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A total-energy theory for a solid is presented. It is based on density-functional theory and consists
of a succession of approximations. At the most accurate level, the theory consists of a systematic
derivation of an ansatz for the electron density which is best suited for the Harris functional. At the
most approximate level, the theory is equivalent to the usual effective-medium theory. At all levels
of approximation, every term in the total-energy expression is calculated ab initio, that is, without
any fitting to experiment or to other calculations. Every step in the approximation procedure
can thus be tested independently. The theory is applied to calculations of the surface energies
and vacancy formation energy of Al. At the most accurate level, the theory gives results that
are in almost complete agreement with self-consistent calculations. At the more approximate, but
also computationally much less demanding, level, the theory gives results that are still in excellent
agreement with the self-consistent results.

I. INTRODUCTION

With advanced numerical methods and increasingly
faster computers, it is now possible to do ab initio calcu-
lations of the energetics of solids. Even though the local-
density approximation (LDA) is usually made in order to
treat exchange and correlation effects, the results for elas-
tic properties, phonon frequencies, surface energies, etc. ,

are typically in very good agreement with experiment. i

The methods are, however, still so time consuming that
only systems with rather few atoms per unit cell can be
treated. For many problems, for example involving ex-
tended defects, one needs to consider larger systems in
order to include the important physics, and the present
methods are not sufficiently efficient. The same is true
in simulations of finite temperature or time-dependent
problems, and in problems where the equilibrium config-
uration of a system involves the variation of many atom
coordinates. Substantial progress has been made with
the Car-Parrinello method, z but there still is a need for
simpler methods to treat such problems.

The usual approach has been to use pairwise interac-
tions between the atoms This is cor.nputationally very
efficient, but unfortunately gives a rather poor descrip-
tion of the bonding in most solids. A number of empiri-
cal, semiempirical, or nearly ab initio methods have been
proposed3 9 which include the many-body interactions
in an approximate way. There is, however, a need for
methods that are faster, accurate enough to give sensi-
ble results and, at the same time, do not require exper-
imental input into the calculation. Furthermore, a good
model demands a greater understanding of the nature
of the approximations thus leading to a physically more
meaningful picture of the essential interactions.

In this paper we present a theory which allows us to
calculate the total energy of a solid using different lev-
els of approximation. The main point of the theory is
that at each level of approximation, each part of the en-

ergy is calculated ab initio, that is, without fitting to
other calculations or to experiment. This ensures that
we can test every approximation in detail, and we can
make sure that the physical picture behind the theory is
correct and that we are not being misled by errors that
cancel due to any fitting procedure. We test the the-
ory by calculating surface energies for the three simple
surfaces of Al and the vacancy formation energy. Com-
parisons to a fully self-consistent calculation show the
method to give good results even at the level of approxi-
mation where the energy calculation is very much faster
than with conventional self-consistent methods. We will
show that in its most approximate form, the theory is
equivalent to the effective-medium theorys and thereby
mathematically similar to a number of frequently used
and very effective semiempirical methods, such as the
embedded-atom method, s the Finnis-Sinclair method, s

or the glue model. "

II. THE FIRST LEVEL OF APPROXIMATION:
THE OPTIMIZED UNIVERSAL
ELECTRON-DENSITY ANSATZ

A. General remarks

The starting point is the density-functional theory of
Hohenberg and Kohn, and we shall be working within
the local-density approximation (LDA) for the exchange
and correlation energies although the theory may be gen-
eralized to more elaborate schemes for treating these ef-
fects. The total energy of a system of atoms is a unique
functional E[n] of the electron density n(r) of the sys-
tem, and E[n] is variational around the ground-state
electron density. Usually the ground state density is de-
termined by a self-consistent solution of the Kohn-Sham
equations.

An equally good energy expression is the Harris
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functionalii iz which is stationary but not necessarily
variational at the ground-state energy. is i4 A useful at-
tribute of the Harris functional is that it depends only on
the input charge density, whereas the Kohn-Sham func-
tional also depends on the output density. It has been
shown that overlapping fr==-atom densities constitutes a
good input to the Harris functional for molecular sys-
tems and bulk systems where, in the latter, cohesive en-
ergies, lattice constants, phonon frequencies, and bulk
moduli can be accurately determined. is A well-known
problem using this ansatz for the input density, however,
is the complete failure to determine surface energies. is
Finnisi~ resolved this difficulty by a two-parameter vari-
ation of the input density until the stationary value of
the Harris functional was attained which gave the cor-
rect surface energy compared with the self-consistent re-
sult. The long-wavelength components of the density are
especially important for the surface because of the long-
range nature of the Coulomb interaction, so the Finnis
procedure, which results in a contraction of the charge
density, had evidently addressed this issue albeit in an
ad hoc way.

If the ansatz density for the Harris functional is good
enough, then this will give a total-energy calculation
which is considerably faster than a self-consistent solu-
tion because only one iteration is needed in the Kohn-
Sham equations. In a recent paper, s it was shown
that there exists a systematic decomposition of the self-
consistent electron density for bulk Al and the Al(111)
surface into overlapping-atom-like densities, and it was
claimed that this procedure gave the optimized choice
input density for the Harris functional. is In Sec. II 8 we
will discuss this means of determining optimized atom-
iclike densities from first-principles calculations of the
crystalline solid that are transferable to different chem-
ical environments, and we will give specific results for

I.

the discrete set of reciprocal-lattice vectors for which the
structure factor is nonzero. Overlapping such densities
in the solid is designed to reproduce the correct density
only for those components for which the structure factor
is nonzero. The construction of An~~(r) therefore first
requires an analytical continuation in reciprocal space of
b,n, ~(G) to An~~(k), where k is a continuous variable,
before inversion to real space.

We have studied bulk Al using the plane-wave pseu-
dopotential method, zi z2 and in Fig. 1 we show the devi-
ation of b,n~~(G) from b,n~t~ (G) for the discrete shells
in reciprocal space that the fcc lattice [S(G) = 1 for
all G] samples. Charge conservation fixes the G=O
term, and the short-wavelength components converge
rapidly to the atomic value of zero so that the essen-
tial physics of bulk Al is determined in the intermedi-
ate wavelength region. By varying the lattice constant,
the optimized density components evolve parallel to the
free-atom density, is which justifies the success of using
overlapping free-atom densities in calculating the elastic
properties and phonon frequencies of the bulk. s'zs The
long-wavelength contributions are especially important
for the surface problem which we consider next.

We first observe that for a lattice with a basis of dis-
similar atoms, it is not possible to resolve atomiclike den-
sities for each atom. We studied the Al(111) ideal sur-
face in a supercell geometry oriented along the z direction
with four atomic layers and two vacuum layers. We made
the simplifying assumption that all four Al atoms in the
supercell are identical so that we extract a representative
atomiclike density for the surface problem. We will see
that this works well largely because the surface and bulk
are decoupled in reciprocal-space with the main contri-
bution to the surface energy being the long-wavelength
components which are not present in the bulk.

We have plotted in Fig lthe . results for the spher-
ically averaged An, ~(G) which we ext;racted from the
Al(ill) surface calculation. We note that the short-

B. The optimized density

The total density nto& in a crystal of overlapping free
atomic densities An~t~m is giv,en by

0.30

0.20

where (R„j is the set of lattice vectors, and we consider
only one type of atom for convenience. Our arguments
are most transparent in reciprocal space: the correspond-
ing expression for the Fourier-transformed densities is
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where G is a reciprocal-lattice vector and S(G) is the
structure factor. This density may be used to construct
the input potential for the iteration of the Kohn-Sham
equationsio to a self-consistent density n«'t. From this
result, we can extract an atomiclike density hn~~ (op-
timized) which is related to n„", by the structure factor
as in Eq. (2). This optimized density depends on the
crystal structure and volume, and is only determined on

—0.20
0.0 2.0 4.0 6.0

wave number (bohr) '

FIG. 1. The solid dots are the deviation of Dn, ~(G) from
An t, (G) for the discrete shells in reciprocal space that the
fcc lattice (the lattice constant is 3.96 A) samples. The crosses
are the corresponding components for the Al(111) ideal sur-
face, and the solid line is the least-squares Gt of the data to
a product function (Appendix).
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ded in a homogeneous electron gas. It is therefore not
surprising that's the atom embedded in a homogeneous
electron gas of a reasonable density gives results with the
Harris functional of the same level of quality as with the
optimized density.

We make the ansatz that An»(r) is a universal, trans-
ferable density, and in Sec. II C, we test this assumption
by considering the Harris functional for different situa-
tions. It must be pointed out that the optimized density
does not reproduce the entire self-consistent density even
for the (111)surface (from which it was derived) because
of reasons given above (zero structure factor, spherical
averaging, numerical interpolation, etc.), but the station-
ary property of the Harris functional ensures a good es-
timate of the total energy.

FIG. 2. The real-space pseudodensity n, t, (r) (solid line)
and n,~(r) (dashed line).

C. Results and discussion

wavelength components for the surface relax to the bulk
result in reciprocal space —which it must to be able to
recover in real space the bulklike properties away from
the surface. The components with the wave vector per-
pendicular to the surface are surface sensitive and mark
significant deviations away from the free-atom result in
the long-wavelength region. We now continue the com-
ponents An, ~(G) using a least-squares fit to a product
function (see the Appendix) incorporating the surface-
sensitive long-wavelength components and the bulk infor-
mation in the short-wavelength region as shown in Fig. 1.

In Fig. 2 we show the densities in real space, noting
the contraction of the density toward the core region

compared with the free-atom density and the resulting
sharper attenuation of the density tail, a feature present
in the atom embedded in a homogeneous electron gas
and the Finnis renormalized atom. The optimized den-
sity exhibits oscillations in the tail region that are due to
screening and which are also present in the atom embed-

In Table I we give results for the bulk, the three princi-
pal unrelaxed surfaces of Al, and the unrelaxed vacancy
using the optimized density as an input to the Harris
functional, and we compare with the self-consistent cal-
culations. We used a supercell with four slab layers plus
two vacuum layers for the (111)and (100) surfaces, and a
supercell with eight plus four layers for the (110) surface.
The vacancy problem comprised of a 27-atom unit cell.

In the construction of the optimized density we used
a functional form which gave a very localized density es-
sentially only extending to the nearest neighbors. This
constraint was imposed because we want to construct a
nearest-neighbor model with which we can compare the
more approximate schemes we shall introduce later. It
can be seen from Table I that the localization of the opti-
mized density leads to a slight overestimate of the surface
and vacancy energies compared with the self-consistent
ones and also with the earlier published results for an op-
timized density where the localization was not imposed. 's
However, the Harris-functional results with the localized

TABLE I. (a) Nearest-neighbor distance (d&), cohesive energy (E,), and bulk modulus (B)
for Al in the fcc lattice using the self-consistent (SC) and Harris (H) methods and the various
different levels of approximation of the present theory: EM' includes the potential-energy Dv
contribution to the kinetic-energy difference (see Sec. III D), and EMT2 and EMT3 include two
different estimates to the one-electron energy difference (see Sec. III E). (b) Energy of formation of
Al for the three principal unrelaxed surfaces and the ideal vacancy. The energies are per surface
atom or per atom around the vacancy. The vacancy formation energy is then 12 (the number
nearest neighbors to the vacancy) times the vacancy number in the table.

Quantity

d, (bohr)
E, (eV)
B (Mbar)

SC

5.284
4.22
0.89

H

(a) Bulk
5.292
4.22
0.89

5.292
4.22
0.89

EMT2

5.292
4.22
0.89

EMT3

5.292
4.22
0.89

(111) (eV)
(1«) (eV)
(110) (eV)
Vacancy

0.43
0,52
0.80
0.053

(b) Surface and vacancy
0.46 0.60
0.55 0.75
0.86 1.10
0.060 0.123

0.47
0.53
0.81
0.072

0.45
0.60
0.87
0.043
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optimized densities must still be considered in excellent
agreement with the self-consistent results, and supports
our claim that b,n»(r) is universal and transferable to
the extent that a single function is enough to give a good
description of both the bulk metal at various lattice pa
rameters and in various structures and of the surface of
the metal.

Although faster than the self-consistent calculation,
the total-energy calculation at this level of approxima-
tion is still rather time consuming due to the fact that
the eigenvalues s; of the Kohn-Sham equations

must still be calculated once to get the kinetic-energy
contribution

+( f=)-* f ()"&(~)~~

to the total energy

E[n] = T[n]+ G[n].

Here, v,g(r) is the efFective potential which is given by a
sum of the external potential, the Hartree potential, and
the exchange-correlation potential, zo and G contains the
electrostatic and exchange-correlation energies. In order
to find a really efiicient total-energy method, one would
need a more effective method for calculating the kinetic
energy.

III. THE SECOND LEVEL
OF APPROXIMATION:

THE KINETIC-ENERGY FUNCTION

A. General remarks

In order to proceed, we introduce the concept of an
effective medium or reference system. zs The idea is that
for each atom i in the system, we look for a reference
system where the atom is in "similar" surroundings, but
where the symmetry is higher so that the total-energy
calculation is simpler. We then write the total energy of
the system of interest

E= E+) e,"(s,) —) e,'"(s;)

= ) e',"(s;)+ AT + AG.

system.
We propose the following approach: Given the ansatz

optimized density b,n»(r), the electrostatic and the
exchange-correlation energies of the system are exactly
determined by first overlapping b.n»(r) in the configu-
ration under investigation. The aim, then, is to Gnd that
reference system for which ]ET~ is small and easily calcu-
lated, so that the quantum kinetic interactions are taken
into account to good measure in the reference calculation
which is done just once and for all times.

In our work we choose the effective medium or refer-
ence system to be a fcc crystal of an appropriate vol-

ume, although an equally good reference system that
one may choose is the atom embedded in a homogeneous
electron gas. In Fig. 3 we have plotted the total en-

ergy per atom (e) of Al in the fcc lattice, and the sepa-
rate contributions of the kinetic (t) and the electrostatic
plus exchange-correlation energy (g) as a function of the
nearest-neighbor distance.

Now consider an arbitrary configuration of Al atoms.
In order to find the reference system for any of these
atoms, say atom i, one must specify the lattice constant
of the reference fcc crystal. In principle, any lattice con-
stant will do, but obviously some choices are more sensi-
ble than others. The most sensible ones are those where
~b,T~ is small and can be calculated in low-order pertur-
bation theory. The choice we make here is that a fcc
crystal which has the same neutral-sphere radius s, as
the atom i in the system under study. This choice is the
one that is made in the usual efFective-medium theory, s

and ensures that the atom is immersed in the same av-

erage electron density. With this choice of determining
the reference volume, we at least ensure that there is
no long-range Coulomb interaction between the atomic
spheres and, as we shall see in Sec. III D, there are also a
number of numerical problems that are avoided with this
choice. In Sec. III B we give the explicit construction for
determining the neutral spheres about each atom and the
results for the three principal surface orientations and the
ideal vacancy.

drn(r) = z (10)

B. The embedding density function

For an arbitrary configuration of Al atoms, we deter-
mine the neutral-sphere radius s)v for each atom by solv-
ing the equation

Here e,". ~ is the energy of atom i in the reference system
characterized by some parameter s, , and the kinetic, elec-
trostatic, and exchange-correlation energy difFerences are
given by

AG=G —) g,
" .

about each atom, where Z = 3.0 corresponds to the total
valence charge of atomic Al, and n is the superposition
of the optimized atomic densities. In Fig. 4 we have
shown Biv as a function of the nearest-neighbor distance
for the fcc lattice and, for comparison, we also included
the Wigner-Seitz radius s~.

It is useful to resolve (10) into contributions from suc-
cessive shells of atoms and to this end, we define the
embedding function

The small e, t, and g denote energies per atom whereas
the capital E, T, and G denote energies for the whole
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In Fig. 5 we have plotted I'(s, 0) and 1 (s, d) for s and d
in our range of interest.

Equation (10) may now be written as

(12)

where the sum is over all shells of atoms around a given
atom and n~ is the number of lattice vectors in the jth
shell with length d, .
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FIG. 4. The neutral-sphere radius SN as a function of the
nearest-neighbor distance dq for Al in the fcc structure. The
Wigner-Seitz radius Sg = [ ~j'~ dt is also included for
comparison. The dashed line is S~ calculated including only
up to nearest-neighbor contributions.
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Using Eq. (12) we now determine s~ for the fcc lattice,
but include contributions only up to the nearest-neighbor
shell (nq=12); the result plotted in Fig. 4 compares very
well with the exact result calculated from Eq. (10). It is
clear that the optimized density is reasonably well local-
ized in real space and that a nearest-neighbor model is
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TABLE II. The neutral-sphere radius for surface atoms for the three principal unrelaxed surfaces
of Al and the ideal vacancy, and the corresponding energies. Note that the results for the (110)
surface include the combined contributions from the first-layer (1) and second-layer (2) atoms.

Surface
orientation

(111)
(100)
(110) (1), (2)
Vacancy

SN (bohr)

2.959
2.995

3.035, 2.897
2.897

e' (eV)

-56.89
-56.74

-113.74
-57.254

t' (eV)

34.90
34.54
69.93
35.707

g' (eV)

-91.79
-91.28

-183.67
-92.961

adequate in describing the essential interactions, and so
in subsequent calculations, we will only include contribu-
tions to this order.

We now solve for the neutral-sphere radii of the
atom(s) at the three ideal surfaces

I'(s~, 0) + niI'(s~, di) = 3.0,

where d~i = 5.292 bohr is the fcc lattice equilibrium
nearest-neighbor distance, and where for the (111) and
(100) surface atoms, ni is 9 and 8, respectively, and for
the (110) surface, ni is 7 for the first-layer atom and 11
for the second-layer atom. The atom at the ideal va-
cancy is identical to the second layer (110) surface atom—within a nearest-neighbor model —since both have
lost a single nearest neighbor.

In Table II we tabulate the results for sN for the surface
atoms and, using the results in Fig. 4, we determine the
corresponding reference fcc volumes which have the same
neutral-sphere radii, and these results together with the
corresponding energies are listed in Table III.

We now turn to looking at the individual energy con-
tributions in Sec. III C.

C. Results

In the nearest-neighbor model, we can easily resolve

(14)

«,8,«f

~g = g' —g"'
(16)

(17)

as the energy difFerences between the real and the ref-
erence systems. The surface energy can then be written
as26

atoms that are bulklike within this model (i.e., those
atoms that have retained their bulk coordination num-
ber of 12), and we attribute all deviations of energies
from the bulk values to the surface atom in question. In
Table II we tabulate the individual energies e', f,', and g'
for each of the three surfaces and the ideal vacancy under
consideration. Note that the results for the (110) surface
include the combined contributions from the first-layer
and second-layer atoms, both atoms of which have lost
the bulk coordination number.

In order to illustrate the usefulness of the effective
medium or reference system, it is instructive to consider
the deviation of the kinetic energies t; from the bulk equi-
librium value tp. t tp is th—e kinetic-energy contribution
to the surface energy. In Table IV the calculated value
of t' —tp is compared to t"~(s~) —tp, the kinetic-energy
of an atom in the reference system at the appropriate
neutral-sphere radius. It can be seen that the use of a
reference system with the same neutral sphere reduces
the problem of calculating the kinetic-energy contribu-
tion to the surface energy by an order of magnitude.

Now we define

and
0 = e"f —ep + b,t +kg, (18)

=) g;

into contributions from each atom in our surface super-
cell. We do this by assigning bulk energies to all those

where eP = —57.31 eV is the bulk energy per atom of
the fcc lattice at the equilibrium volume. It is simple to
calculate Ag from the density ansatz. In Sec. III D, we
will describe how to estimate the the small quantity b,t
using low-order perturbation theory.

TABLE III. The fcc equilibrium bulk and reference volumes, and the associated energies.

S~ (bohr)

2.876
2.959
2.995
3.035
2.897

d, (bohr)

5.292
5.465
5.536
5.614
5.345

fcc reference volumes
e"' (eV)

-57.31
-57.27
-57.23
-57.19
-57.304

(eV)

36.15
34.68
34.21
33.75
35.645

g"' (eV)

-93.46
-91.95
-91.44
-90.94
-92.949
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TABLE IV. The kinetic-energy difference between the surface and bulk t' —to compared with
that between the reference system and the bulk t" —tp. EM', EMT2, and EMT3 are successive
inclusions of the potential energy Ae and two different approximations to the one-electron energy
Ae contributions to the difference in the kinetic energy between the reference system and the bulk.
The units are in eV.

Surface
orientation

(111)
(100)
(110)
Vacancy

gS

-1.25
-1.61
-2.37
-0.443

t" (s~) —to

-1.47
-1.94
-2.91
-0.505

-1.07
-1.43
-2.16
-0.375

EMT2

-1.20
-1.65
-2.45
-0.426

EMT3

-1.22
-1.58
-2.39
-0.455

D. Calculating the difFerence in the kinetic energy
to Arst order dr e,tr(r)n(r), (20)

We have asserted above that the atom i in the system
under consideration is similar to the atom in its corre-
sponding reference fcc system provided that both have
the same average electron density or neutral-sphere ra-
dius slav. We shall be exploiting this similarity in cal-
culating the kinetic-energy difFerence 6t to first order in
the difference between the reference and the real systems.
In order to do this, we make two independent approxi-
mations. First, we calculate b,t within the atomic-sphere
approximation (ASA). In the ASA, the Wigner-Seitz cell
of atom i is replaced by the neutral sphere s&, and the
efFective potential inside the neutral sphere is spherically
averaged. In order to see the effect of the ASA on the
kinetic-energy contribution, we show in Fig. 6 the fully
anisotropic potential contribution to the kinetic energy

dr v,tr(r)n(r)

t, =) s [v,tr]l, — dr I,tr (r)n(r) (21)

where v, tr(r) is the spherically averaged potential. The
curves appear to be shifted by a constant amount rela-
tive to each other, so that differences in energies can be
computed reliably in the ASA.

The second approximation we make is to treat the dif-
ference between the real and the reference system to first
order. We make use of the fact that the kinetic energy,
when considered a functional of the effective potential, is
stationary with respect to deviations around the ground
state. s This means that to first order in the difFerence
between the effective potential in the real and the refer-
ence systems, the kinetic energy due to atom i, as given

by Eq. (4), can be written (in the ASA) as

for Al in the fcc lattice as a function of the nearest-
neighbor distance di, where WS is the Wigner-Seitz unit
cell, and we compare this with the ASA result

10.0

8.0
Q

6'~ Veg i dr e,"„'(r)n(r), (22)

where the sum over the eigenvalues is projected on the
sphere at site i. Notice that in Eq. (22) the last term only
depends on the potential in cell i, whereas the eigenvalue
sum depends on the potential in the surroundings too.

The difference in the kinetic energies between the atom
in question and the atom in its associated reference sys-
tem is now given in the ASA by

U 6.0-
C

4.0
C

0
CL

2.0

&t=):s [~Ã]l' —).s [~Ã]

drv," (r)[n(r) —n" (r)]

= As+ Av.

(23)

0.0
5.0 5.2 5.4 5.6 5.8

nearest —neighbor distance (bohr)

FIG. 6. The effective potential contribution to the kinetic
energy for the fcc lattice as a function of the nearest-neighbor
distance dz for the fully anisotropic potential and that calcu-
lated in the ASA. The dashed line includes only up to nearest-
neighbor contributions.

The first term, Le, we call the one-electron correction
term, and it is truly quantum mechanical in nature; for
example, it includes hybridization effects and changes in
the density of states at the Fermi level. This term will
be discussed more fully in Sec. III E.

For now, we consider the second term Av. Note,
firstly, that this quantity is independent of the arbitrary
constant to which the effective potential is defined; the
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A(s, d) = dr v tr (r) b,n p(~r —d~),
SN

(26)

where v,'fef~(r) is the potential associated with that fcc
lattice with neutral-sphere radius s~. In Fig. 7 we have
plotted A(s~, 0) and A(sN, d) for sN and d in our range
of interest. Expression (20) may be written as

uniqueness of b,v is a consequence of the condition of
charge neutrality in each of the spheres about the atoms.

In analogy with the definition of the embedding den-
sity function in Sec. III B, we resolve expression (20) into
contributions from successive shells of atoms by defining
the potential-weighted embedding function o~M~' = me+ av +b,g, (29)

are consistently overestimated compared with the correct
result in Table I. Both the absolute value of the surface
energies and the qualitative result of increasing energy
with increasing "openness" of the surface is, however,
included at this level of approximation. Moreover, the
results do meet the requirement of being expressible in
terms of simply calculable quantities.

In Table IV the efFect of including b,v in the estimate of
t—o is seen to reduce the error. At this level of approx-

imation, and omitting the one-electron contribution, the
surface energies and the vacancy formation energy de-
fined as

) n, A(sN, d, ). (27)

Av = 12.0 A(sN, dq) —nq A(s~, d, ) . (28)
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FIG. 7. The potential-weighted embedding function as de-
fined in the text as a function of the neutral-sphere radius s~
for (a) d = 0 and (b) ~2daa in the range 3.70-4.30 A in
increments of 0.05 A..

As before, we only consider up to nearest-neighbor con-
tributions. The result for the fcc lattice in Fig. 6 shows,
once again, the adequacy of this approximation for the
very localized optimized density used here.

The difference 6v for the three ideal surfaces can now
be simply written as

E. The one-electron correction

The treatment in Sec. IIID of the energy difference
between, for example, a surface atom and the atom in
the reference system, was done to first order within the
atomic-sphere approximation. However, we are left with
a term, the one-electron correction, which we shall now
discuss. The one-electron correction is the difference in
the sum over the Kohn-Sham eigenvalues projected onto
an atomic sphere in the real system and the reference
system, respectively. The potential to be used in the
Kohn-Sham equations [Eq. (3)] for the real system has to
be "frozen" to be the same as that in the reference sys-
tem within the atomic sphere. In terms of the densities
of states (DOS) projected onto the atomic spheres [p(e)
and p"~(e) in the real system and the reference system,
respectively] the one-electron correction can be written
as the difference of the first moments of the DOS to the
Fermi levelz~

6'F refF
6~ = f rkcp(~) — deep"'(e). (30)

A complete evaluation of the state densities in this
equation would involve the solution of the Kohn-Sham
equations, and not much would be gained over a full
calculation using the Harris functional with the input
density constructed as a superposition of optimized den-
sities. However, a very detailed knowledge of the DOS
is in many cases not necessary to get a good estimate
of the one-electron correction, and an approximate eval-
uation is often adequate for the following reasons: The
one-electron correction involves only the first moments
to the Fermi energy of the densities of states, which are
much smoother functions than the DOS themselves, and
we only need to evaluate the difference between the atom
in the real system and in the reference system, and this
evaluation should be performed with a frozen potential.
This means that if the environment of the atom in the
real system is similar to the one in the reference system,
the one-electron correction is only a small correction and
it does not have to be calculated with great accuracy.

For the evaluation of the one-electron correction, we
shall use a simple nearest-neighbor tight-binding model
with one s and three p states on each atomic site. The
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projection of the DOS onto an atomic sphere of a given
atom in Eq. (30) is then substituted by a projection onto
the states associated with that atom. We shall discuss
the details of how the model is constructed below but
first some general comments on the use of tight-binding
models for this purpose. The one-electron correction is
a difFerence between the band energy in the real system
and that in the reference fcc crystal, and we therefore
have to establish a way of defining the appropriate lat-
tice constant for the reference crystal in the context of
the tight-binding model. As the lattice constant of an
fcc aluminum crystal is varied, the bandwidth changes
and a one-to-one correspondence between the lattice con-
stant and the second moment pzc' of the DOS exists.
Therefore, we can equally well define the reference crys-
tal by specifying the second moment pfzcc. The infor-
mation available in the model that can be used to de-
fine the reference system of an atom is the density of
states projected onto that atom, and this information
can be expressed through the second- and higher-order
moments pz, ps, p4, . . . of the DOS. (The zeroth and first
moments are defined through the normalization and the
freezing of the potential as discussed below. The second-
and higher-order moments are calculated relative to the
first moment. ) If we express the higher-order moments

through the dimensionless quantities p„= p„/pz~"~ ~ the
second moment of the reference crystal can therefore be
regarded as a function of p2, ps, p4, . . .. Since pz is the
only quantity with units of energy squared, the second
moment p&cc of the reference fcc crystal can be written

fcc
pz = pzf("fs) 'A~ ))

where f is a dimensionless function to be determined.
Since we naturally want the reference system for an atom
in a perfect fcc crystal of a given lattice constant to be
the fcc crystal itself, the function f must be equal to one
if ps and the other higher-order moments take on their
fcc values. In fact, the function f has to be taken identi-
cal to one for all values of the higher-order moments for
the following reason: In the effective-medium construc-
tion, the reference system is determined from the neutral-
sphere radius or equivalently the embedding density of
the atom. The embedding density is determined from the
ansatz density, which is a superposition of atomic densi-
ties and therefore it contains information about pairs of
atoms only, i.e. , if the atoms surrounding a given atom
change positions in a way that keep the distances to the
given atom unchanged, the embedding density will re-
main the same. Therefore the reference system will also
remain the same. In order to keep this property in the
tight-binding model, the choice of reference system can-
not depend on the higher moments p3, p4, . . . because all
of these contain information about clusters with more
than two atoms. Therefore, the reference system has to
be defined as the fcc crystal with the same second mo-

ment of the DOS projected onto the atom as in the real
system.

The tight-binding model for aluminum is con-
structed based on the linear muffin-tin orbital (I MTO)
method in the following way. The Harniltonian H is

of the form

+RL,R'L' = +RI,~RR'~LL'

+( RL) ~RL,R'L'( R'L') (32)

where B is the atomic position and L denotes the
angular-momentum state. The screening parameters al
are chosen as in Ref. 29 to localize the hopping integrals
using monopoles (s) and dipoles (p), and we use the ex-
ponential interpolation form for the off-diagonal elements
of the structure constants as given in Table I of Ref. 29.
However, for simplicity we truncate the hopping integrals
to nearest-neighbors only. The on-site elements of the
structure constants are calculated from the ofF-diagonal
elements using the Dyson equation [Eq. (6) in Ref. 29j
where we again truncate to nearest-neighbor contribu-
tions for consistency. We neglect the overlap between
the states.

The potential parameters CRIL and APRIL for an
aluminum fcc crystal at the equilibrium lattice con-
stant are determined from a fully self-consistent LMTO
calculation. Since the reference systems are fcc crystals
with difFerent lattice constants, we also need the potential
parameters for varying lattice constant or equivalently
for varying bandwidth (second moment) of the crystal.
For simplicity, we shall assume a simple scaling of both
CRL and 6R'L as being proportional to the square root
of the second moment of the DOS. This scaling is exact
in the case of a free-electron gas where the parameters
vary inversely proportional to the square of the lattice
constant and it is therefore a reasonable approximation
for aluminum. The scaling leads to an overall variation
of the band energy with varying lattice constant for a
fce crystal proportional to the square root of the second
moment.

The construction of the Hamiltonian for a surface or
a vacancy now proceeds in the following way: The in-

teratomic hopping matrix elements are kept fixed at the
equilibrium bulk value because the interatomic distances
are unchanged. The band-center parameters t R& are
taken from the reference system separately for each atom.
This determines the separation between C„and C, on a
given atom. The band-center parameters for the difFerent

atoms are positioned relative to each other by aligning
the Fermi levels of their reference systems. The diago-
nal elements (the on-site values) of the Hamiltonian are
given by the band-center parameters plus a contribution
coming from the on-site elements of the structure con-
stants. The latter are calculated from the interatomic
hopping matrix elements by using the above-mentioned

Dyson equation for the structure constants.
The one-electron correction comes about as a differ-

ence in the band energy of, say, the surface system and
the band energy (per atom) for all the atoms in their re-

spective reference fcc crystals, and we therefore have to
specify a common energy zero for an atom in the surface
structure and the reference atom. Guided by the fact
that we have to use the same potential for the atom in

the two calculations we line up the first moments of the
density of states projected onto the atom in the surface
calculation and in the reference system.
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We find the projected densities of states and the cor-
responding energies using the recursion method. si This
gives a systematic expansion in contributions from higher
and higher moments of the densities of states, and we
shall in the following discuss two difFerent levels of ap-
proximations. In the first one, called EM', the one-
electron correction is calculated by diagonalizing the
model Hamiltonian exactly, i.e. , the recursion expansion
is carried to complete eonvergenee. In the second approx-
imation, EM', the recursion expansion is truncated af-
ter two levels (which is equivalent to expanding to the
fourth moment) and a terminator is substituted for the
remaining part of the recursion expansion. The termina-
tor we use is defined in the following way: The recursion
expansion coefficient [denoted a„(n = 0, 1, 2, . . .) and

b„(n = 1,2, 3, . . .) for the on-site and hopping elements,
respectivelyj converge in the limit of n going to infinity
to values determined by the upper (s~) and lower (s )
band edges,

a„~~(sp+s ),1

b„~ 4i(s+ —s ).

(33)

The convergence to these limiting values goes as 1/n in a
three-dimensional ordered system sz and the terminator
we use is defined to interpolate between the second level
values ai and b2, and the bulk fcc values using this 1/nz
form.

It should be pointed out that in the fourth-moment ap-
proximation, EM', the calculation of the one-electron
energy involves only paths in the lattice with up to four
legs connecting nearest-neighbor atoms, so only informa-
tion about the surroundings of an atom up to a distance
of two nearest-neighbor distances is used.

The kinetic-energy estimates in the EMTz and EMTs
approximations for the surfaces and the vacancy are
shown in Table IV. The inclusion of the one-electron cor-
rection leads to a clear improvement over the EMTi ap-
proximation in comparison with the Harris results.

The resulting surface and vacancy energies calculated
in the EM' and EMTs approximations are shown in
Table I. It is seen that the one-electron energy leads to
a decrease in the surface energy of a few tenths of an
eV, and the resulting surface energies are in good agree-
ment with the ones obtained by the Harris calculation.
The results of the complete diagonalization (EMT2) and
the fourth-moment approximation (EMT~) are also very
close to each other for the surfaces, indicating that the in-
formation from only two neighbor shells of a given atom is
sufhcient to give a reasonable estimate of the one-electron
energy correction for a surface.

Even though the one-electron correction is quite small
for the the atoms around a vacancy, it adds up to a sub-
stantial correction to the vacancy formation energy of the
order 0.6 eV. This perhaps unexpectedly large correction
comes about as a sum of 12 contributions from the 12
atoms which are neighbors to the vacancy. For each of
these atoms the correction is therefore only of the order
0.05 eV, which is not unreasonable compared to the cor-
rection of about 0.2 eV for a surface atom. The resulting

vacancy formation energies are in reasonable agreement
with the result of the Harris calculation.

IV. THE MOST APPROXIMATE LEVEL:
CONNECTION TO THE USUAL
EFFECTIVE-MEDIUM THEORY

The whole philosophy of the approach outlined above
is that of the effective-medium theory. s 4 s The main idea
is to find a reference system —an efFective medium-
in which the energy of a given atom can be calculated
readily, but is still sufficiently similar to the surroundings
of the atom in the real system that the difFerence between
the energy in the real and the reference systems can be
calculated in low-order perturbation theory.

Usually, the efFective medium has been chosen to be a
homogeneous electron gas, but other effective mediums
have been used, including a fcc crystal of the atom in
question. s ss s4 The total-energy expression in the usual
efFective-medium theory has the forms

E = ) E,,;(n;) + EEA,s + EEi,), (35)

where the first term on the right-hand side is the cohesive
function which, like in Eq.(7), is the energy of atom i in
the reference system. The second term is the so-called
atomic-sphere correction and the last is the one-electron
energy correction. The latter is exactly Q,. 6s from Eq.
(25), and EEgs can thus be associted with b,G+P,. b,e;
from Eqs. (7) and (25).

The main aspect of the present treatment is twofold.
Firstly, all terms are calculated ab initio, that is there is
no fitting to experimental or calculated results. Secondly,
AEAs in the usual efFective-medium theory has always
been calculated assuming that it could be written as the
difference between a sum of pair interactions in the real
and the reference systems. If the reference system is a fcc
lattice of the atom in question where each atom has 12
nearest neighbors, then in a nearest-neighbor description
b,E~s has been written as

b,E~s = ) ) V(r;~) —12V(rr„(n;))
i jvki

(36)

Here V(r) is the pair potential, and rr„(n;) is the nearest-
neighbor distance in the reference fcc lattice correspond-
ing to the average density n; of atom i. We thus obtain
the old effective-medium theory by assuming the func-
tional form Eq. (36) for EG+ P,. b,u;. It turns out that
this is a reasonable, but far from exact, approximation
to the real situation.

The most approximate level, which is equivalent to
the usual effective-medium theory, and thereby mathe-
matically similar to other methods like the embedded-
atom method, s the Finnis-Sinclair method, s or the glue
model, 7 thus consists in approximating b,G+ Q,. Au, as
a difFerence between pairwise interactions.

It is worth pointing out that the largest one-electron
correction Le is found for the vacancy formation en-
ergy. Since Le is intrinsically not a pair interaction,
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one therefore cannot expect to be able to reproduce both
the vacancy formation energy and the surface energies
in a semiempirical theory that does not include the one-
electron correction. Consequently, if the potential is fit-
ted to give the correct vacancy formation energy as with
the embedded-atom method, for instance, the surface-
energy will be underestimated and vice versa. This ex-
plains why, in these approaches, it has never been pos-
sible to get surface energies that are large enough. This
does not mean that surface-energy differences are nec-
essarily calculated incorrectly (cf. the constancy of the
one-electron correction in Table IV), so calculations of
reconstruction energies and other energy differences may
still be very accurate.

The focus on a nonpairwise description of the
exchange-correlation contribution to Ag and the kinetic-
energy difference At has been introduced previously in
the so-called corrected efFective-medium theory (CEM).s
The approach taken in the present work both in terms
of the density ansatz and the treatment of At is, how-
ever, difFerent compared to the CEM: these authors use
a free-atom density ansatz, whereas we stress the impor-
tance of using a screened optimized density. Indeed, if
one uses the free-atom density as an input to the Har-
ris functional, the surface energies come out completely
wrong. 1s ~s This may not be a problem in the CEM
since other terms in the energy expression are adjusted
with this density. Secondly, in the CEM, the kinetic-
energy difference is estimated without referring to the
one-electron spectrum as is done in the present work.

V. CONCLUSIONS

We have developed a theory of bonding in a solid which
consists of a series of approximations. The basis of the
approach is the efFective-medium idea in which the to-
tal energy of an atom in some general configuration is
calculated by referring it to a situation which is similar
but calculationally simpler, and then treating the difFer-

ence between the real system and the reference system
or effective medium in low-order perturbation theory.

At the highest level of accuracy in the hierarchy of ap-
proximations that has been developed, we have devised a
method for decomposing the self-consistent electron den-

sity for a solid into an atomlike electron density. This
optimized density is universal and transferable to the ex-
tent that it can be used in conjunction with the Harris
functional to give very accurate total energies without a
self-consistent calculation for a series of tried configura-
tions.

At the next level, we introduce the efFective medium
and thus have a method that does not require the solu-
tion of an eigenvalue problem to determine the kinetic
energy, but is still accurate enough to give meaningful
results. As in the previous level of approximation, ev-
erything is calculated from the input density and we can
therefore test every aspect of the theory in detail. When
the one-electron energy correction is included —even
in a simple fourth-moment expansion —results in al-
most quantitative agreement with the full Harris or self-
consistent calculations are obtained.

At the lowest level, we have a theory which is equiva-
lent to the usual effective-medium theory and thus math-
ematically similar to such semiempirical methods as the
embedded-atom method, s the Finnis-Sinclair method, s

or the glue model. 7
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APPENDIX: PARAMETRIZATION
OF OPTIMIZED DENSITY'

We have

Qn p(k) = Qrts«~(A;)+ a&k (k —ap)(k —as)
x exp(a4k —ask ),

where aq = 0.497, az —— 1.174, as = 2.237, a4
0.950, a5 ——1.032.
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