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Local spin-wave excitations in ferromagnetic electron-gas snperlattices
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The spin-wave excitations are studied within a factorization approximation for ferromagnetic-
electron-gas superlattices. An equation for determining the excitations is obtained. For a superlattice
containing a defect layer ~hose charge (spin) density of the electrons and their effective mass, for in-

stance, are different from those in the other layer planes of the superlattice, we find, in addition to the
bulk spin-wave modes, another spin-wave mode localized by this defect layer.

Over the last decade the problem of the charge density
excitations of a layered electron gas, in particular the
plasma oscillations and the associate dielectric screening,
has been extensively studied and the plasmon dispersion
relations have been predicted theoretically and observed
experimentally by many authors, ' while there are
fewer reports on the problem of other types of excitations
of a layered electron gas. The spin excitations in
periodic, layered ferromagnetic electron gases have been
studied by Gasser, "' and by Zhou and Gong. The
purpose of this paper is to investigate the spin-wave exci-
tations in ferromagnetic-electron-gas superlattices con-
taining a defect layer. We will apply the equation-of-
motion method to determine the spin-wave excitation
spectrum within a factorization approximation similar to
the Hubbard approximation, since this method is one of
the most powerful techniques in studying the collective
modes. The equation for determining the excitations is
obtained and is used to calculate the dispersion relations
of spin-wave excitations in the long-wavelength limit.
We find, in addition to the bulk spin-wave excitations,
that there exists another kind of spin-wave mode local-
ized by the defect layer, which we call local spin-wave ex-
citation in this paper.

The system we shall discuss consists of an infinite num-
ber of periodically arranged layers of quasi-two-
dimensional (quasi-2D) ferromagnetic electron gases, but
in which one layer (called defect layer) is different from
all the same other layers. The electrons are free to move
within the x-y plane but are subject to a potential in the z
direction. Limited to the lowest miniband, the single-
electron wave function may be given as

t!/k/(r, z —ld ) =S ' exp(ik r)g/(z —ld ),
where k and r are the momentum and coordinate in the
electron layer planes of area S, respectively, and
g/(z —ld) is the Wannier function centered at the 1th
plane with coordinate Id along the z axis. For simplicity,
we may assume ~g/(l —zd )

~
to be a 5 function located at

z =ld, without loss of generality. Changing g/(z —ld) to
more complicated localized functions does not change the
conclusions of this paper in any qualitative fashion.
Therefore, we can neglect the overlap of t!/k/'s in the z

where

ek/ ek+~ek~/0 ek+(ek ek)fi/0

is the dispersion relation of electrons confined in the lth
layer and

V// (q) = exp( —
q ~!d —!'d

~ ) (4)

denotes the Coulomb potential between electrons. In Eq.
(2) C k/~ ( Ck«) is the electron creation (annihilation)
operator corresponding to the single electron state gk/
with spin o, and e is the background dielectric constant.
The defect layer is denoted by / =0 where some physical
quantities, such as the charge (spin) density of electrons
n' (M') and their effective mass m', etc., may be different
from those, i.e., n (M) and m, etc., in other layers of such
a system. The electron spin fluctuation operator of the
system is

S(r z) = y t//k/(r, z ld )yk/(r, z !'d )Ck//Ck/ $
~

Its Fourier transform, defined by

S(Q)= J dr f dz exp( iq r iq, z)S—(r,z)—,

can be written as

S(Q)=gC'k+q/& C'k» exp( iq, ld ), —
k, l

XK+ Q b K t
K

where K =(k, k, ), and the operators C'K, C'K are given
by

direction. The system Hamiltonian can be expressed as

X ek/k/nk/u
k, 1,0.

+ S g ~//'('q ) k+ q/ek' q/'cr' —k' c/r' k/rr
1

k, k', q, I, 1', cr, o'

(2)
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Ck, = —gCK exp(+ik, ld), Ckl = —gCK exp( i—k, ld),1 1

I&, I&

with X the number of the layers.
We now consider the equation of the operator CK+ Q

&C'K &. One finds

1[~ P~~K+QIKJ] (ek+q sk)K+QjKI+ g(~Ek+qk+q k'IKt ~EkK+Qjk, k t )

X V(Q')(CK+Q+Q ICK' —Q' CK' CKt C'K+QIC'K' —Q' CK' C'K —Q'I)
K', Q', o.

(8)

in which

2~e sinh(qd )

Eq cosh(qd) —cos(q, d )

We have added the term —IIIA' to 8, where III, is the chemical potential or, what is equivalent, the energy of the electrons
at Fermi surface. In the random phase approximation (RPA), we then get from (8) that

[&~—
(Ek+q

—ek)]CK+QIK& —
~ X(&ek+qCk, q k IC'Kt —~ekCK+Q}Ck, k t '

1 IXV(Q )[( k+qL kt)K+Q+Q'Lk+Q'I+(&k+q'F ~k+q+q'E)~K+QLKI]

X Q [ ~ k+qL k+q+q k' IK+Q'I ~ kt K+Q+Q'I~k+q
Q'k'

K+QI k k'I k+q+q'I k+ k
~ (10)

In obtaining (10), the following relation has been used:

( Ckl kl' ~ nl (k@1,l' [ k +( k k )~ID]5l, l' '

Now we further use a factorization approximation similar to the Hubbard approximation. The Hubbard approxi-
mation has been widely used in studies of dielectric screening and plasmons of electron gases and subsequently used by
Zhou and Gong to consider the spin excitations of a multilayered ferromagnetic electron gas. It should be mentioned
that since certain terms in Wick's theorem have been neglected in this approximation, the inhuence of the anisotropy of
the Coulomb interaction on the spin-wave spectra is overestimated and the results of the dynamical local-field theories
should be more reliable, as pointed out by Gasser. But for our present problem it is difficult to get an analytical result
from the method of the dynamical local-field theories, and so we use the simple factorization approximation, i.e., the
factor V(Q') in the summation of Eq. (10) is replaced by a screened potential U(Q). On the basis of general arguments,
we know that U(Q) must tend to a constant as Q ~0 and be vanishingly small as Q ~ &C. Supposing that U(Q) takes
the following form:

U(Q) = g Vll (q+q~~ )exp[ —(qI —
q~~

)~ld —1'd ~]exp[ iq, (ld —I'd —)],
Iz

2' 2 sinh(qd +qI d )

E( q +q
ii

) scho(qd +q d)I—cos( qz d )

(12)

with qI~ and q~ the nonzero screening wave numbers in the directions parallel and perpendicular to the two-dimensional

charge layer planes, we can then solve our problem analytically. After a lengthy but straightforward standard calcula-
tion, we finally arrive at the following equation:

I [ I~ (Ek+ql Ekl ) ]foal, l' Ull'(q)MI']~!'(k q) —
Ull (q)[nl I«+q) —nl I(k) ]—&~l « tl) =0

I' S (13)
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where

U„(q)=—g U(Q)exp[+iq, (ld —l'd )],1

S,(k, q) = g Clc+&&C'Ir&exp( —iq, ld ),
k, q

and

Mi =—+[nit(k) —niI(k)] =M+ (M' —M )5I p
1

(14)

wave spectrum significantly. The whole spectrum forms
a spectral band restricted to lie between a highest branch
coH [ —=co, (q, =0) ] and a lowest branch co~

[—:co, (q, =+n/d. )] which correspond, respectively, to
the in-phase and out-of-phase oscillations of spins in adja-
cent planes. In the limit of small q and co, or more
specifically

iiico, HEI, + —
Ei, i «MU(Q),

we obtain from (15)

is the spin density in the 1th layer. We should point out
here that, if c&, nI, and MI are regarded as the relevant
physical quantities of the electrons in the 1th layer, the
expression (13} is applicable to layered-ferromagnetic-
electron-gas systems in a general sense.

Obviously, if there are no defect layers, i.e.,
ei,

—ei, =ni, —
ni, =M' —M=O, Eq. (13) reduces exactly

to the results obtained for a perfect periodically arranged
ferromagnetic superlattice. The spin excitations are
given from (13)

S ~ fino ei, +q
—

ei,
——U M

Clearly, the spin-wave excitations co, (Q} exist for
co co;„,where co;„is the minimum excitation energy of
the Stoner excitations. Detailed investigation of the
dispersion relations indicates that the interlayer Coulomb
interaction modifies the simple two-dimensional spin-

2h eq

U(Q)
(17}

Equation (17) shows clearly that the spin waves display
appropriate crossover behavior, i.e., from two- to three-
dimensional behavior, as the coupling between adjacent
layers is increased by decreasing the parameter qd, which
is analogous to the plasmon spectral band of the layered
electron gases. '

In the case of a layered ferromagnetic system contain-
ing a defect layer, Eq. (13) can be written as

where n and 5 are given by

ni= —g[ ni(tk)+ ni(Ik)]= n+(n' n—)5ip,
1

k

bII = /[nit(k) nip(k)]eii =6+(6 6)5I p ~ (19)
1

SMI

S,(k, q) —Xgii, .(k, q) QUI-I. (q)[nI, I«+q) —ni. i(k)]—gS «I, q) = 0
Ilt 1' S

where gii.(k, q) satisfies

z I lf —
(ek+qi —ek)]5l I Uli (q}MI ]

—
gl I-«q ) =5i I-

(20)

(21)

which can be easily solved together with Eqs. (3) and (14):

1 fI«Q)
gii. =—g exp[+iq, (ld —l'd )], (22)

with

5s„+~—5s„+U(Q)(M' —M)

fi(k, Q) =1+
5ei, +q

—5EI,+ U(Q)(M' —M)+q
N fico —(ei,+ —

ei, ) —U(Q)M
z

(23)

Then from Eq. (20) we have

1
5l, l' g Xgll"(k q}UI"I'(q)[ni &(k+q) ni &(k)lS =0. (24)

=0

Using (22) in (24) we obtain

1 ni I(k+q) ni t(k)—
det 5I I.— g fi(k, Q)U(Q)exp[+iq, (l —1')d]SX k fico —( eI,+ —

ei, ) —U(Q)M
(25)
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(26)

where

Equation (25) may have two kinds of solutions corre-
sponding to the bulk and local spin-wave excitations, re-
spectively. Obviously, for an infinite volume of the sys-
tem, fico=fico, (Q) is actually the solution of Eq. (25).
These modes are the bulk spin-wave excitations discussed
above. On the other hand, drawn on experience of study-
ing the density excitation spectrum of the electron gases,
it is clear that a general discussion of Eq. (25) is a very
difficult task for both kinds of excitations, especially for
local modes. However, in the limit of small q and co,
some conclusions may be drawn for the local spin-wave
excitation spectrum (the bulk modes have been discussed
above). In this limit, Eq. (25) becomes

co,'( Q) —co, ( Q) =1,
co —co, (Q)

U(Q) M' (27)

The solutions of Eq. (26) are schematically shown in Fig.
1. The shaded part in Fig. 1 represents the region of bulk
spin-wave excitations which formed a continuous spectral
band. The lowest and highest branches of the bulk spin-
wave excitation spectral band coL and coH are given in the
sma11 q and co limit, respectively, by

eb, (q+q~~ )cosh(qd+q~d )/2 e
ficoL (q) = n- (2&)

ire sinh(qd +q ~d ) /2

FIG. 1. Schematic drawing of the spin-wave excitations in a
ferromagnetic electron-gas superlattice containing a defect layer
for large M and M'. L, H, and I signify coL (q), coH(q), and col(q),
respectively. The hatched region corresponds to the spectrum
of bulk spin-wave excitations restricted to lie between the lowest
branch coL and the highest branch coH. The local spin-wave
mode col lies either below or above the band for coL(q) & coL(q)
or for AH(q) )AH(q), respectively.

RcoH(q) = n—eb, (q+q~~ )»nh(qd+q, d )/2
(29)

ire cosh(qd+q~d )/2 M

ficoL, ficoH ~fico, (qd —+ ~,q, =0)= n—,(30)
eAq &q

M '

showing a two-dimensional behavior. In the intermediate
coupling limit, i.e., qd (& 1, one has the highest branch

We note that the lowest branch col and the highest
branch coH correspond to the out-of-phase (q, =+mr/d)
and in-phase (q, =O) oscillations of spins in adjacent
planes of the perfect systems (discussed above), respec-
tively. In the weak-coupling limit, i.e., qd ))1, one has
the same limit for ~L and co~,

ficoH ~fico, (qd ~O, q, =0)
eb, qllsinh(qj d/2)
m.e cosh(qid /2)

(31)

and the lowest branch

ficol ~fico, (qd ~0,q, =+ir/d)

eb, q) cosh(qid /2)
n (32)

ne sinh(qid /2)
In addition, we note that in Fig. 1 there is an isolated

solution co& either below the band or above the band,
which describes a spin-wave excitation localized by the
defect layer. For small q and co, this local spin-wave
mode is given by

( b 'mM b, m 'M'
)n '+ b, 'm 'M'n-

f~, (q)=
2h'mM —Am 'M'

q+qll cosh(qd+q, d )

ere sinh(qd+q~d )

6'mm
- 2h'mM —Am 'M'

m.e sinh(qd+q d)
(mMn ' —m 'M'n )

—b, 'mM + b, m 'M'
q+qll cosh(qd+q, d )

2h'mM —Am 'M'

Am'M'

(2b, 'mM —b, m 'M')cosh (qd +qzd )

1/2
E,

q

M' (33)
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In obtaining Eq. (33) we have let ek/Ei, =m'/m for sim-

plicity. For co'I (q) & coL (q) the mode coi( & coL ) is located
below the spectral band of the bulk modes, whereas for
coH(q) & coH(q) the mode coi( &coH ) is located above the
bulk modes.

Equation (33) gives the local mode in the small-q and
-co limit, but with qd as an arbitrary parameter. In the
following, we extend our discussions for the two extreme
cases. In the weak-coupling limit, i.e., qd)&1, taking
qd —+ 00, from (33) one immediately finds

i(qd ~ oo ) =A'co,'(qd —+ 00 )

Here we obtain the very satisfying intuitive results that in
the weak-coupling limit the mode eI is simply the two-
dimensional spin-wave mode of the defect layer. In the
intermediate limit, i.e., qd »1, for coH(q) &coH(q), we

find from (33) the local mode above the mode
ficoH(qd ~0), and for co'I (q) & coL (q) the local mode
below the mode fuol (qd ~0).

In summary, we have studied the spin-wave excitations
of a ferromagnetic electron-gas superlattice within the
factorization approximation and have found, for a fer-
romagnetic superlattice containing a defect layer, a spin-
wave mode localized by the defect layer, which exists
along with the bulk spin-wave spectral band. An experi-
mental investigation is expected to get a better under-
standing of the nature of the spin-wave excitations in
such a system. We hope our work will generate more in-
terest in this topic.
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