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A molecular-dynamics technique is applied to single-electron charging effects in semiconductor wires,

and the impact of strong electron-electron correlation on the conductance is investigated. Because of the

relatively low electron density in semiconductors compared to a metal, the screening length is compara-

ble to the sample size, which requires a treatment beyond the conventional Coulomb-blockade argument

using macroscopic capacitance. Based on the molecular-dynamics method, most features of the periodic

conductance oscillation in the double-barrier system are reproduced, and the feasibility of this technique

in single-electron charging phenomena is demonstrated. Experimental observation of an activation ener-

gy smaller than the threshold energy of the nonlinear conductance, which the normal Coulomb-blockade

model cannot explain, is reproduced in the present approach. This effect is due to the strong microscop-

ic correlation, so that this is essential to describe accurately the single-electron charging effects in semi-

conductor systems.

I. INTRODUCTION

Single-electron charging phenomena, ' which cannot
be accounted for without considering the quantization of
charge, have recently attracted much attention. In metal
tunnel junction systems, previously unreported physical
phenomena, which include SET oscillation and the
Coulomb staircase, have been found. Many experi-
mental and theoretical efforts have been directed to the
underlying physics of these phenomena. Single-electron
charging phenomena are observed not only in metal sys-
tems but also semiconductors such as the Si-metal-oxide-
semiconductor field-eff'ect transistor (MOSFET) and
GaAs heteroj unction two-dimensional electron gas
(2 DEG) systems, ' and insulators such as InOz. " In
metal tunnel junctions, the concept of Coulomb blockade
and the "orthodox theory, "' which is a semiclassical
treatment using macroscopic capacitances, charges, and
potentials, have advanced the understanding of these
phenomena by successfully explaining many observed re-
sults. These single-electron phenomena are thought to
have tremendous possibilities in future electronics de-
vices.

However, in most experimental situations in semicon-
ductors, the lack of several considerations in the conven-
tional macroscopic approach restricts the applicability of
this treatment to quantitative predictions. In the macro-
scopic model, the origin of a charge is the surface charge
of an electrode, and the Coulomb energy is described in
terms of the macroscopic capacitances. By contrast, in
semiconductors the screening length of the electrons is
comparable to, or even larger than, the device feature
size. Therefore, estimating the Coulomb energy using a
capacitance which is obtained simply from the sample

geometry may lead to errors. In the macroscopic ap-
proach, the relaxation time in an electrode is neglected
based upon the fact that an electrode contains a huge
number of electrons. However, in semiconductors, the
number of electrons in an "electrode" (or an isolated seg-
ment) is sometimes literally unity. We cannot neglect the
relaxation time in such a situation. In the macroscopic
approach, an electron is transferred instantaneously from
one electrode to another and the transition time is
neglected. Because barrier potentials are often. smooth
and continuous in semiconductors, the transfer is not lim-
ited to tunneling but may also be thermally activated, and
metallic transfer is also important (the observed
difference in the temperature dependence in two experi-
ments ' clearly shows the' validity of this speculation).
Therefore the transition time cannot be neglected. Based
on this consideration, single-electron phenomena in semi-
conductors seem to be beyond the scope of the simple
macroscopic capacitance approach. If one wants to stay
with the macroscopic approach, the capacitance should
be a complex function of the external frequency, the
external wave vector, and the electron density. More-
over, if the Wigner crystallization of the electrons were to
occur in the limit of strong electron correlation, the mac-
roscopic capacitance approach is far away from the real
system. These points suggest that an advanced approach,
which can go beyond the macroscopic approach, is neces-
sary for quantitative predictions.

One difficulty in the theory is providing a quantitative
interpretation of experimental phenomena. ' ' Although
some aspects of the observed conductance oscillations in
semiconductor wire structures can be explained by the
Coulomb-blockade picture. ' ' ' It has been suggested
that there is a significant deviation when a quantitative
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comparison is made. ' The observed oscillations were
first thought to be due to a charge-density wave (CDW)
or Wigner crystallization of the electrons. ' Later, it was
suggested that the characteristics were explainable by the
Coulomb-blockade model. ' However, the observed ac-
tivation energy is much less than that predicted by the
Coulomb-blockade picture, ' which raises a doubt about
the current Coulomb-blockade interpretation in semicon-
ductors.

The purpose of this paper is to gain insight into the
above crucial question via numerical simulations. We use
a classical molecular-dynamics technique so that the
strong electron-electron correlations in a low-density re-
gime and nontunneling-transfer mechanisms in smooth
continuous potentials can be treated. The molecular-
dynamics approach to electron transport' ' inherently
incorporates the exact microscopic correlations, includ-
ing multielectron scattering, without approximation
(within the classical regime). It is also possible using this
approach to discuss the impact of Wigner crystallization.
The molecular-dynamics technique has been successfully
employed to describe ultrafast optical-relaxation phe-
nomena in semiconductors. ' ' However, the applicabili-
ty of this approach to single-electron charging phenome-
na has not been previously demonstrated, to the authors'
knowledge. The molecular-dynamics approach will be
described in Sec. II and the numerical results and discus-
sion will be given in Sec. III.

II. MOLECULAR DYNAMICS

The system discussed is a semiconductor wire structure
having a double-barrier potential, as shown in Fig. 1 ~ It
is known that, in a double-barrier system, single-electron
charging effects are more easily observed than in the
single-barrier counterpart, since a voltage-biased condi-
tion (without the need to provide constant current bias)
can be used. Because of this, many experiments have
been done in such double-junction systems. Figure 2
shows the external barrier potential that is imposed on
the wire. This can be realized either by narrowing the
effective wire width to raise the reference level of the po-
tential or by introducing a bias through the presence of
gate regions. Here we represent the potentials with a
smooth analytical function, which decays as
sech (2x/tvb), where tvb denotes the full width at half

Barrier Region

FIG. 1. Schematic of the wire structure and ground plane
used in the simulation.

db

Wb Wb

maximum of the barrier potential. The wire is assumed
to be an undoped semiconductor, and the electron charge
is neutralized by its image charge in the gate metal (or
conductor). The spacing between the center of the wire
and that of the image charge is assumed to 725 nm,
which corresponds to the experimental condition of Ref.
9.

The molecular-dynamics technique is used to simulate
the dynamics and statistical properties of the system. the
electrons are modeled as a one-dimensional classical-
particle system with mutual repulsion. The repulsive po-
tential in our calculation includes the effect of the image
charge in the metal, taking typical experimental condi-
tions into account. The classical interelectron potential
including this effect is

2 2

&r'+d' '

where e is the charge of an electron, r is the distance be-
tween two electrons, and d is the distance between the
center of the electron and the center of its image charge.
This potential is proportional to 1/r when r &&d, corre-
sponding to the repulsion between two dipoles.

Newton's equation of motion is discretized as

x, (t +At) =x, (t)+

gatv,

(t)+(b t)'F, (t)/2,

v, (t +b t) = v, (t)+(b t) [F (t +b t)+F, (t) j/2, (3)

where x, and v,. denote the position and velocity of the ith
electron, At denotes the time mesh, and F; denotes the
force upon the ith electron. The time evolution of this
equation is simulated numerically and a statistical aver-
age is obtained by using the time average. This scheme
neglects the influence of Fermi-Dirac statistics. Howev-
er, in the range of electron density concerned, the Fermi
level is small compared with the average Coulomb poten-
tial, which justifies this classical approximation. In fact,
we are interested in a system which has the average in-
terelectron distance larger than the effective Bohr radius
in GaAs (-10nm), which corresponds to the system hav-

ing a linear density below 10 /cm. Although the tunnel-
ing and interference effects are neglected in this approxi-
mation, the particle dynamics aspects of the electrons are
clearly extracted in this simulation.

The conductance of the wire and the current are calcu-
lated by applying a voltage between the source and drain
electrodes and counting the average electron flow. We do
not use the conventional scheme that arises from use of
the Kubo formula, mainly because we are interested in

Coordinate

FIG. 2. Schematic view of the barrier potential and the pa-
rameters.
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the nonlinear conductance of the system. To avoid the
(source and drain) edge effects, periodic boundary condi-
tions are adopted. Electrons which pass the exit bound-
ary lose their velocity information (they are assumed to
equilibrate in the contact) and a particle is injected with a
new velocity set to a random variable determined from a
Maxwell distribution. The temperature of the system is
maintained constant by using a velocity scaling tech-
nique. The time mesh interval is determined so that en-

ergy conservation remains valid, without scattering at the
boundary. Typically, a 100-fs interval is used in this
simulation. The time average of a physical quantity is
calculated using a stochastic sample typically over 10—30
ps. The temperature and the source-drain voltage can in
principle be set to any arbitrary value. However, to have
good convergence in realistic computation time, they
cannot be too small. We typically use a temperature
above 0.1 K and a drain voltage above 50 pV.

: (a) db 0.52 pm

4

It is worth noting that the conductance vanishes as the
density drops to quite low values. There is also an indica-
tion in Fig. 3 that the conductance vanishes at higher
densities, although this is not a density-dependent quanti-
ty, as can be seen by comparing the different lengths of
the isolated region. This "vanishing" at higher densities
is actually a region of low conductance, with the conduc-
tance again rising at higher values of the density, and is
thought to be related both to the plateaus that arise in
Fig. 4 and to the fact that the Coulomb energy of the par-

III. NUMERICAL RESULTS AND DISCUSSION

Using the above scheme, the current and the conduc-
tance of a single quantum wire, having double barriers,
are investigated numerically. In Figs. 3(a)—3(c) we show
the simulated conductance for different lengths of the iso-
lated segment (or distance between the two barriers).
Clear conductance oscillations are observed with increas-
ing electron density. The significant conductance oscilla-
tions in Fig. 3, and their dramatically nonlinear charac-
teristics, are remarkable when we recall that the results
are derived by simply putting classical particles into a
completely smooth potential, and are not obtained by
quantization effects directly. We can clearly identify that
it is the barrier potential which causes this oscillation, by
noting that the oscillation disappears when the barrier
potential is removed as shown in Fig. 3(d). We can relate
this oscillation to the addition of a single electron to the
isolated segment by simple calculations. We note the os-
cillation period is inversely proportional to the length of
the isolated segment. This also shows that the oscillation
corresponds approximately to the addition of a single
electron to the isolated segment. This conclusion is more
directly confirmed by the simulated average number of
electrons in the segment N;„shown in Fig. 4. The num-
ber of electrons increases exactly corresponding to the
number of peaks in the conductance except for some
offset integers. The conductance peak is revealed to cor-
respond to the steep rise in N;„,whereas the conductance
valley corresponds to a plateau in N;„(although it is not
always completely fiat). This stepwise structure in the
N;„vsN curve (or the N;„vsV, curve) is suggested in
Ref. 15 in the context of the Coulomb blockade in a
double-barrier semiconductor tunneling structure. Our
numerical analysis shows that this property is also main-
tained in the continuous nontunneling regime. Although
Figs. 3 and 4 take the carrier concentration as the hor-
izontal axis, the horizontal axis can be as easily interpret-
ed as the gate voltage. Because the distance between the
real charge and the image charge is set to the same value
as in Ref. 9, the electron-density increment of 1 X 10 /cm
can be interpreted as a gate voltage change of 0.475 mV.
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FIG. 3. Conductance as a function of the electron density for
different lengths of the isolated segment db. The temperature is
0.37 K. The barrier height and the barrier width are 0.14 meV
and 26 nm, respectively. The source-drain voltage is 425 pV.
(d) shows the conductance in the absence of the barrier.
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FIG. 4. The average number of electrons in the isolated seg-
ment between barriers as a function of the electron density for
the conditions shown in Fig. 3.

ticles in the isolated region is significant as these electrons
are compressed together. This effect is not fully under-
stood, and will be the subject of further work.

The temperature dependence of the conductance is
characterized by a single activation energy at low temper-
atures, as shown in Fig. 5(a). There is a difference in the
activation energy between the peak values of the conduc-
tance and the local minima values of the conductance.
Because of this, the oscillation almost disappears around
1 K in our simulations. To exclude the infiuence of finite
source-drain voltage on the activation energy, we simu-
late the dependence of the activation energy on drain
voltage and extrapolate to the zero-voltage condition as
shown in Fig. 5(b). The activation energy is found to be
210 pV for the conditions of Fig. 3(a). Figure 6(a) shows
dependence of the current on the source-drain voltage.
When the gate voltage is set to a local minimum of the
conductance, the current-voltage curve has a clearly non-
linear characteristic with a threshold voltage. The
threshold voltage increases with a decrease in tempera-
ture, as shown in Figs. 6(a) and 6(b), and, at 0.185 K, it is
410 RV.

Despite the apparent limitation of the present ap-
proach in neglecting tunneling effects, the simulation
reproduces many experimentally observed phenomena in
quasi-one-dimensional semiconductor wires. First, the
observed conductance oscillation corresponding to the
addition of a single electron basically reproduces experi-
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FIG. 5. (a) Arrhenius plot showing the temperature depen-
dence of the conductance, at a maximum and at a minimum, of
an oscillation. The drain-source voltage is 159 pV. (b) The
dependence of the activation energy on the source-drain volt-

age.
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FIG. 6. (a) Current as a function of the source-drain voltage
at the maximum and at the minimum of an oscillation.
d„=0.26 pm. (b) The threshold voltage vs temperature.
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mental results. The present simulation shows that the
period of the oscillation is inversely proportional to the
length of the isolated segment, which is what is seen in
the experiment. Because the absolute values of experi-
mental conductances are reported to be subject to change
after temperature cycling, which indicates that the
microscopic impurity configuration is affecting the re-
sults, the experimental conditions are not well character-
ized in this respect. However, the simulated peak con-
ductances of 1 —20 pS are close to experimental values of
1 —12 pS (Ref. 9) and 1 —15 pS. The linewidth of each
resonance in both the simulation and the experiment is
inversely proportional to the isolated-segment length.

The simulated activation energy E„which is smaller
than the energy of the threshold voltage eVT, needs spe-
cial attention. The activation energy measured in the
first experiment in a Si-MOSFET by Scott-Thomas
et al. was SO peV, whereas the eVT was 200 peV. !n a
subsequent experiment in a GaAs 2DEG structure by
Meirav et al. , the activation energy was 150 peV and
the threshold voltage energy was about 500 peV. Both
experiments show that the activation energies are smaller
than the threshold voltage energies. Our simulation not
only shows quite reasonable agreement in the absolute
value of E, (210 peV) and Vr (410 peV), but also agrees
on the relative magnitudes of the two quantities. By con-
trast, the conventional Coulomb-blockade model for a
double-junction system cannot predict this discrepancy
between E, and V&.

Based on this agreement between the simulation and

experiments, we expect that our model at least captures
the essence of the observed phenomena. The early con-
jecture by Scott-Thomas et al. of a pinned charge-
density wave, and the Coulomb-blockade picture pro-
posed by Van Houten and Beenaker, ' are both models
based on the competition between the barrier potential
and the Coulomb potential. These are not mutually ex-
clusive ideas. The former starts from an extended state
over the entire electrode and the Coulomb energy is in-
cluded by a macroscopic expression using the capacitance
as e /2C. The latter starts from the ordered state in the
strongly correlated limit and the Coulomb interaction is
included as a microscopic expression as e /4ner. The
present analysis shows that the conductance oscillation
occurs even without Wigner crystallization, but there is a
tendency for ordering in the electron population. This is
seen in the radial-distribution function shown in Figs.
7(a) —7(d) (we continue to use the common term radial-
distribution function, although we clearly treat a linear
correlation here). Although no crystallization is found in
Fig. 7(b) at an electron density of 3.86 X 10 /cm, the con-
dition shown in Fig. 7(b) is beyond the scope of simple
macroscopic capacitance arguments, because there is a
strong correlation evident in the radial-distribution func-
tion. The total length scale corresponds roughly to the
screening length of the electron system, and is compara-
ble to, or larger than, the length of the isolated segment.
The evident microscopic deviation from the smooth situ-
ation assumed in a macroscopic capacitance argument
explains the observed deviation of the activation energy
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and the threshold energy from the macroscopic analysis.
The close relationship between the medium- to long-

range correlation, and the large threshold voltage, is seen
in the temperature dependence of the radial-distribution
function shown in Fig. 8. At a density of 7.72X 10 /cm,
strong correlation extending beyond the length of the iso-
lated segment occurs roughly at 0.2 —0.3 K. %'hen we
reexamine the temperature dependence of the threshold
voltage in Fig. 6(b), we can clearly see a stronger temper-
ature dependence below; such a temperature makes the
threshold voltage much larger than the activation energy.

It should be noted that all the above results are ob-
tained purely classically, without any quantum effect ex-
cept charge quantization. This provides numerical evi-
dence that a significant single-electron charging effect
occurs in a completely smooth potential with a
continuous-time electron transfer, even in the absence of
tunneling. The fact that Coulomb-blockade affects may

even be observed in a smooth potential without tunneling
implies a significant impact not only on a fundamental
understanding of the single-electron effects, but also on
the application of such single-electronics concepts to fu-
ture electron devices. Because an electron, in principle,
can exist in any arbitrary position in a smooth potential,
the basic argument of the Coulomb blockade (that the
electron transfer inevitably increases the total energy, be-
cause only the discrete change of the electron state is al-
lowed) fails. Likharev suggested in his review article
that the essence of his orthodox theory can possibly be
applied to such a nontunneling-transfer process with me-
ta11ic conduction, when the conductance of the junction
is smaller than the quantum conductance unit 4e /h. If
we have a single-electron effect in such a nontunneling
continuous electron transfer, the variety of systems which
show these effects is drastically extended. Actually, the
operating principle of current commercial transistors,
such as a MOSFET, a bipolar junction transistor, or a
high electron mobility transistor, is based on nontunnel-
ing thermal electron transfers. Therefore, these devices,
when downscaled further, will possibly be affected by
such single-electron charging. This will have an impact
on the future applications of this concept.

The characteristics of the downscaled (or upscaled) sys-
tem from the system simulated above can be predicted
without numerical simulations by using the following
scaling property of the classical Newton's equation:

x'=ax, t'=a' t, Vb = Vb/a,
T' = T/a, I' =I/a'
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where a denotes the scaling parameter, x denotes any
coordinate such as the particle position and the barrier
position, T denotes the temperature, and I denotes the
current. The primed quantities represent the new scaled
quantities. For example, if the size is downscaled by a
factor of 2, while the potential barrier height and the
temperature are upscaled by a similar factor, the current
is larger than the original current by a factor of 2 . The
peak-to-valley ratio of the conductance oscillation is un-

changed by this transformation. Of course, in a drastical-
ly downscaled system the present fully classical approxi-
mation fails. However, it may still be valuable to know
that such classical results distinguish the charging effects
even in such a regime.

IV. CONCLUSION
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FIG. 8. Radial distribution function for difterent tempera-
tures.

The single-electron charging phenomenon in low-

electron-density semiconductor wires is numerically ana-

lyzed by using a molecular-dynamics technique and in-

corporating microscopic electron correlation without ap-
proximation. This approach successfully reproduces the
experimentally observed conductance oscillations, activa-
tion energy, and threshold voltage of the nonlinear con-
ductance of a classical double-barrier structure. The
present approach eliminates many discrepancies of the
so-called orthodox model, and the oscillation is identified
to be closely related to the medium- to long-range elec-
tron correlation (in the extreme case, Wigner crystalliza-
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tion). The simulation also gives numerical evidence that
significant single-electron charging effects can be ob-
served in continuous, smooth potentials even without
tunneling. This opens the door to a wide variety of
single-electron effects in conventional semiconductor de-
vices.
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