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Microwave response of mesoscopic rings
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The nonlocal conductivity of a mesoscopic conductor manifests itself at nonzero frequencies. As a
consequence of this, the microwave scattering intensity of a mesoscopic metal ring acquires a nontrivial
frequency dependence if the frequency is comparable to the inverse of the diffusion time around the cir-
cumference of the ring.

One of the interesting transport properties of mesos-
copic systems is the nonlocal character of the conductivi-
ty. Experimentally, the conductance of a multiprobe sys-
tem has been found to depend sensitively on the
configuration of the entire sample. ' Magnetoconduc-
tance measurement on wires has revealed the nonloeal
effect on the period of the magnetic-field dependence. In
discussing the voltage fluctuation problem it has been
found that there ean be an electric field in a voltage probe
even though the current here is zero. ' Kane, Scrota,
and Lee point out that, to the lowest order of disorder,
the ensemble-averaged dc conductivity consists of two
parts: a local Drude term and a long-range diffusive term
[see Eq. (11) below]. The long-range term does not con-
tribute to the average dc conductance and so cannot be
observed directly. It is nevertheless important in calcu-
lating the correlation of the conductivity tensor. Recent-
)y, it has become feasible to measure the conductance of
mesoscopic samples at microwave frequencies. We show
below that a direct observation of the long-range part of
the averaged conductivity is possible in this frequency re-
gion. This potentially provides another test of the
theory. We shall concentrate on the nonlocal effects re-
lated to diffusion; the local, weak-localization-related as-
pects of the problem have been discussed in Ref. 6.

We consider the scattering of microwave by a mesos-
copic ring. Unlike the problem of the persistent current,
which is an equilibrium property of the ring, here we
study its high-frequency linear response to an external
Aeld. The incoming and scattered waves are assumed to
be classical and therefore described by an amplitude and
a phase. This corresponds to choosing coherent states for
both the initial and Anal states of the scattering process.
We find that due to the long-range nature of the conduc-
tivity tensor, the ensemble-averaged electric dipole (El)
mode of the scattered wave shows a significant frequency
dependency; the other modes are affected to a lesser ex-
tent.

Throughout this paper we assume the amplitude of the
electromagnetic (EM) wave to be low so that nonlinear
effects may be neglected. For the same reason, any de-
phasing caused by the EM wave is assumed to be negligi-
ble.

We first review some properties of the electrical con-
ductivity. To the lowest order of the disorder parameter
(kFl) ' (I is the mean free path) and within linear-

A(x)= e ' Ex,
l CO

where k;=k(sin8;y+cos8;z). Far away from the ring,
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FIG. 1. Diagrams contributing to the conductivity tensor
o.„(x,y). (a) The Drude term is short-ranged because the aver-

aged Green's function (the solid lines) are short-ranged; {b) the
diffuson term is long-ranged as the distance between the impuri-
ties vertices (dashed lines) at the end points z and z is uncon-
strained; {c)the cooperon contribution is short-ranged: z and z'
must both be within a mean free path from both x and y.

response theory, the most important diagrams contribut-
ing to the ensemble-averaged conductivity are shown in
Fig. 1. The Drude term [Fig. 1(a)) is short-ranged and
extends up to a range of order l. On the other hand, the
diffuson contribution [Fig. 1(b)] is long-ranged. Formal-
ly, the reason for the difference is that the impurity-
averaged Green's functions themselves are short-ranged,
whereas the diffuson ladder does not constrain the dis-
tance between its two end points. The cooperon contri-
bution [Fig. 1(c)] enters in the next order in (kFl) and
is short-ranged. The long-range part does not contribute
to the average conductance. This is because it is of the
form of a total derivative and can therefore be converted
to a boundary term. However, we show below that a
direct observation of this long-range part is possible at
high frequencies. To concentrate on this, we shall in our
discussion neglect the cooperon part, which can be readi-
ly incorporated into the final result as a correction to the
local conductivity.

Consider the elastic scattering of microwave by a
mesoscopic ring as shown in Fig. 2. The z axis is chosen
to be perpendicular to the ring. If the ring is sufficiently
thin, one may neglect the component of E normal to the
ring plane. We therefore assume the ineorning E field E
to be in the x direction, and the wave vector of the in-
coming wave to lie in the y-z plane. The corresponding
vector potential is
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j(x)= j„(p,z)e'"~e& . (3)

-X-e
0

Here jo corresponds to a uniform current and so contrib-
utes to the magnetic dipole (Ml) radiation, j& and j
correspond to a dipolar flow and contribute to the E1
mode, and the other j„'s can be similarly interpreted.
Using (2) and (3), we get

FIG. 2. Geometry of the setup.

A~&(R) =i a(kp~x —kp„y)pplp,

AE, (R)=a((ix+y)I, +( ix—+y)I, ),
(4)

the outgoing wave is determined by the current density in
the ring

ikR

Ap(R) = (2)

where kp =k (sin8pcosgpx+ sin8psingpy+ cos8pz}. Typi-
cally in an experiment like this, the radius po of the ring
is about 10 m whereas both the height b and the width
a of the cross section are less than 10 m. At mi-
crowave frequencies, we then expect R &&A, ))po) a, b.
This justifies the use of the rnultipole expansion in (2).
The current is, to a good approximation, purely azimu-
thal:

and similarly for higher modes. We have introduced
a=—m(e'""/cR)e ' 'and

I„=f dp f dz pj„(p,z)

f d x e '"~j&(x) .
1

The experimentally measured E and H fields are

H= AXko E=H Xko

It can be seen that for each mode, E and H are linear
combinations of I„and I „. For example, for the E1
mode, in which we are particularly interested, we have

Hz& = iak (c—os8px i cos—8py sin8—pe z}I, iak (—cos8px+i cos8py —sin8pe z)I, ,

Ez& =ak {(
—1+sin 8pcosgpe )x+(i+sin 8psingpe ')y+ —,'sin(28p)e z jl

+ak ((1—sin 8pcosgpe )x+(i —sin 8psingpe '}y+—,'sin(28p)e z)I& .

( (, )) f dE f(E+ ) f(E)—
sam' N

lim
a

X) 2~X;X) g
—+X ~xi@

In a ring-array experiment the number of rings within an area of the size of microwave wavelength is large, and the
overall response is given by the disorder-averaged conductivity. We shall therefore not address the question of sample-
to-sample variations. Unlike the problem of persistent current in mesoscopic rings, here the response does not depend
sensitively on the total number of electrons on the ring, and we are allowed to use the grand canonical ensemble. The
averaged conductivity tensor is

8 8

Bxz Bx )

(6+(x&,xt, E+co)G (x2, x2,E)), (10)

where f is the Fermi function and ( . ) denotes the im-
purity average. As a result, at zero temperature,

propagator satisfies the diffusion equation

ice DB„)d(—x, x',—m) =5(x—x') . (12)
00

(o„„(x,x', co})= 5„„5(x—x')
1 l$7

0
4 8 8 d(x, x,cia),

( 1 i cur)—
where 5(x—x') is a modified 5 function that extends up
to the mean free path and d(x, x', co) is the rescaled
diffuson propagator, ~ is the mean free time, and
o p=e DN(eF) with N(ez) the density of state at the Fer-
mi energy and D the diffusion constant. The diffuson

0

1 l cot' (13)

(14)

Since the mean free path is small compared with the di-
mension of the ring, we may take the 5 function to be the
true 5 function. Hence, ( j&)=(j~&)+(j&~) is given hy
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d(x, x')=—
0 m = —oo Pl—i co+D

po

im (p —p'). 2e

ik,. x'
For our purpose, we take e ' = l. In a ring

geometry, d is given by
tributes to I„ for nW+1 as well; these lead to higher-
multipole scatterings and are small since the size of the
ring is typically much smaller than the wavelength. In a
typical sample at microwave frequencies, co~ && l, and the
Drude frequency dependency can be neglected. Hence

where Q is the volume of the ring. Writing I„=I„+I„",
we finally get

cr()EQ corD

4v —icurD+1
(19)

(I„)= f e '"~sing
2m(1 i cu—r) x

0. D+, , e '"4'sin '

2+po( 1 i cur—)

a2X,d(P, P'), (16)

or

+ooEA
I+,

4+i (1 i cur)—
l1—

( icurD+ 1)(1 icor)

(17)

Here 7D=po/D is of the order of the diffusion time
around the circumference of the ring. Without making
the exp(ik; x') =1 approximation, the nonlocal term con-

On the other hand, a frequency co-~D' can be readily
achieved and thus Eq. (19) is amenable to experimental
verification: The scattering intensity depends on co and is
proportional to co [cu +rD ] '. This is in addition to
any frequency dependency coming from the weak-
localization effect which, as mentioned above, is largely
local. The cooperon and diffuson contributions can be
further distinguished from each other by their different
magnetic-field dependence: The cooperon term should
exhibit the familiar 4o/2 periodicity (Co=bc/e is the
flux quantum) whereas the diffuson term is essentially
unaffected by a magnetic field.
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A quasi-6 function here ensures current conservation at zero

frequency. In the literature a true 5 function is often used

even though the summation of the diffusion diagrams only

provides a quasi-5 function. This causes no significant error
as d (x,y} is mainly used for ~x —

y~ && l.


