matrix
technique. Also, the exact wave function can be used as a
good starting point to treat excitons confined in QW's
and to model coherent' and sequential hole tunneling. '
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P= k, Q= (k„+k—2k, ), L= —i&3 (k —ik )k
2m 2m0 0

x y z
0

M =&3 (k„k—} i— k„k,D=b+P .

y&, y2, and y3 are the appropriate Luttinger parameters
and 6 is the split-o6'energy.

The explicit form of the secular equation associated
with the kinetic operator (Al) for a given energy E is

RiRq(D+E) Ri(—2MM++ ,'LL—+)+R2(2Q + ,'LL —)
+(D +E)(MM++LL+)+2(LL+ 2M—M+)Q

+ (L+ M+LM+ )=0,
2

(A2)

where R, =Q P —Ea—nd R2=Q+P+E. Notice that
the eigenvalues of (Al} are doubly degenerate because Hz
is inversion and time-reversal invariant. For D ~ ~, i.e.,
when the split-off band becomes su5ciently remote, ex-
pression (A2) reduces to the well-known hole dispersion
relation E = P+( Q

—+LL + +MM+ )
'~ .

The explicit form of the plane-wave eigenvectors is

a)

a2 pp
elk r S (k) — eik r

3 3

where

ai =(D +E —2Q)M+ L 2,v'3

a2= (D +—E+Q)L v'3—ML+,
a3= ', LL+—+2Q +R~(D+E),

a4 —iv 2 L —(R, +Q)M

a~= [&3ML++(2Q —R
&
)L ];

P4= —[3ML++&3R~L ],
2

p5= —(2R2Q —2MM++LL+);

p2=2MM++ ,'LL+ R2—(D+—E),
p3= &3LM—+ L+(D+—E+Q ),

a5

S3(k)= ~
e'"', S4(k) =

4

p+

p+

a+
3

a2
+

a+
1

0
+
5

—a4+

X4+

3

ikr (A3)

A, , =(2Q —R, )L+&3ML+,

A,2
=2MM+ LL + —2—QR 2,

A3 = &3R2L
+ ——3M+L,

A4=2(R, +Q)M+ —&3L+

A5= i&2(R—,R2+MM++LL+) .

Only two of the eigenvectors (A3) are linearly indepen-
dent. Since there are six distinct values for k3 which are
solutions of (A2) for a given E and k~~, the wave function
F is a linear combination of 12 independent eigenvectors.

S5(k)=
0 e'"', S6(k)=

+
5

2 ikr
1

APPENDIX 8

A simplification of the QW problem can be achieved by
ordering the wave functions (A3) related to both barriers
so that the matrix involving the wave function itself and
the probability flux at each interface has the form

+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+

+
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+

(B1)
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where + ( —) denotes a positive (negative) value of the cotnplex part of k3, the component of k along the Z quantiza-

tion direction of the QW.
Let T be the resulting transfer matrix of the heterostructure. The requirement of the wave function to vanish at

Z =+ DO implies that the determinant of the 6 X 6 submatrix r," (i,j = 1, . . . , 6) must be zero. The determinantal equa-

tion gives implicitly the dispersion relation E(k1) for a given value of k1=(k „kz).
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