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Peierls-Frohlich problem in the continuum approximation
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The exact solution of the Peierls-Frohlich problem on a self-consistent state of conduction electrons
and a chain deformation near zero temperature is obtained in the continuum approximation. The
charge-density-wave (CDW) state in various relations between parameters of the problem (electron den-

sity, electron-phonon coupling, CDW velocity} is investigated. The CDW total energy and momentum

are calculated and an expression for the effective mass is obtained. Current oscillations are interpreted
on the basis of this exact solution.

I. INTRODUCTION

A self-consistent state of the conduction electrons and
lattice deformation in a one-dimensional metal was con-
sidered by Frohlich in 1954.' This state was then called
the charge density wave (CDW) and today it is widely
studied both theoretically and experimentally. The
Frohlich assumption that only one phonon mode with the
wave number q =2k+ (kF is the Fermi wave number) is
occupied macroscopically and interacts strongly with
electrons is often used for the explanation of certain
properties of the CDW. But it has been proved during
the last decade that continuum Peierls-Frohlich models
have exact solutions. The model with linearized disper-
sion law of electrons near Fermi level that describes
systems with nearly half-filled bands such as doped trans-
polyacetylene, and Frohlich model with quadratic disper-
sion law"' which is applicable in the case of relatively
small density of the carriers when the effective-mass ap-
proximation may be used, have been investigated. More-
over, exactly soluble discrete Peierls models have been
found.

In previous papers the static CDW was the main object
of investigation. But the CDW can propagate as the
whole entity along the chain with some velocity V, that
corresponds to a certain value of its total momentum and
the existence of current, jcDw =eN, V (e being the elec-
tron charge and N, being a number of electrons), in the
chain. The possibility of such a type of CDW conductivi-
ty was indicated by Frohlich' and there are up-to-date ex-
perimental investigations of the "sliding-mode" conduc-
tivity in CDW materials, as NbSe3, TaS3, etc. (see, for ex-
ample, Griiner's review ). The sliding-mode conductivity
is often characterized by some peculiarities; therefore the
study of the exactly soluble Peierls-Frohlich problem
with account of CDW motion along the chain continues
to command interest.

The present paper deals with the continuum Frohlich
model with a quadratic dispersion law. The exact spec-
trum of single-electron states in CDW and corresponding
wave functions are found. CDW total energy and
momentum are calculated. The Frohlich approximation
is shown to be valid only for small velocities of CDW

motion and for relatively high electron density. For
small electron density or large velocity of the motion,
CDW represents a set of periodically distributed bisoli-
tons considered by Davydov and Brizhik. ' The analysis
of the exact solution evidently shows the presence of
v„=vn harmonics with decreased amplitudes, in addi-
tional to the fundamental frequency v, in current oscilla-
tions spectrum, often called narrow-band noise (NBN).

II. SELF-CONSISTENT EQUATIONS

+ yrV, (qjbtb
q

(2.1)

Here m is the effective electron mass in the conduction
band, be(b ) are the phonon creation (annihilation) Bose
operators with the wave number q, V, =a(w/M)' is the
sound velocity in the chain, M is atom mass, m is the elas-
ticity coefficient, and
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g (q) =2iga
S

q (2.2)

where g is the parameter of deformation short-range in-
teraction of the electron with atom displacements.

To find out the wave function %' of the system we make
use of the variational method. It is then taken into ac-
count that the total momentum operator

e

P= —g i A + g fiqb tb
j=1 j q

(2.3)

commutes with the Hamiltonian (2.1). If we take interest
in the state of the system with a certain value of the total

Let us consider a chain with an atom in the unit cell
and assume that the principal region of the chain of
length L =Na (a is the lattice constant) has N, conduc-
tion electrons. In the continuum approximation without
account of the Coulomb interaction between electrons, a
system of N, electrons interacting with the lattice vibra-
tions is described by the Frohlich Hamiltonian'

N
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q
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momentum, the wave function should be found from the
condition of functional extremum'

V= & +l(~—v& —EN, ) lq ), (2.4)

where c and V are Lagrange multipliers. "
The wave function of the system 4, dependent on the

electron and vibrational variables, is written as

g*(q)f (q)
v'N R(V, lql

—Vq)
'

dH%, —= + U(x}
2m

where

(2.12)

(2.13)

N
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where

(2.5)
f(q)= g f4'e 'ddt= f e '"p, (x)dx,

j=l —L/2

~=&(~»b» ~»b»} (2.6)
p, (x)=

gnarl+~(x)I (2.14)

(2.15)

—(e+ —,'mV ) '@dr, (2.7)

where

8'
H(x )= — +U(x )

2m ()x'.
J

(2.8)

is one-electron Schrodinger operator with the potential

U(x)= gg(q)(P +P' )e'»"1

N
(2.9)

Here IO) is the phonon vacuum state, P are variational
parameters, and rJ —= Ixi, o I is the electron coordinate
involving both the space x and spin 0. variables.

Using Eq. (2.5) we find the functional (2.4)

N

7=f4' g H (xi )+ g R( V, Iq I

—
Vq )P»P»

j=1 q

Here nz is the number indicating how many times (gen-
erally 1 or 2) the coordinate function 'Pz is included in
the determinant (2.10).

If we substitute (2.12) into (2.9) with allowance for
(2.14) we get the following expression for the self-
consistent potential:

U(x) = —
z p, (x)= — g nq I+~( x)l

4g2a 4g a
w(1 —s ) w(1 —s ) A

(2.16}

where s= V/V, is the ratio between the velocity V and
the sound velocity V, . Thus having excluded the vibra-
tional variables we get the system of nonlinear differential
equations

4g'a+ g ng. l+g I %g+Cg+g=0 (2.17)
2m dx' w (1—s')

generated by lattice deformation;

N

dr= g dr, ,
j=1

q, (r)=+,(x)y„(~), i= I',pl (2.11)

Taking into account the additivity one-electron opera-
tors in Eq. (2.7) one can represent a multielectron func-
tion 4 as a determinant

4(Ir I)= det yi(rj. ), i,j =1,2, . . . , N, ,
1

QN, !
(2.10)

where

for the coordinate one-electron wave functions incoming
in the determinant (2.10).

In the case of one electron (n, =1) we have a nonlinear
equation describing the soliton state of the electron in the
deformable chain. ' One equation will also be obtained if
we consider the lowest in energy singlet state of two elec-
trons with opposite spins (n» =2) which corresponds to
the bisoliton state considered by Davydov and Brizhik. '

In the general case of N, electrons in the ground state
when states 6z lowest in energy are occupied by two elec-
trons with the opposite spins (n&=2), (2.17} is a system
of N, /2 equations (N, is assumed to be even).

The total momentum and total energy of the system of
electrons in the state (2.5) will be equal to

are the orthonormalized one-electron wave functions

f qadi'(r}qr, (r}dr= g' y„'( )oy„( )o

s'=&+It lq ) =mVN, + grqlp, I'+ yn~, ,

E= &q'ladle)

(2.18)

L/2
X 4& x +&. x dx—L/2

=511.=5„„5qg .

,
' m V'N, + g n q—&q+g A' V, I q I I P» I

+ V g n ~~
q

(2.19}

y„(o ) is the spin wave function of the electron (p =+1).
Using the independent variations of the functional (2.7)

by the parameters P and the electron wave functions we
get a system of equations

where

d%'g
p&= —iA 4& dx—L/2 dx

(2.20)
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is the quantum-mechanical average of the electron
momentum in the state %'~.

III. SELF-CONSISTENT POTENTIAL

Here e; (i =1,2, 3) are roots for the cubic equation

4t —g2t —
g3 =0

with invariants

(3.9)

+ 2 a
w(1 —s )

(3.1)

where C& is the integration constant.
Differentiating the equality (2.16) twice taking account

the equations (2.17}and the first integral (3.1}we find

d U 6mU+ 32mg a
dx iii fi w(1 —s )

16mg a
i' w(1 —s }

(3.2)

Taking into consideration (2.16) we assume the following
relation to be fulfilled:

g n&8&~%&~ =BU(x)+ A, (3.3)
fi w(1 —s ) 2m

where unknown constants A and B should be determined
in a self-consistent way on finding out the solution.

Thus, the assumption (3.3) leads to the nonlinear equa-
tion for the potential

d2U 6m $2
U2+ 4BU (3.4)

m

Here the notation is introduced

A systein of differential equations (2.17) allows for the
exact solution. To find it and to determine in a self-
consistent manner its constants we shall notice that the
system of equations (2.17} has the first integral of the
form

g2 d%'&gn„+ gnihi~%i~'
2m g dx

ill

g2= —,B +2C

g3= —
( —,', 8'+ —', BC+22)} .

(3.10a)

(3.10b)

Hence, the problem of finding the self-consistent poten-
tial is reduced to the integral inversion problem

which is solved in the Weierstrass elliptic function p(z). '

Here and further we shall use the standard notation for
the theory of elliptic functions. ' '

The self-consistent potential by definition (2.16) is the
real and bounded function of the coordinate x. Thus, Eq.
(3.8) will be physically meaningful only when the discrim-
inant g2

—27gi of the cubic equation (3.9) is positive and
all three roots e, are real and difFerent. The solution to
Eq. (3.6) will then be written as

U(x)= [p(x+co') —
—,'8] . (3.11}

and

1 2 3

The elliptic Weirstrass function p(z) is doubly periodic
function with periods denoted as 2' and 2''. In the el-
liptic function theory' ' the symmetric notations are
generally used

I I
CO~

—
CO, N2 =

CO CO, N3 —N

Then p(co;)=e; (i =1,2, 3). With positive discriminant,

gz —27g& )0, the real roots for the cubic equation (3.9}
are distributed as follows:

2 216m g a
A' w(1 —s )

The first integration of Eq. (3.4) gives
'2

2 2dU 4m Ui+48U2 2' CU+ 2iii &
dx m m

(3.5)

(3.6}

e&&0, e3&0.

In this case the period 2'&=2' is real, and 2co3=2co' is
purely imaginary.

Thus, a one-dimensional system of electrons, deform-
ing the lattice, generates for itself a periodic potential
(3.11) with the period 2'&.

g2
U(x) = [F(x)——'8]

3 (3.7)

the third power polynomial relative to U in the right-
hand side Eq. (3.6) is reduced to a normal Weierstrass
form, and for the function F(x) we get from (3.6) the
equation

dI' =4F g2F —g3=4(F —ei)(F—e2)(—F—e3) .

(3.8}

with 2) being the integration constant. By means of sub-
stitution

IV. EIGENFUNCTION AND ELECTRON SPECTRUM
IN SELF-CONSISTENT POTENTIAL

d% 2m+ 8+ ', 8 —2p(x+c—o3) 4=0 .
dx

(4.1)

This equation is a particular case of the Lame equa-
tion, ' ' written in the Weierstrass form

To make the problem self-consistent by using the rela-
tions (2.16}and (3.3) it is necessary to find the eigenfunc-
tions and the eigenvalues of Schrodinger equation (2.13).
Taking into account the explicit form (3.11) of the self-
consistent potential we rewrite the equation (2.13) as
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d%
=[n (n +1}p(z}—A]%

dz2

when

n =1, A=
~

6'+'B, z=x+co3 .
2m

(4.2)

(4.3)

fiQ(6') = 6+ (e, + ,'B—) 6+ (e~+ ,'B—)

X 8+ (e3+ 'B)—
2m

(4.8b)

The Lame potentials refer to a class of finite-band po-
tentials, ' ' i.e., they have in their spectrum a finite num-
ber [equal to the number n in (4.2)] of the forbidden
bands (gaps). Consequently, a self-consistent potential
(3.11) is a single-gap potential.

The fact that the electrons deforming the chain create
the single-gap potential for themselves is one of the main
results of the Peierls-Frohlich problem exact solution.
The electron band structure and eigenfunctions in this
case are well known 5's'&5 I7 In Refs. 5, 8, and 17 the
Lame equation was written in Jacobi form, instead we
shall use Weierstrass form and write its solution via
Weierstrass 0. function' in the form satisfying the Bloch
theorem

(T(x +F3+A ) —(g /~ )g»
U„(x)=A( e

cT x +c03

(4.4)

(4.5)

k =i g(k) —
A,

91

CO I
(4.6)

has the sense of the wave number.
The eigenvalues of Eq. (4.1) are determined by the pa-

rameter A, and equal to

$2
[—', B+p(A, )] . (4.7}

The relations (4.6) and (4.7) give in the parametric form
(via the parameter A. ) the electron state spectrum in the
periodic potential (3.1}. As is known, in the one-
dimensional case extremums of the function C(k) corre-
spond to the center (k =0) and to the edge (k =+m./2', )

of the Brillouin zone of periodic potential. We find from
(4.7) and (4.6)

dC
dk

d 6/dA,
dk/dA,

1/2
2/2 &Q(~)

fi '9& 2——B
2m

cubi

3

where A z is the normalized constant, o (z) and g(z) are
Weierstrass a and g functions, ri& is the standard con-
stant of the elliptic function theory: ri; =g(co, ); i =1,2, 3,
and A, is an arbitrary constant —the parameter of the
solution.

By virtue of Weierstrass O.-function properties the
function (4.5) is a periodic function with the period 2',
equal to the period of the potential (3.11). Thus, the
wave function (4.4) is an eigenfunction of the translation
operator at the distance multiple to the period of the po-
tential, with corresponding eigenvalue exp [

—[g(A, )—
gled, /co& ]2co&n ]. Hence the combination

Hence, the polynomial zeros (4.8b) determine the
energy-band boundaries in the electron spectrum

(e, + 'B), —8 = — (e +—'B)
1 2 I 3 & 2 2

$2
(e3+ 'B)—

(4.9)

where e, & e2 & e3 and e, )0, e3 (0.
Thus, in the spectrum of Schrodinger equation (4.1)

there are two regions of allowed energies [Q(C) ~0]:
4', & 8 & 8z and 8 ~ 83 which are separated by a forbid-
den band [Q( 8 ) & 0] 8z & 8 & C3. To write the Bloch
wave functions (4.5) and the corresponding dispersion
laws for each of the allowed bands it is necessary to deter-
mine the parameter A, values admissible physically. The
condition of 8 and k being real in virtue of the Weier-
strass functions properties leads to the parameter A, being
equal to

A, =A, (a)= ia+ vco&, (4.10)

c03 (la + c03 or co~ (a col (4. 1 1)

where co&
= —ico3. In the space of the wave vectors this

choice corresponds to a scheme of the broadened
band. ' For the lower allowed band, v=1, with varying
a in the region (4.11), the wave number (4.6) takes the
value in the first Brillouin zone:

—m/2col (k a/2m) .

where a can take arbitrary values on the real axis, and v
is integer. Two energy branches (4.7) as the functions of
the parameter a respond to these values of the parameter

The odd values v=1, 3, . . . correspond to the lower
allowed band with the energy 8, & CI(a) & Cz and the
even v=0, 2, . . .—to the upper one with the energy
Bo(a) ~ D3.

Thus, in Eqs. (4.4)—(4.7), according to (4.10), the pa-
rarneter A, is the double quantum number
A, :—[v, a] =[v, k] that determines the number of the al-
lowed band, v, and the state inside the band —either a or
k, in view of their single-valued correspondence. Since
Eqs. (4.4) —(4.7) are independent of n both for even v=2n
and odd v=1+2n values v, we restrict the number v in
(4.10) to taking only two values 0 and 1. The value v=0
corresponds to the upper allowed band with the disper-
sion law (4.6) and (4.7) when A, =AD(a) =ia and v= 1 to
the lower one with the dispersion law (4.6)—(4.7) for
A, =A, ,(a)=ia+co, . With allowance for periodicity of the
Weierstrass function p(z) in the imaginary axis with
period 2m3=2co' the value of a will be bounded by the
main region

(4.8a) Then
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and

6,(a=0)=C,(k =0}=h) Kp 4mg a
Kp—

1 —s Aw
(5.5)

C,(a=+co, ) =A, (k =km/2', )=@2 .

For the upper band, v =0, the region of wave number one
values (4.6) will be lk l

~ m./2', and the energy takes the
value

80(a = +co, ) = Co( k =+@/2'�
&

) =83

and

Of the whole complete set of orthonormalized func-
tions (4.4) only the functions involved in the determinant
(2.10) come into the relations (2.16) and (3.3). Thus, in
calculating the sums in Eqs. (5.1)—(5.3) we assume the
numbers n k to be the occupation numbers. For the
ground state at zero temperature n k=n[e„(k)]=2 for
the occupied states and n [8„(k)]=0for the empty ones.
Then the conditions (5.1)—(5.3) should be supplemented
by the fourth condition

fl B il k
3m 2m v, k

~v, k =Ne (5.6)

at

lk I »~/2~,
With account of the explicit form D„(k) and the equali-
ties (5.1) and (5.6), the condition (5.2) can be reduced to

A)(a)= 1

L

p(ia+co, ) —e2

'91
p(i a+a), )+

1/2

e "'"'cr(a), }
X (e& —ez)

0 (co, )cr(ia+co3)
(4.12)

Ao(a) = 1

v'L
p(ia) —e3

p(ia)+ 91

1/2
0 (CD3)

(4.13)
o (ia+co3)

V. SELF-CONSISTENCY

To determine the unknown constants it is necessary to
make the equations obtained self-consistent. Knowing
this while using the explicit form of the solutions we have
to require the equalities (2.16} and (3.3) to be satisfied
identically. This leads to the following three self-
consistency conditions:

1 "vk 1

L „k D„(k}
(5.1)

when lal ((co&.
The normalized constants, A„(k)—:A„(a), determines

from the normalization conditions for the wave functions
(4.4), will be equal to

'g1 1 2kFK+—B=
N1 3 '1T

(5.7)

k(X„)—:i g(X„)— X„=k~ .
N1

(5.8)

Here X„=A,„(ao) where ao is the value of parameter a
that determines the boundary energy of the electrons
8„(ao)=@+. Then v= 1 in the case of complete or par-
tial filling of the low band up to the energy 8,(ao) and
v=0 when the low band is occupied completely and the
upper one —up to the energy 80(ao). The value of the
parameter ao follows directly from the condition (5.1)

ap= (5.9)

With allowance for the Legendre relations' ' the
analysis of equalities (5.7) and (5.8) shows that they trans-
form into the identity at

3 N3 N
(5.10}

N1=N-
2kF

' (5.11)

where k~=nn, /2a .is the Fermi wave number of free
electrons; n, =N, /N is the electron concentration in the
chain. In calculating sums it is useful to go to integrating
over the parameter a the condition (5.6) then takes the
form

n„,k
v, k

B+
~ @„(k}

D,(k)
(5.2)

l 7T
N =N = =la

2K
(5.12)

—gn„k 6 (k)
1 2m
L k

B+
2 C,(k)

where the notations are introduced

D (k)=D(a)—
1

2K
(5.3)

For the constant A introduced in (3.3) and the con-
stants C, and 2) we find the following values from the
condition (5.3) and the definitions (3.10a) and (3.10b):

2
4mK A 1

A = — C„C,= g2(co, co')—
2m K 12 ' N'

(5.13a)

'B — + — 8 (k}=-
N1

+p(A, „) , (5.4)
N1

'3
I

2)= ——g3(co, co')—,gz(co, co')+4 (5.13b}
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Thus, in a one-dimensional system of X, electrons at
zero temperature the electron-phonon interaction results
in a self-consistent Peierls periodic chain deformation
with the period determined by the relation (5.11). This
relation is usually called the Peierls relation. Deforming
the chain, the electrons create for themselves a single-gap
periodic potential (3.11) in which the second parameter
cv' is given by (5.12). The energy gap, a single one in the
electron spectrum, separates the occupied states from the
empty sublevels. The ground-state energy then gets de-
creased extremely.

The lattice modulation is associated with that of the
electron density (2.15)

(5.14)

electron momentum (2.20) gives the known relation

p =(m/fi)[d6 (k)/dk]. Hence, there is no quantum-
mechanical contribution of the electrons to the total
momentum (2.18). In moving reference frame the CDW
state represents the Peierls dielectric. In laboratory refer-
ence frame the transition to which is given by the unity
transformation

. VT(P)=exp i —t

the wave function (2.5) describes the Frohlich state with
the total momentum (2.18) and the electric current
j =eX, V generated by the motion of CDW as the entity
along the chain with velocity V=dE/dP.

The integration of (5.14) over one period 2'
J p, (x')dx'=2

reveals that there are two electrons per each CDW period
at zero temperature.

Calculation of the quantum-mechanical average of the
I

VI. DISCUSSION OF RESULTS

To analyze the formulas obtained describing the CDW
state it is convenient to rewrite them via the Jacobi 0
functions. ' ' So, in the laboratory reference frame the
electron density distribution along the chain (5.14) can be
written as

1 d K
p, = — ln8z(v)= "

cosh a(x —Vt — n)
kF

(6.1a)

4~kF nq"+— ln8~( v ) = 1+ g cos[2kF n (x —Vt) )
Q K j~ Q K „)l —q"

For the total momentum (2.18) and the energy (2.19) we get the following equations

P= V(m+m, )N, ,

(6.1b)

(6.2)

E— R k 8"'
F 1

6m ~~g)

A kFK +—(m +2mi) V N,
VTPl 2

(6.3a)

where

+—(m+2m, )V N, ,
6m ~2g', 2

(6.3b)

n.mV, (1—s ) 72tc ir 8i

2 2 g'"
2A K i ~K g8 gs gs

3m V, (l —s ) it~8', 24kF

(6.4a)

(6.4b)

characterizes the increase of CDW effective mass per
electron due to the deformation.

The electron spectrum in the CDW state is character-
ized by the energy-band position (4.9) with allowance for
(5.10). For the filled band width we find

(6.5)

The energy gap separating the occupied states from emp-

ty sublevels will then be as follows:

(6.6)

Here EF =Pi kF /2m is the Fermi energy of free electrons.
In this formula 8 (v)=8.(v, q), 8 =8 (O, q) are the

Jacobi 8 functions (j =1,2, 3,4) with the parameter
q =exp(iirr), r=co'/tv and 8J(v)=8.(v, q), 8& =8/(O, q)
are the 8 functions with the parameter q =exp(iirr) con-
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x yt kF kF
(x —Vt), q =exp —

m2' 7T K
(6.7a)

nected with the functions Oi( v, q) by the Jacobi imaginary
transformation' under which v =v/r, r'= —1/r. Ac-
cording to (5.11) and (5.12) we have for the CDW states

P =Pb, ( V) X ,'N„—E=Eb, ( V) X ,' N,— (6.12)

m. /kz between the solitons (inore exactly bisolitons) in the
CDW will be larger than the size of the bisoliton m/K.
The moinentum (6.2) and the energy (6.3b) of CDW will
then be equal to

. K K
i) = i——(x —Vt), q =exp

kF

If the inequality

(6.7b)
and are correspondingly the sums of the momenta

4A K
Pi„(V)= 2m+ i i 3

V
3mV, (l —s )

(6.13)

and of the energiesMown, (1—s')
&1

8mg a

kF
(6.8)

4A K (1+—s —$4}

3mV, (1—s )

AK
Eb, ( V)= — +—,

' 2m +0

(6.14)

of N, /2 noninteracting bisolitons considered in Ref. 6.
For the occupied band width (6.5) and the energy gap
(6.6}we then get

Siit'a-' AK
m 2m

i.e., in the case the energy gap exceeds much the width of
the filled state band.

As it was mentioned, the Frohlich sliding-mode con-
duction which results from depinning of the CDW is
widely investigated experimentally (see, for example, re-
views by Griiner ). Nonlinear conductivity region was
observed above pinning threshold, and the spectral
analysis of the current indicates the presence of its oscil-
lations (narrow-band noise} with fundamental frequency
v, proportional to the average current, and several har-
monics v„=vn with slowly decreasing intensities.

The current flowing through the chain cross section
x =xo can be written in the form

X=Et (1—Se ), 6=16EFe (6.9)

In the same approximation we get from (6.3a) and (6.4a)
the CDW energy and the value m

&

2g ne +—(m +mi) V +O(q ) N, ,
'

W
'

(6.10)

1E= ' —EF

jcDW(t} eVP1(xo4g n,
+O(q ) .

wV,
m&=

Taking into account Eq. (6.1b), one finds

is satisfied, then, according to (6.7a}, the Jacobi parame-
ter q is the small parameter. In this case it is expedient to
make use of the equations written via 8 (v, q). The in-
equality (6.8} is satisfied at small velocity of CDW when
s = V /V, «1 and at high enough concentration of the
electrons. At certain finite value n, the condition (6.8)
can be called the condition of weak electron-phonon cou-
pling.

According to (6.1a) the CDW represents a set of
periodically distributed solitons. If the inequality (6.8) is
satisfied the solitons are strongly overlapped and it is
more convenient to use the expression (6.1b}for p, . If we
neglect the terms of q order in expansion (6.1b) we get
the Frohlich approximation. ' For the filled band width
(6.5) and the energy gap (6.6) we then have

Consider now the case when there holds the inequality,
inverse to that of (6.8) jcDw(t) =

& jcDw ~ +2 g c„cos(2mn vt —a„),
n=1

8mg a &1.
mA wn, (1—s )

(6.11) a„=2kFxon
(6.16)

Under weak electron-phonon coupling, i.e., when the in-
equality (6.8} is satisfied at small velocities, V=O, the
condition (6.11) corresponds to a large enough velocity of
CDW motion along the chain so that

This expression represents the Fourier cosine series and
can be used for harmonic analysis of the current, result-
ing from the CD% motion. As it follows, the current
consists of the constant term

2 2Smg a
M wn,

en,'V (6.17)

In the general case the inequality (6.11) is satisfied at a
small enough density of the electrons or relatively strong
electron-phonon coupling. In this case the Jacobi param-
eter q (6.7b) becomes the small parameter and it is ex-
pedient to use the expression written in terms of the
transformed 8 functions 8~(v ) =OJ(v, j ).

When the condition (6.11) is satisfied the distance

and oscillating term, which is characterized by the funda-
mental frequency

kF kFa
&jcDw &= &jcDw &

m.n, e 2e
(6.18)

and its harmonics v„=vn with amplitudes, decreasing
with n
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4mkF
Cn = '(JcDW &

~kF
sinh n

(6.19)
has to show the tendency of current saturation. It is not
improbable that this circumstance is one of reasons for
the nonlinear character of sliding-mode conductivity.

In conclusion we note that the continuum approxima-
tion used will be justified only when

The possibility of such NBN interpretation has also been
pointed out by Belokolos.

It is to be noted that the CDW velocity V cannot
exceed the sound velocity V, for at V approaching V, the
CDW energy E and momentum P increase infinitely. As
a result the average current (6.17) has to be less than the
value en, V, la. On this reason the dc I Vcha-racteristics

kFa ~a(l and (1 .

This imposes constraints on the electron concentration in
the chain, the electron-phonon interaction constant, and
also on the CDW motion velocity which cannot be too
close to that of sound.
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