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Phonon-confinement effect on electron energy loss in one-dimensional quantum wires

V. B.Campos* and S. Das Sarma
Joint Program for Aduanced Electronic Materials, Department ofPhysics, Uniuersity ofMaryland, College Park, Maryland 20742

M. A. Stroscio
U.S. Army Research 0+ce, P O. B.ox 1221l, Research Triangle Park, Worth Carolina 27709

(Received 12 November 1991;revised manuscript received 29 April 1992)

We calculate, within the electron-temperature model, hot-electron intrasubband energy relaxation
rates via LO-phonon emission in GaAs quantum wires, taking into account quantum degeneracy,
dynamical screening, hot-phonon bottleneck, and, in particular, phonon confinement. Two prevailing
macroscopic models of phonon confinement, namely, the slab or the electrostatic model and the guided
or the mechanical model, are compared quantitatively. We find that the slab model, while giving relaxa-
tion rates comparable to the bulk-phonon emission rates, 1eads to an order of magnitude faster relaxation
than the guided model. For reasonable parameter values, the hot-phonon-bottleneck effect is found to be
the single most important physical mechanism determining energy relaxation. Numerical values for
electronic-energy-loss rates in GaAs quantum wires are provided for both models of phonon confinement
for a range of values of the relevant parameters, including confinement size, carrier density, hot-phonon
lifetime, and electron temperature.

In order to obtain a realistic estimate for the energy-
loss rate due to LO-phonon emission from a hot-electron
gas in quasi-one-dimensional quantum wire structures,
the effect of the confinement of the phonon mode should
be taken into account, particularly in narrower wires.
Phonon confinement causes changes in the selection rules
for transitions involving subband electrons and also
affects the magnitude of the electron-phonon interaction
matrix element, consequently modifying the hot-electron
energy relaxation rate compared with the bulk-phonon
emission case.

Considerable work has recently been done' on the
role of confined phonon modes in the hot-electron relaxa-
tion phenomena in semiconductor quantum wells. It is
now well accepted that in narrow quantum wells confined
phonon modes play a quantitatively significant role' in
determining the experimentally measured energy relaxa-
tion rates. Electron-confined LO-phonon interaction in
quantum-well systems has been studied using two
different macroscopic approaches to phonon confine-
ment: the electrostatic or the slab modes' and the
mechanical or the guided modes. Although there has
been some earlier work on hot-electron transport in
quantum wires, only recently ' has the problem hot-
electron energy loss in these systems been addressed. In
this paper we provide a calculation of hot-electron energy
relaxation in semiconductor quantum wires due to
conPned LO-phonon emission, taking into account quan-
tum degeneracy, dynamical screening, and hot-phonon
bottleneck. We compare the two existing macroscopic
models of phonon confinement and compare them with
the case of bulk-phonon emission (i.e., no phonon
confinement). We neglect the interface phonon modes,
which have exponentially decaying amplitudes into the
wire —this is expected to be a good approximation for
wires which are not too narrow.
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where s is a positive integer, and t =y, z corresponds to
the confined direction. The modes corresponding to Eq.
(1) are symmetric while Eq. (2) gives rise to antisym-
metric modes. In the mechanically confined model, we
use boundary conditions on the atomic displacements at
the interfaces. The vibrational amplitudes of these guided
modes are given by
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Let us consider a quantum wire of rectangular cross
section along the x axis, with finite y and z dimensions,
given, respectively, by L and L, . We assume that the
walls are impenetrable; that is, the confining potential
well is an infinite square well. We are interested in study-
ing both the macroscopic approaches for phonon
confinement. They difFer essentially in the way the
boundary conditions are applied. In the slab model one
applies boundary conditions on the electrostatic potential
whereas in the guided model it is the electric field which
is made to vanish at the interfaces. Then, mathematical-
ly, within our approximation scheme (infinite barriers
characterizing the interfaces), the difFerence between
these two models is represented only by the interchange
of the sine and cosine functions in the vibrational ampli-
tudes of the modes.

In the slab model, the vibrational amplitude is given by
T

u~, +&(t) cc sin (2s+1)
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The one-dimensional Frohlich Hamiltonian describing
the interaction between an electron and confined LO-
phonon modes can be written as

H, D =2a' g e " g g g (y)g„(z)A. „P „,
m=1 n=1

(12)

The quantity P „, the y- and z-dependent factor in the
matrix element, is the overlap integral between the elec-
tronic ground-state wave function and the phono n
confined mode, and, is given by

where
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g (t)=sin n +—5 (9)

and for the guided modes

7t m'

g„(t)=cos n +—5„ (10)

with 5„=1 if n =odd, and 5„=0 if n =even. The con-
stant a' is defined in terms of the usual dimensionless
bulk Frohlich constant a as

a'=
1/2
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where V=L„L L, is the three-dimensional volume, and
we have assumed dispersionless LO-phonons of frequency
Q)LQ The electrons are taken to be in an isotropic para-
bolic conduction band, defined by a band effective mass
m

Assuming the extreme quantum limit (i.e., the elec-
trons are confined to the lowest one-dimensional subband
in the quantum wire) the electron-phonon interaction ma-
trix element is given by (within the infinite square poten-
tial confinetnent model)

1/2

M „(q)=2a (iricoLo) F „(q),
2m

where F „(q) is the appropriate form factor with m, n

confined phonon mode indices,

P„=A „(k)+A „(—k). (7)

Here A ( A ) is a linear combination of the annihilation
(creation) operator for the phonons, defined by

„(k„)= —,
' [( —1) +'a(k„,k, k, )+a(k„,k», —k, )

+( —1)"+ a(k„, —k», k, )

+( —1)"+'a(k„,—k, —k, )] .

The functions g„, which are determined by the
confinement mode, are defined as follows for the slab
modes:

Xg (y)g„(z),

with the functions g (t) defined by Eqs. (9) and (10).
Since the nonvanishing integrals of the type above are
those involving only products of cosines, the overlap in-
tegrals, for both confining modes, can be written as

( g/ir)P „= sin m —sin n-
mn(4 —m )(4—n )

(14)

RP= —g f dco A con( T)co5(co—co~),
N o 1+v 1,R

(15)

where the scattering rate R can be expressed in terms of
the one-dimensional electron-phonon coupling strength
Mq and the finite-temperature reducible polarizability
for the one-dimensional electron gas y(q, co) as

Due to the functional dependence of the phonon wave
function in each confined case, in order for P „ to be
nonzero, we must have both m and n odd integers for the
slab modes. The total matrix element is therefore ob-
tained by performing the sum over these odd labels. The
dominant contribution to this sum is made by the mode
with m =n =1, since it can be shown that ~P»~ =0.2P»
and ~P;~ ~

~0.04P» for i, j & 1. Thus, in the slab model it
constitutes a good approximation to consider only the
mode m =n =1. On the other hand, for the guided
modes, where m and n must be all even, only the term
m =n =2 has a nonvanishing contribution to the matrix
element. Thus, in both cases we can consider only one
value for P, which corresponds to the lowest possible m
and n for the given model.

Our goal is to calculate the energy loss per electron via
intrasubband relaxation within the electron temperature
model. Except for the phonon confinement, this calcula-
tion is similar to our earlier work on hot-electron energy
relaxation via the bulk LO-phonon emission. We make
the standard finite-temperature random-phase approxi-
mation (RPA) to describe the electronic response, and,
use the kinetic approximation' to incorporate the hot-
phonon-bottleneck effect.

The power loss per carrier, for lattice temperatures
much smaller than the electron temperature T, can be
written as'
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where co is the phonon frequency and n T is the Bose fac-
tor at the electron temperature T. In this formula, the
effects of electron-electron interaction are included
through the dynamically screened polarizability function.
We consider electron temperatures low enough so that
k~ T (&AcoLO =fico, which allows us to consider only the
one-phonon emission process. In Eq. (15) r~„ is the
empirical hot-phonon lifetime. The value of ~ h is a mea-

sure of the probability of the emitted LO phonons to be
reabsorbed by the hot-electron gas causing a phonon-
bottleneck effect. For a low-density electron gas, at tem-
peratures high enough so that the electrons are nonde-
generate ( ks T»Ez ), we could describe the system as

obeying classical Maxwell-Boltzmann statistics. We refer
to this as the classical model, and use it for comparison
with our quantum results.

In the rest of the paper we present our numerical re-
sults for the intrasubband energy-loss rates in GaAs
quantum wires, where we have used the fol lowing param-
eters: m =0.07m„ficoi o=36.8 meV, a =0.07. We con-

O

sider wires with lateral dimensions between 10 to 1000 A,
electron densities from 10 to 10 cm ', and electron
temperatures between 50 and 300 K (the lattice tempera-
ture is taken to be zero). We include quantum degenera-

cy, finite-temperature dynamical screening, hot-phonon
and phonon-confinement effects, but neglect phonon self-

energy corrections (which are very small in one-
dimensional systems) and interface phonons (which are
negligible, except for very narrow wires).

In Fig. 1 we show the numerical results for the power
loss as a function of the inverse of the electron tempera-
ture, for L =L, =50 A and electron densities of 10 and
10 cm ' . The solid curves correspond to the slab
modes while the dashed curves represent the mechanical-
ly guided modes. We present the curves corresponding to
the unscreened system, as wel 1 as the dynamically
screened results, obtained with and without the hot-
phonon effect. In the scale of this figure, it is not possible
to distinguish between the classical result and the results
without screening for both models. Since the hot-phonon
lifetime in GaAs quantum wires is not experimentally
known, we have used r h

=7 ps which is the bulk experi-
mental value. "One can see that the power loss has an ex-
ponential dependence on the inverse of the temperature
with an exponent A'coi o /k~ T. The preexponential factor
can be written as Aez o /r, where r is the electron-energy
relaxation time, leading to P = (fico„o/r)exp( —A'co„o/

ks T ). These results show that the inclusion of the hot-
phonon effect considerably lowers the energy-loss rate.
This reduction is more pronounced for the slab modes
where the energy-loss rate is larger.

In Fig. 2 we show the electronic relaxation time r, as
calculated from the power loss, as a function of the elec-
tron density for Ly =L.= 100 A and mph

=0 and 7 ps.
The hot-phonon effect is significant even at low densities.
For al 1 densities and wire sizes, r for the guided modes is
much larger than that for the slab modes indicating a
much slower relaxation due to guided modes. Figure 3
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represents the dependence of the electronic relaxation
time on the hot-phonon lifetime for both models and for
the same wire parameters as before. There is a strong
dependence on rph particularly for larger values of the
phonon lifetime. The overall behavior is the same for
both models, but the guided modes produce v which are
about 20 times larger than that for the slab modes in the
region of small values of r h ( ~ 0.5 ps). Our results based
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FIG. 2. Electron relaxation time r as a function of the elec-
O

tron density for L~ =L, = 100 A, as obtained from the power
loss, considering the slab phonon modes (solid curve) and the
guided modes (dashed curve). The thin curves correspond to
rph 0 and the thick ones to r„h =7 ps.

FIG. 1. Power loss per carrier as a function of inverse elec-
tron temperature for a quantum wire of lateral dimension

Ly L 50 A. We present the results for the slab phonon
modes (solid curves) and the guided modes (dashed curves) for
two electronic densities: (a) 10 cm ' and (b) 10 cm ' . For
both models the power loss is shown in the unscreened approxi-
mation, and with dynamical screening with hot-phonon effect,

rph 7 ps (thick lines) and r» =0 (thin lines) . For X= 10 cm
the top long-dashed line represents the unscreened result for the
slab model, and the dashed-dotted line for the guided model.
For the low densities, the unscreened results coincide with the
result for rph

=0 in the figures.
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FIG. 3. Electron relaxation time v as a function of the pho-
0

non lifetime v ~h for a wire with L~ =L, = 100 A and 1V= 10'
cm ' for the slab modes (solid curve) and the guided modes
(dashed curve). %e present also the bulk-phonon results
(dashed-dotted curve) for comparison.
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on the slab modes are close to those obtained using the
bulk phonons whereas the guided-mode relaxation is sub-
stantial ly slower.

In Fig. 4 we show the electron relaxation time r vs
L„=L„ the lateral dimensions of the wire. The results
correspond to both models of phonon confinement with
electronic density of 10 cm ' and mph 0 and 7 ps. The
results for the guided modes are more strongly dependent
on the dimensions of the wire, even when ~ h

=0. For
larger wires, the difference between the models is striking.
In Fig. 5 we plot the wire size dependence of the ratio be-
tween the values of ~ for the two confined-phonon models
for a given rzh (solid curves) and the ratio between the re-
sults for the two values of phonon lifetimes for each mod-
el (dashed curves). As can be seen from the figure, the ra-
tio of the relaxation rates for ~ h

=7 ps and 7 ph 0 ps is
approximately a constant close to unity for the mechani-
cal model. This implies that the inclusion of the hot-
phonon effect does not drastically affect the size depen-
dence of the energy relaxation in the mechanical model .
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FIG. 5. Ratio of electron relaxation rates as a function of the
lateral dimension of the wire for electronic density %= 10'
cm . The solid lines represent the ratio between the guided-
and the slab-modes result, obtained considering dynamical
screening and two different values for the phonon lifetime

( Tph 0 corresponds to the thick curve and ~» =7 ps to the thin
curve) . The dashed lines represent the ratio of the electronic re-
laxation rates between the results obtained with hot phonons
( v» =7 ps) and those without hot phonons. The thick dashed
curves correspond to the slab modes and the thin curves to the
mechanically guided modes.

For the slab modes, however, the inclusion of finite ~ph

becomes very important in the narrower systems
(L =L, 300 A) and decreasingly important for systems
with larger lateral dimensions. Without the hot-phonon
correction the dependence of this ratio on the wire di-
mension is much stronger for narrower wires. In general,
when r h is much larger than ~ calculated without hot-
phonon correction (i.e., with r h

=0 ), hot-phonon effects
are extremely important whereas they are unimportant in
the opposite situation.

In summary, we have calculated the hot-electron ener-

gy relaxation rate in GaAs quantum wires for intrasub-
band relaxation via confined LO-phonon mode emission
in the electric quantum limit. Our calculation includes
electron- and phonon-confinement effects, quantum de-

generacy, dynamical screening, and the hot-phonon-
bottleneck effect. We compare the two standard continu-
um phonon-confinement models, namely the slab and the
guided-mode models, and find, consistent with the
quantum-well situation, that the guided (mechanical)
modes produce more than an order of magnitude slower
energy relaxation than the slab (electrostatic) modes for
intrasubband relaxation processes. Our slab results are
close to the earlier calculated bulk results. The hot-
phonon bottleneck is found to be the single most impor-
tant physical mechanism in our calculations provided

Tpp 1 ps. Our calculated relaxation rates are compara-
ble to those found in quantum wells.

FIG. 4. Electron relaxation time r as a function of the lateral
dimension of the wire L~ =L, for electronic density %= 10'
cm '. The solid lines represent the results for the slab modes
and the dashed lines for the guided modes. We have used

mph 0 (thin curves) and ~» =7 ps (thick curves).

This work was supported by the U.S. ARO and the
U.S. ONR. V.B.C. also acknowledges support from
FAPESP (Fundaqao de Amparo a Pesquisa do Estado de
Sao Paulo, Brazil). S.D.S. thanks the Graduate Research
Board of the University of Maryland for support.



PHONON-CONFINEMENT EFFECT ON ELECTRON ENERGY. . . 3853

'Permanent address: Departamento de Fisica, Universidade
Federal de Sao Carlos, Sao Paulo, Brazil.

J. K. Jain and S. Das Sarma, Phys. Rev. Lett. 62, 2305 (1989);
K. Mori and T. Ando, Phys. Rev. 8 40, 6175 (1989);S. Rudin
and T. L. Reinecke, ibid. 41, 7713 (1990);L. Wendler and R.
Pechsted, Phys. Status Solidi B 141, 129 (1987).

B. K. Ridley, Phys. Rev. B 39, 5282 (1989); M. Babiker, J.
Phys. C 16, 683 (1986); B. K. Ridley and M. Babiker, Phys.
Rev. B 43, 9096 (1991).

H. Riicker, E. Molinari, and P. Lugli, Phys. Rev. B 44, 3463
(1991).

4A. Seilmeir et al. , Phys. Rev. Lett. 59, 1345 (1987); J. F. Ryan
and M. Tatham, Solid State Electron. 32, 1429 (1989), and
references therein.

5See, for example, A. Ghosal et al. , J. Appl. Phys. 59, 2511

(1986); S. Briggs et al. , Phys. Rev. B 38, 8163 (1988); T. Ya-
mada et al. , ibid. 40, 6295 (1989).

S. Das Sarma, V. B. Campos, M. A. Stroscio, and K. W. Kim,
Semicond. Sci. Technol. 7, 60 (1992).

7V. B.Campos and S. Das Sarma, Phys. Rev. B 45, 3898 (1992).
8M. A. Stroscio et al. , Phys. Rev. B 40, 6428 (1989); J. Super-

latt. Mirostruct. 10, 55 (1991)~

9Q. P. Li and S. Das Sarma, Phys. Rev. B 43, 11 768 (19911.
S. Das Sarma et al. , Phys. Rev. B 41, 3561 (1990), and refer-
ences therein; see also S. Das Sarma, in Hot Carriers in Semi-
conductor Nanostructures, edited by J. Shah (Academic, New
York, 1992), p. 53.
J. A. Kash, J. C. Tsang, and J. M. Hvam, Phys. Rev. Lett. 54,
2151 (1985).


