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%'e develop two- and three-dimensional models for breakdown of metal-loaded dielectrics based on
the breakdown of random arrays of perfectly conducting cylinders and spheres embedded in a uniform
dielectric and placed in a uniform external electric field. We determine the breakdown field,
breakdown-path geometry, and dielectric constant as a function of metal packing fraction. The comput-
er solution of Laplace's equation in the random geometry uses truncated multipole expansions and the
random packing configurations are generated by the Monte Carlo method. We compare the simulation
results with exact lower bounds for the dielectric constant and scaling arguments for the breakdown
field, which predict a linear relationship between the breakdown field and both the average surface-to-
surface spacing between the metal particles and the minimum dielectric gap. Finally, we show that ex-

perimental results for inert rocket propellents are in excellent agreement with the scaling prediction.

I. INTRODUCTION

This paper addresses the problem of dielectric break-
down in metal-loaded dielectrics, which are materials
consisting of an inhomogeneous mixture of conducting
and insulating components. One example is solid fuel
rocket propellant, which consists of a mixture of alumi-
num and ammonium perchlorate particles in a polymer
binder. It has been observed' that the breakdown field of
this materials is lowered significantly by the presence of
the aluminum particles and is a strong function of the
volume fraction of these particles. This unusually large
sensitivity to breakdown is a safety concern in the han-
dling and processing of solid rocket propellants and has
been implicated in several accidents involving the igni-
tion of these propellants under conditions where static
electric fields are believed to have been present. ' Our ob-
jective is to understand factors relating to breakdown
phenomena in these types of materials and to make com-
parisons with some experimental results on the dielectric
breakdown of inert solid rocket propellants.

In this paper we describe two models for dielectric
breakdown of these materials based on the solution of
Laplace s equation in a medium consisting of random ar-
rays of conducting cylinders [a two-dimensional (2D)
model] and spheres [a three dimen-sional (3D) model] em-
bedded in a uniform dielectric and placed in a uniform
external field. In Sec. II, we begin by describing the con-
struction of randomly inhomogeneous systems of the type
mentioned above and outlining the procedure for the
solution of the Laplace equation for such systems. We
then discuss the breakdown dynamics for this model by
defining local breakdowns, global breakdown and the
breakdown field. Finally in Sec. II, we define the effective
dielectric constant for these systems. In Sec. III, we
present some results of this model and make comparisons
to previous work on the breakdown of metal-loaded
dielectrics. In particular, we study the dependence of the
breakdown field Eb on the area and volume fraction of

conducting particles. We also examine the effective
dielectric constant e as a function of metal fraction for
the randomly inhomogeneous systems and compare it to
some analytically derived lower bounds. Finally, we
identify two geometrical quantities that scale linearly
with Eb over a large range of area and volume fractions.
These allow the straightforward determination of the
effects of mixture composition in real materials. Section
V takes this one step further and outlines a procedure for
calculating the average nearest-neighbor particle separa-
tion distance, one of the parameters that scales with the
breakdown field. The materials are assumed to consist of
hard spherical particles of two different sizes randomly
distributed in a background dielectric. Experimental re-
sults for breakdown of some inert solid rocket propellant
samples are compared with our scaling prediction. The
average nearest-neighbor aluminum particle separation
distance is determined for the propellant samples, and the
scaling of the experimentally measured breakdown field
with the interparticle spacing is confirmed. Section VI
contains a brief summary of our results and a few con-
cluding remarks.

Breakdown phenomena in metal-loaded dielectrics
have received some attention in recent years from the
standpoint of percolation theory. Theoretical efforts
have concentrated on lattice models in an attempt to see
if the basic physical mechanisms of breakdown in these
materials can be identified. Some efforts have focused on
the breakdown of fuse networks, ' while others have
concentrated on dielectric breakdown in networks.
We will briefly review a few of those models that are par-
ticularly relevant to our work. One such model is a bond
percolation model in which conductors are placed on the
bonds of a lattice with probability p and capacitors with
probability (l —p). The capacitors are capable of sustain-

ing a 1-V drop, after which they irreversibly fail and be-
come conductors. A voltage is applied across the net-
work, and the capacitor sustaining the largest voltage
drop greater than one is failed. The voltage is slowly in-

46 3736 1992 The American Physical Society



46 DIELECTRIC BREAKDOWN IN CONTINUOUS MODELS OF. . . 3737

creased and capacitors are aHowed to fail in the manner
described above until a conducting path forms across the
system. The breakdown field is defined as the ratio of the
minimum external voltage required to cause complete
failure of the network to the linear dimension of the lat-
tice. One significant result of this model is that the
breakdown field Eb ~0 as p ~p„where p, is the bond
percolation threshold. In addition, Eb scales with g
near p„where g is the percolation correlation length and
therefore E& scales like (p, —p)'. Finally, E& is sinaller
for larger lattices and scales with 1/ln(L), where L is the
linear system size. In addition to the breakdown field,
Bowman and Stroud calculated a parameter l(p), which
is proportional to the number of bonds that need to be
broken in order to form a conducting path across the sys-
tem. They showed that this parameter l(p) approaches
zero as p approaches p„but they did not address whether
their parameter l actually corresponds to the minimum
number of bonds that need to be broken in order to form
a top-to-bottom connection across the lattice, a length
usually referred to as the minimum gap. One result of
these works is that Eb is a linear function of the
minimum gap.

In more recent work we developed a two-dimensional
continuum model based on the dielectric breakdown of
random arrays of conducting cylinders in a capacitor
plate geometry. We showed that the breakdown field
scales linearly with the average nearest-neighbor separa-
tion distance d. The breakdown field also scales linearly
with the average normalized minimum gap x (defined as
the length of the path through the system which passes
through the minimum amount of dielectric in traversing
the system from top to bottom divided by the top-to-
bottom distance}. Our objective in this work is to further
extend this continuum model to larger 2D systems and to
3D systems of spheres randomly distributed in a perfect,
lossless dielectric. This composite is placed in a uniform
external electric field in order to model the dielectric
breakdown behavior. The issue to be addressed in this
work is whether or not this alternative uniform field mod-
el gives the same kind of scaling behavior as the
aforementioned capacitor plate model for substantially
larger system sizes in two dimensions, and whether or not
three-dimensional systems of random spheres obey sirni-
lar scaling relationships.

II. MODEL

As a starting point for a uniform field continuum mod-
el, we approximate arbitrarily shaped metallic inclusions
as perfectly conducting cylinders in two dimensions and
perfectly conducting spheres in three dimensions of ra-
dius ~ surrounded by oxide layers 0.01~ in thickness.
The oxide layer is supposed in order to compare our re-
sults with breakdown measurements on inert rocket pro-
pellant. We will assume that the dielectric properties of
the oxide are the same as those of the background dielec-
tric so that the effect of the oxide layers in this model is

primarily to prevent any pair of particles from initially
making electrical contact. We will still assume that the
background dielectric is lossless (zero conductivity) with
dielectric constant unity for any applied field up to its

breakdown strength. We choose a circular boundary for
each sample in two dimensions and a spherical boundary
in three dimensions. The particles are placed within the
boundary randomly via the Monte Carlo method, subject
to the constraints that no two particles, including their
oxide layers, overlap, and no surface comes within an ox-
ide layer of the sample boundary.

We apply a uniform external electric field to the sam-

ples, in contrast to the capacitor plates used in the ran-
dom cylinder model; the value of the applied 6eld is set
to unity. The reason for using a uniform applied field

rather than capacitor plates is that the capacitor plates
add a large number of unknowns to the system of equa-
tions that must eventually be solved just to maintain a
constant potential line in two dimensions. This quickly
limits the size of the systems that can be attempted with
this kind of model. The problem is more acute in three
dimensions because a constant potential surface must be
maintained, and this results in an even larger system of
equations. This is why 3D systems of spheres were not
attempted in the previous work. The capacitor plate
method of applying a voltage did have the advantage of
providing two surfaces that define in a natural way the
point at which the sample has broken down completely,
i.e., a top-to-bottom connections. The uniform field ap-
proach will make it more difBcult to define the condition
of global breakdown and the breakdown Geld for a sam-

ple, but it does have one immediate advantage when cou-
pled with the cylindrical and spherical sample
geometries. It will be straightforward to define the
effective dielectric constant for each sample because
analytical solutions exist that relate the polarization of
each sample to the dielectric constant. Previously, a
cumbersome numerical approach was required. The
other advantages of the uniform field approach wi11 soon
become clear.

We now turn to the matter of finding the electrostatic
potential throughout a given sample that will be used to
identify regions of large electric field. It is convenient to
write the electrostatic potential as a sum of multiple ex-
pansions centered at each particle. '

In two dimensions, the expansion is
'n

a in' ~ ajV(r)= g C(j)ln + g A(j, n)e
j=1 j n (%0) J

+ V,„,(r), (1)

where V(r) is the electrostatic potential at an arbitrary
field point r outside all of the cylinders, V,„,(r) is the po-
tential at point r due to the externally applied electric
field, X, is the number of cylinders, rj is the distance
from the center of jth cylinder to the field point r, and a-
is the radius of the jth cylinder. The coefficient C(j) is
the charge on the jth cylinder and A (j,n) is the nth mul-
tipole coeSeient for the jth cylinder. In three dimen-
sions, the expansion is in terms of spherical harmonics.
It can be written as

I'i (8., $,. )+ V,„,(r),
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EOZ—; /4n—/3Eor; Yio(8;,P;), (3}

where Z; is the z component of the position of the ith
sphere. If these series are truncated at I =I,„,it is possi-
ble to obtain an approximate solution for the electrostatic
potential at any point r in the system. The problem is
generating a set of equations for the multipole coefBcients
that can be solved eSciently. The method we use exploits
the properties of orthogonality of cylindrical and spheri-
cal harmonics in the following way. We use the fact that
the voltage on the surface of a conducting sphere is con-
stant over the surface and takes the value V, on sphere i:

lim V(r)= V; .
(r —R,. (-a

Multiplying both sides of Eq. (2) by Yz'~(8;, P; } and in-

tegrating over the surface of sphere i we get

&4n( V;+EOZ; )5 05q o+ &4m/3E05~, 5 0

= A(i,p, q)

+ g A(j, l, m) f dA;Y~'~(8;, P;)
j (Wi), l, m

1+1

XY( (8,$ )
rj

where dQ; denotes an integral over the unit sphere cen-
tered at the location of sphere i. A similar expression in

two dimensions follows from Eq. (1).
Orthogonality can no longer be used in the sum

straightforwardly because the harmonics are centered at
different points. However, these integrals can be evalu-
ated analytically through the use of so-called off-centered
expansions, which express a harmonic centered at the jth
particle in terms of harmonics centered at the ith particle
times other harmonics expressed in terms of the distances
and angles between the particle centers. Such expansions
have been developed extensively over the past 100 years
by mathematical physicists and others" ' as the need
for them has arisen with respect to problems of physical
interest. Consider two cylinders or spheres separated by
vector R. Let the vector from one sphere to a field point
be r and a vector from the center of the other sphere to
the field point be r'. The vectors are related by r=r'+R.

where again V(r) is the electrostatic potential at an arbi-
trary field point r outside all of the spheres, V,„,(r) is the
potential at point r due to the externally applied electric
field, X, is the number of spheres, rj is the distance from
the center of jth sphere to the field point, and a is the ra-
dius of the jth sphere. The angles 01. and p~ are the polar
and azimuthal angles from the center of the jth sphere to
the field point and the Fl 's are the spherical harmonics.
The A (j, i, m }'s are the multipole coefficients and
the indices run over 1=0,1, . . . , ~ and
m = —I, —l+ 1, . . . , 1. The external potential is due to a
uniform electric field oriented along the z axis. In polar
coordinates about sphere i this becomes

V,„,(r) = EOZ;——Ear, cos(8; )

Let r = ~r~, r'= ~r'~, and R= ~R~, where R & r', and let 0
be the angle r makes with the x axis; 0' and 6 are the
equivalent angles for r' and R. The relationship between
the rnultipole expansions about different cylinders is
given by

tm

ln(r) =ln(R )
—g — cos[m (8—8') ],( —1) r'

m

and
'm

e'" e'" "
( —1) (n+m —1)! r'

r" R" o m!(n —1)! R

These equations are derived by taking the leading term in
the limit k ~0 in the identity

e'" N„(kr)=e'" g ( —1) J (kr')N„+ (kR)

im~e —O'iXe

which is easily derived from equation 8.53.2 in Ref. 18.
The functions J (x) are the Bessel functions of the first

kind, and N„(x) are the Bessel functions of the second
kind. For the three-dimensional formula, the paper by
Danos and Maximon" is a good reference, their Eq. (34)
reads

re(kr)Y~ (8,$)= g C(l, m, L,M, A, ,p)
L, M, A. ,p

X YL ~(B,4)Yi „(8',$')

X riL (kR )j i (kr'),

where r, R, r', 0, e, and 8' are as before and P, 4, and P'

denote the azimuthal angles, jI is a spherical Bessel func-

tion of the first kind, g& is a spherical Bessel function of
the second kind, YI is a spherical harmonic,
and the sum runs over L,X=O, 1, . . . , 00,M = —I.,—I, + 1, . . . , I. and p, = —k, —A. + 1, . . . , k. By taking
the leading term in the limit k~0 we get the following
relation:

, Y, (8,$)=, , QD(l, m, k, ,p) Y&+i „(e,@)1 1

I

X Yi „(O',P')

The coefficient D(l, m, i,,p) involves products of 3j sym-
bols' and has the value

D(l, m, k.,p)=( —1) + +"&4m.
1/2

2I +1
(2A, +1}(21+2iL+1}

1/2

X
(I+A, —m+p)!(i+A, +m —p)!
(l —m)!(1+m)!(A,—p)!(A, +p)!
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These equations are generalizations of the addition
theorem' of spherical harmonics. The correctness of
Eqs. (6), (7), (10), and (11) was tested numerically using
Ref. 20. All of the multipole coupling integrals in Eq. (5)
can then be done analytically and a set of equations can
be generated that can be solved for the multipole
coefficien. The result is

&4'( V +EoZ )5q O'5q o+ &4n /3Eo5p )5q o

=A(i p, q)+ g A(j, l, m)D(p, q, l, m)
j (Ai), l, m

' 1+p+1
aX Yi+p~m —q(Hij i$ij )

LJ

where 8; and P;J denote the polar and azimuthal angles
from sphere 5 to sphere j, and R;. is the distance between
the centers of the two spheres. We have specialized to
the case where all the spheres have the same radius cr.
This set of equations with i =1,2, . . . , N, and p and q
running over the (I,„+1) multipole terms allows the
determination of the multipole coeScients. When the
spheres are electrically isolated from one another prior to
the first breakdown, constraints are added so that the
monopole coeScient on each sphere vanishes. After
breakdowns have occurred, the constraints on the mono-
pole coefficients are that the sum of the charges on the
spheres in a connected cluster must vanish, and the volt-
ages on all spheres in a cluster is the same. The Appen-
dix gives an example on the use of the method for the
case of two spheres in a uniform applied field that is
parallel to the line between the centers.

This set of equations has several very nice properties
that make the solution quite well behaved numerically.
First, the multipole coupling terms fall off in magnitude
with powers of the interparticle separation distance, and,
in particular, the coupling of higher order multipoles to
each other fall off with large powers of this distance.
This means that a large number of terms in the matrix
are extremely small and can be ignored with negligible
impact on the solution. In many cases, the matrix can be
made more than 90% sparse, with the solution for the
particle voltages in error by less than a few percent. This
enables use of sparse-matrix iterative techniques for solv-
ing the equations. Second, the use of this coupled mul-
tipole expansion technique results in a matrix that is
highly diagonal dominated, which means that iterative
methods such as the conjugate-gradient algorithm con-
verge very rapidly. In the case of the initial configuratio
before any local breakdowns occur, the solution usually
converges in less than 100 iterations. This, coupled with
sparse-matrix-multiplication techniques, results in a very
fast numerical solution for the coefficients. Also, since
the matrix is sparse, much larger systems of particles can
be analyzed with this method than with the boundary ele-
ment method. The key to the success of this technique,
particularly for large systems, is that the neglect of terms
in the coupling matrix ignores only the least physically
important couplings.

Next we describe how we incorporate breakdown dy-
namics into this model. The first step is still to identify

regions of the sample that are vulnerable to breakdown
due to the presence of large electric fields. As in Ref. 9,
we continue to approximate the electric field between a
pair of particles by the voltage difference between the two
conductors divided by their minimum surface-to-surface
separation distance d. The voltages can be found
straightforwardly from the multipole solution. We still
assume that breakdown occurs only between the pair of
conductors that has the largest electric field between
them as defined above, and define a local breakdown as
the formation of an electrical connection between the two
conductors. The connection is treated as a thin metallic
wire between the conductors that stores negligible
charge, so that the net result computationally is to add
constraints into the system of equations that provide for
the sharing of charge between particles that have been
connected and equating their voltages. With these con-
straints in place, the system of equations is resolved to
determine a new set of multiple coefficients and voltages.
Using the same criterion for breakdown, we continue this
sequence of local breakdowns, storing the field enhance-
ment that caused the local breakdown at each
configuration. Here is where some differences begin to
appear between the capacitor-plate model and this
uniform-field model. We will assume that the sample is
broken down completely when a path that is at least one
sample radius in length is formed. This rather arbitrary
cutoff is made because there is no natural point at which
to stop the breakdown process as there was in the
capacitor-plate model. A further modification must be
made to minimize the effects of fringing fields. Only par-
ticles whose distance from the center of the sample is less
than 0.8 of the sample radius will be allowed to partici-
pate in a local breakdown. This eliminates breakdowns
to particles that are at the sample edges and are under
the infiuence of a field that is distorted by edge effects. In
this case, edge effects are due to the lack of neighboring
particles that would be present in an infinite system. Al-
lowing breakdowns to occur only well within the sample
boundaries makes the model one that approximates the
breakdown process inside an infinitely large sample, far
from any sources or edge effects. The uniform-field
description adds another complication in the definition of
the breakdown field. The problem is that the average
field inside the system is different from the applied field
across the sample due to the polarization of the sample.
Treating the system for a moment as a uniform dielectric
with an effective dielectric constant, it is easy to show
that the field inside the dielectric is lower than the ap-
plied field. The physical reason for this is that the net di-
pole moment expels a portion of the applied field. Conse-
quently, any point inside the systems sees an effective ap-
plied field that is lower than the actual applied field. This
same effect is present in a disordered sample. Thus, all
field enhancements calculated in the random samples
must be scaled by this effective applied field to create a
situation where the applied field across the sample is ap-
proximately unity. Furthermore, this effective field
changes as breakdowns occur and the sample and the
effective dielectric constant increases. This does not
create a problem, however; it just means that the field
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enhancements at each new configuration must be scaled
by the appropriate effective field. Now the minimum field
enhancement in this sequence of scaled field enhance-
ments determines the breakdown field of the sample.
Hence we define the breakdown field Eb as the inverse of
this minimum field enhancement. As such, it is a dimen-
sionless field that is normalized with respect to the break-
down field of the background dielectric.

Finally, we want to define an effective dielectric con-
stant for our samples and look for the behavior of the
dielectric constant e as a function of area fraction P. The
effective dielectric constant for a medium can be defined
as the dielectric constant that an isotropic, homogeneous
sample of the same size and shape would need to have in
order for it to have the same polarization as the original
inhomogeneous sample. For these cylindrical and spheri-
cal samples, there is an analytical solution that relates the
polarization to the effective dielectric constant this is
one reason why these boundaries were chosen. The po-
larization is simply the net dipole moment of the random
samples, which comes directly out of the multipole solu-
tion; it is just the sum of the individual dipole moments
on each particle. After breakdowns have occurred, the
total dipole moment must include the dipole moments
due to charge separation; this is similarly easy to account
for, since the monopole terms are also known.

III. MODEL RESULTS

%e now turn to a discussion of some results of this
model, beginning with a few comments on some of the
computational aspects. Samples containing 85 cylindri-
cal inclusions were generated as described in the previous
section with area fractions ranging from 0.20 to 0.70 in
increments of 0.10. The area fraction 0.70 is just above
the freezing transition point in the Monte Carlo hard-
disk model, ' which implies that for area fractions
greater than or equal to 0.70, the equilibrium
configurations for the cylinders are highly ordered.
Hence our configurations at /=0. 70 consist of fiuctua-
tions about this equilibrium solid phase configuration
which is approximately a triangular lattice. In the 3D
model, samples containing 55 spheres were generated
with volume fractions ranging from 0.20 to 0.40 in incre-
ments of 0.05. A transition to a regular close-packed lat-
tice occurs in the Monte Carlo hard-sphere model at
volume fractions just below 0.50. By comparison with
exact results for two cylinders in a uniform external field,
we found the electric field predicted by using an eighth-
order expansion (16 unknowns per cylinder) to be within
1% of the exact result for a surface-to-surface separation
distance d of 0.10m when neglecting all terms in the ma-
trix with magnitudes less than 10 . For a surface sepa-
ration distance d =0.02u, the closest allowed spacing, the
result was within 10% of the exact result. This
represents nearly an order-of-magnitude increase in accu-
racy over the boundary element method. In three dimen-
sions, the electric field was within 2% of the exact result
using a fourth-order expansion (24 unknowns per sphere)
and the same matrix cutoff for a separation distance of
d=0. 10a. For the closest spacing d=0.02u, the result

was also within 12%, indicating that the solution is high-
ly accurate for the sphere problem as well. See the Ap-
pendix for more details. Using the eighth-order expan-
sion in two dimensions and fourth-order (l,„=4)expan-
sions in three dimensions and neglecting terms in the ma-
trix less than 10, the breakdown simulation for 85
cylinders or 55 spheres generates around 300000 nonzero
terms in the matrix at high densities. Solving a system of
this size is quite easy from a computational standpoint; a
modest workstation can run these simulations in a few h.
The results we will describe are insensitive to the number
of particles used.

Figure 1 shows equipotential lines for a typical 2D
sample at an area fraction /=0. 40 as a demonstration of
the multipole expansion solution. The dipole moment of
the sample enables us to calculate of the effective dielec-
tric constant and the effective applied field. Figure 2
shows the same sample from Fig. 1 after complete failure,
as defined in the previous section. The lines between the
particles indicate that a breakdown has occurred between
those particles. Note the existence of connections be-
tween particles that are not part of the eventual break-
down path. Figure 3 indicates the value of the scaled
field enhancement that caused the breakdown of each
pair in the sequence. Note that, just as in the capacitor-
plate model, the field enhancement does not increase
monotonically, and consequently the value of E,„re-
sponsible for determining the overall breakdown field (the
minimum Em,„) is not the initial E,„ in the virgin sam-
ple. The initial E,„does not even scale with the
minimum E,„ in a simple way, since the initial break-
down is often not on the final breakdown path. Figures
4(a) and 4(b) show plots of the breakdown field Eb as a
function of area fraction P for the 2D model and volume
fraction P for the 3D model. Ten samples were generated
at each area and volume fraction, and the breakdown
simulations were run until the global breakdown criterion
was met. The results were averaged over these ten runs
and the error bars on the plots in the figure represent one

FIG. 1. Equipotentials for a typical 2D sample with an area
fraction P =0.40.
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standard deviation about those averages. The breakdown
field decreases monotonically with increasing area frac-
tion, as expected, and Eb approaches a small but finite
value as the random close-packing limit P, is ap-
proached. Note that the breakdown field cannot go to
zero because the oxide layers prevent contact between the
cylinders. These results are totally consistent with the re-
sults obtained in the capacitor-plate model.

Figures 5(a) and 5(b) display plots of the effective
dielectric constant e as a function of P for both the 2D
and 3D models. The dielectric constant increases mono-
tonically with increasing area and volume fraction; this is
easily explained physically by noting that the polarization
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of each sample clearly increases with increasing metal
fraction. In addition, e diverges as P~P, . This effect
was seen in the capacitor-plate model and has been mea-
sured experimentally in systems of silver particles ran-
domly embedded in a KCl matrix ' and in a system of
metal spheres in wax. Figure 5 also shows two analyti-
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cally derived lower bounds that can be placed on e for
any isotropic two-phase materials; no upper bound ex-
ists if one phase is perfectly conducting. The Hashin
bound is the best possible lower bound for a statistically
isotropic two-phase material given only volume or area
fraction information. The fourth-order Milton bound
includes information on the statistical distribution of
phases and thus is a tighter bound, but it contains some
approximations that start to break down as P~P, . Our
data as shown in Figure 5 are consistent with the bounds
described above. Another numerical method that is use-
ful for determining the dielectric constant of a random
array of conducting particles is described by Torquato
and Kim and by Tobochnik, Laing, and Wilson.

IV. SCALING OF THE BREAKDOWN FIELD

Earlier we indicated the desire to confirm the scaling
results found in the capacitor plate model for larger 2D
systems and for 3D systems using this uniform-field
description. The first scaling relation we will check is the
minimum gap. The actual minimum gap for these sam-
ples is undefinable for the uniform-field model, since
there is no fixed starting point or ending point for the
breakdown path. However, it is possible to define a nor-
malized dielectric gap as the length of the breakdown
path through the dielectric divided by the vertical dis-
tance traversed by the entire path. Hence, although no
two paths are the same length, they can be normalized in
a consistent way. The question of whether or not these
paths correspond to minimum gap paths is one that sim-

ply cannot be answered with this model. However, the
scaling of the breakdown field with the average normal-
ized dielectric gap as defined above can still be investigat-
ed. The gap decreases monotonically as the area fraction
increases, and the results are similar to those obtained us-

ing the capacitor-plate model. The 2D and 3D results are
qualitatively similar. Figure 6(a) shows a plot of the
breakdown field Eb as a function of the average normal-
ized dielectric gap x for the 2D uniform-field model.
Note that the breakdown field scales linearly with x over
the entire range of data. This is entirely expected based
on the results of the capacitor-plate model. In three di-
mensions we expect the same result to hold; the argument
given in Ref. 9 for the scaling of Eb with the minimum

gap is equally valid in three dimensions. Figure 6(b)
shows a plot of the breakdown field E„as a function of
the average normalized dielectric gap for the 3D model.
The breakdown field again scales linear1y with X and is
consistent with the 2D results.

Next we will consider the scaling of the breakdown
field with the average surface-to-surface separation dis-
tance of nearest-neighbor cylinders d, which we normal-
ize with respect to the cylinder radius a. As with x, d de-
creases monotonically as P increases. Furthermore
d ~0.02~ as P~P, due to the presence of the oxide lay-
er. For a closely spaced regular lattice of particles, it is
easy to show that the field between the particles is given
by E=E, &;,z(D+d)/d for the applied field along the
closest-packed direction, where D =2~ is the sphere di-
ameter. Therefore, one would expect that the breakdown
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normalized dielectric gap for the 20 model. (b) Same data for
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ration distance ri l(D+ri) for both the 2D and 3D mod-
els. Notice that E& does indeed scale linearly with this
reduced separation distance. In the next section, it will

be shown that the average nearest-neighbor separation
distance can be determined for real materials using ideas
from the theory of simple liquids. This will enable us to
make a connection between this theory and actual experi-
mental data on the breakdown field.

V. CQMPARISQN TQ EXPERIMENTAL RESULTS

In the previous section, it was demonstrated that the
breakdown field can be calculated in a random array of
up to 100 or more particles. As was shown, the break-
down field scales in a simple fashion with the average
surface-to-surface distance between nearest-neighbor
metal particles in the composite, i.e.,
Eb=Eb'" "dl(D+ri). This connection between break-
down field and metal nearest-neighbor spacings can be
exploited to make predictions of the breakdown field in
complicated composites. In order to test the theory, we
made comparisons with a set of dielectric breakdown
measurements made by Covino and Hudson on a series
of inert propellant samples. The samples consisted of 3-
)Mm diam aluminum particles and large (200—550-(Mm)
sodium chloride particles in a hydroxyl-terminated po-
lybutadiene binder. The mix parameters are listed in
Table I.

We chose these data since the samples were well
characterized by several techniques and a large number
of breakdown tests were applied to each sample type.
This was possible since the samples were inert (the
oxygen-supplying ammonium perchlorate had been re-
placed by sodium chloride). Some theoretical method
was needed to determine the average nearest-neighbor
distances in this composite. Rather than using Monte
Carlo methods, which can be difficult at large volume
fractions and in cases where the particle sizes vary over
several orders of magnitude, we chose to use correlation
function techniques developed to deal with the statistical
mechanics of simple liquids. The microgeometry is deter-
mined by appealing to the Boltzinann hypothesis in sta-
tistical mechanics; i.e., in a well-stirred sample, all
configurations with the same energy have the same a

priori probability. We chose to model the particles in the
composite as hard spherical particles that cannot overlap,
otherwise, any configuration is possible and all
configurations have the same energy.

The microgeometry of the sample is well characterized
by the pair-correlation function g(r), which describes
the relative probability of finding the centers of two parti-
cles a specified distance from each other in the composite.
From this function one can determine the nearest-
neighbor distribution function and the average surface-
to-surface distance between metallic particles in the com-
posite. This can then be used with Eq. (13) to predict the
breakdown field of the sample. If one knows the pair-
correlation function of a material, then the nearest-
neighbor-distance distribution function is given by

p(r)=4ee g(r)r exp 4ee J —g(r')r' dr', ()4)
0

where p (r)dr is the probability that the nearest neighbor
of a given particle is between r and r+dr, and n is the
number density of particles. This is easily proven, since
4mng(r)r dr is the average number of particles in a shell
of thickness dr at a distance r from a chosen particle.
The probability that there are no particles closer than r to
a given particle is given by

r/hr
P(r)= g [1 4mn—g(kyar)(kyar) hr] .

k=1

The shell width b, r is chosen so that
4mn g(kLLr)(kyar) br &(I for all k. Taking the loga-
rithm of both sides, converting the sum into an integral
by taking the limit of hr ~0, and noting that
p(r)=&&/dr we get Eq. (14). The average surface-to-
surface distance between spheres is

1=f p(r)r dr D, —
0

(15)

where D is the diameter of a sphere.
The pair-correlation functions of a composite are

determined from the number densities of the components
of the mixture as long as the sample is well stirred and
hence obeys the Boltzmann conjecture. There exist a
number of approximation schemes in statistical mechan-
ics for determining the pair-correlation function. One
method that works well for hard-sphere potentials is the

TABLE I. The mix parameters in the samples used by Covino and Hudson (Ref. 25). The break-
down field was obtained at 17'F and at 14% relative humidity. The final column is the theoretically
determined average nearest-neighbor surface-to-surface distance between metal particles divided by the
metal particle diameter. These values are determined from Eqs. (14) and (15) using the pair correlation
function for hard spheres as determined from the Percus- Yevick approximation.

Sample
Volume (%)

3 pmAl

12.7
22.4
33.4
3.0

54.7

NaC1

47.5
35.9
25.0
55.7
0.0

Experimental
breakdown

field

(MV/m)

1.65
0.75
0.45
4.7
0.25

8/D

0.087
0.045
0.025
0.327
0.013
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FIG. 8. The pair-correlation function g (r) for metal particles
in sample number 2 in Table I.
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Percus-Yevick (PY) approximation . ' This method
is well tested and remains quite accurate even at high
densities near the phase transition to a solid structure.
In addition, it has the added advantage that the pair-
correlation functions can be determined analytically for
hard spheres even for the case where two different sphere
sizes are present. Figure 8 displays the pair-correlation
function for the metallic particles for composite number
2 in Table I using the specified particle sizes and
amounts. The large salt particles were assumed to all
have a diameter of 300 pm and the aluminum particles
were all assumed to have diameters of 3 JMm. Distance in
the figure is measured in units of the aluminum particle
diameter. The pair-correlation function does eventually
tend to unity at large distances on a scale set by the
large-particle size. One might note that the PY approxi-
mation leads to the pair-correlation function between the
large particles being negative for these densities and par-
ticle size ratios. We have not used the large-particle
correlation function for the calculation of the distance be-
tween metal particle nearest neighbors. As a check of the
validity of the scheme, we also calculated the nearest-
neighbor distances using the one sphere size solution of
the Percus-Yevick equation and assumed that the large
salt particles only contributed to an excluded-volume
effect for the small aluminum particles. This is a good
approximation in this case due to the large ratio of sizes
of the particles. The results are essentially identical. The
nearest-neighbor-distance distribution function between
metal particles is determined from g(r) using Eqs. (14)
and (15) and is shown in Fig. 9. The values determined
from these calculations are listed in Table I.

Now we can test Eq. (13) to see if it gives an accurate

FIG. 10. The experimental breakdown field of the samples in
Table I vs the theoretically determined value for d/(D+d).
The slope of the line is 19 MV/m, in good agreement with the
experimental value of 23 MV/m (Ref. 26).

representation of the breakdown Geld in these propel-
lants. Figure 10 displays the experimentally determined
breakdown field plotted as a function of the theoretical-
ly determined scaled nearest-neighbor distance
d /(D+d ). Note that all five samples fall onto the same
straight line, as predicted. Furthermore, from Eq. (13)
the slope of that line should be the breakdown field of the
binder. The slope of the line is 19 MV/m, in good agree-
ment with the experimental value of 23 MV/m. Note
from Table I that the breakdown field of sample number
5 is about one hundredth of the value of the pure binder,
and so the addition of metal particles to the composite
can have a huge effect on the breakdown field. This
method also gives good agreement with the experimental
dielectric breakdown results obtained for metallic spheres
embedded in wax.

These results confirm that the breakdown field in
metal-loaded dielectrics scales in a simple fashion with
the average distance between metallic particles even in
complex composites, and that the cause of the low break-
down fields in these materials is the field enhancement
due to the metal particles in the composite. Hence, we
can use this simple scaling to predict the breakdown
fields in complex composites from knowledge of the mi-
crostructure of the composite. Since this problem is
much easier than the determination of the electric-field
patterns in complex composites, this will allow quick and
easy predictions of breakdown strengths of materials sim-

ply based upon their mixture parameters. Generaliza-
tions of the theory to cases with more than two particle
sizes are possible and will be useful for mixtures contain-
ing multimodal particle-size distributions.

VI. CONCLUSION

] 4'!

FIG. 9. The nearest-neighbor-distance distribution function
for sample number 2 in Table I.

To summarize, we have presented a model for dielec-
tric breakdown in random metal-loaded dielectrics that
incorporates continuous geometry effects. It is a more
realistic model than lattice models, which have been fo-
cused on up to this point, and is capable of handling
significantly larger system sizes than the previously intro-
duced capacitor-plate model. In many instances, our re-
sults have confirmed results found in previous models,
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and in a few cases some insights have been gained.
Specifically, our model predicts that the breakdown field

Eb goes to zero as the metal fraction P approaches the
close-packing limit for this model and the effective dielec-
tric constant e approaches a large but finite value; the
dielectric constant cannot diverge due to the finite
minimum separation between particles imposed by the
presence of the oxide layers. These results are qualita-
tively in agreement with the aforementioned lattice re-
sults and results from the capacitor-plate model. In addi-
tion, we have identified two geometrical parameters, the
normalized dielectric gap x and the average nearest-
neighbor separation distance d, which scale linearly with
the breakdown field over the entire range of metal frac-
tions studied. These results should allow for the estima-
tion of the effect of mixture composition in a straightfor-
ward way. The theory was applied to a set of experimen-
tal data that confirmed the simple scaling relationship be-
tween the breakdown field and the metallic particle
nearest-neighbor distance in the composite. Further de-
tails of this work and the work in Ref. 9 can be found in
Ref. 30.
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APPENDIX

We will give an example of how to use Eq. (12). We
will determine the voltage of a pair of conducting spheres
of radius ~ in a uniform applied electric field Eo, which is
parallel to the line between the centers of the spheres.
We take this direction to be the z axis and the centers of
the spheres to be located at +zo. We can determine the
accuracy of the solution by comparing the calculated
voltages with the exact solution '

g [(2n+1)/(e '—1)]
n=0

Vo = +Eoa sinh(rio)

g [1/(e '—1)]
(Al)

where

(d /2ad )
o

——

(d +2ad)'

and d=zo —a is one half of the surfac-e-to-surface dis-
tance between the spheres.

The method of solving Eq. (12) is to solve the linear set
of equations

(A2)

where the unknown vector x is the multipole coefficients
A (i, 1, m ) and the voltages V, . Due to the symmetry,
only the m =0 terms contribute in this case, so there are

N, (l,„+1)+N, unknowns (N, =2 here):

A(i, l, 0) for k=(i —l)(l,„+I)+i+I
V, for k =N, (1,„+I )+i,

where i =1,2 and 1=0,1, . . . , I,„. The right-hand side
of equation (A2) contains the applied field contributions
of equation (12):

Eoa &4m/3 for k =2 and for l,„+3
Eozov'4~ for k=1

Eozo&4m fo—r k =l,„+2
0 otherwise .

Finally, the matrix elements of the matrix B are given
by the following: (a) for i =j, Bk = 1 if p = l
and Bk~=0 if pal; (b) for i', B«
=D(p, 0, 1,0)Y&+ o(e;,P; )(a/R, , )'+~+', where k=(i
—1)(l,„+I)+I+ I and q =(j—1)(l,„+I ) +p+ l.

The constraint column, which couples the ~shere
voltages to the applied field, is Bk = —&4m. for
k =1, q =N, (l,„+1)+I and for k =l,„+2,
q=N, (l,„+1)+2. Finally, the constraint row, which
insures that the net charge on each sphere vanishes, is
8&q 1 for k =Ns ( Imax + 1 ) + 1, q = 1 and for
k=N, (l,„+1)+2,q=l, „+2. All other elements in
the matrix vanish.

The solution of the linear equations here and in the cal-
culation in the body of the paper is done by standard nu-
merical methods. As evidence of the accuracy of the
solution, Table II compares the multipole solution with
the exact solution. ' The electric field and the sphere ra-
dius are set to unity.
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