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We have used a slave-boson formulation of the Peierls-Hubbard model on a square lattice to study the
stability of the ground state against a static (,7) lattice displacement. At half-filling our saddle-point
solutions give a stable paramagnetic state with an on-site frozen-in breathing mode accompanied by a
commensurate charge-density wave above a critical electron-phonon coupling strength. The transition
to the “dimerized” state is suggested to be of first order. Increasing the Coulomb interaction, one ob-
serves a monotonous decrease of the static displacement amplitude. In order to map out the phase dia-
gram of the Peierls-Hubbard model away from half filling, we first discuss the relative stability of several
homogeneous phases, including para-, ferro-, ferri-, and antiferromagnetic states with and without lattice
distortion. Parameter regions exist where magnetic order is stabilized by the local electron-phonon cou-
pling. Allowing the existence of heterogeneous solutions, i.e., mixed phases, we show that phase-
separated states are lowest in energy over a wide range of hole density and interaction strength.

I. INTRODUCTION

Superconductivity in the high-T, layered copper ox-
ides! raises again the question concerning the effect of
electron-phonon interaction in strongly correlated fer-
mion systems. The role of electron-phonon coupling is of
special interest in view of the close proximity of these
materials, i.e., La, ,Ba,CuQ,, to structural, insulating
antiferromagnetic, and superconducting instabilities.
Starting from an effective Hubbard model,’ the antifer-
romagnetism of the undoped parent compounds can be
understood as electronic correlation effects in a half-filled
band. Upon doping, a transition to a metallic phase takes
place, where the motion of the charge carriers is strongly
affected due to the coupling on the fluctuating (copper)
spin background.? Simultaneously, close to half filling,
the two-dimensional (2D) tight-binding band structure
gives rise to Fermi-surface nesting, leading to a charge-
density-wave (CDW) instability. Thus a local electron-
phonon interaction may be of special importance and one
can speculate whether the renormalized quasiparticle
band is also unstable against a CDW formation driven by
a frozen-in oxygen breathing mode.*> Along this line,
polaronic or bipolaronic theories of superconductivity
have been developed.’~® Besides the possible relevance of
the Peierls-Hubbard model to the physics of high-T, su-
perconductors, it is an important issue to study the inter-
dependence of electron-electron and electron-lattice in-
teraction on a 2D system in the normal phase. The sta-
bility of the 2D Hubbard model against static lattice dis-
placements (or ‘“‘dimerization”) was investigated for the
local Holstein coupling® using a simple Hartree-Fock ap-
proximation® as well as quantum Monte Carlo (QMC)
technique,'® and for an electron-phonon coupling to the
electronic hopping term with exact diagonalization and
perturbation methods.'!"1?

II. THEORETICAL FORMULATION

In this paper, we present a slave-boson (SB) mean-field
study of the ground-state properties (7"=0) of the 2D
Peierls-Hubbard model, taking into account various sym-
metry broken states compatible with the underlying bi-
partite lattice.

Our approach is based on the following effective one-
band Hamiltonian:

H= 3 tijcit:cja‘*'UzcinciTCiTicil

ij,o i
k
—GZQiCiTaCia‘*‘?z(xf'l'}’iz) ; (1)
i,o i

where cit, (c;,) are the usual fermonic creation (destruc-
tion) operators at Wannier site i with spin o. ¢t and U
denote the transfer amplitude restricted to nearest-
neighbor hopping processes on a square lattice and the
on-site part of the Coulomb repulsion, respectively. The
electronic system is coupled to the Holstein coordinates
g; via a local electron-phonon coupling a, where the pho-
non modes are treated in the adiabatic approximation.
The Hamiltonian (1) was proposed by Prelovsek, Rice,
and Zhang® to be appropriate to the theoretical descrip-
tion of particular breathing modes in the CuO, planes of

La,CuO,. In this case, one has g¢;,=(x; ;
X7y

X -1, +y,»x,,-y _yix,iy‘l)/4 where x;,y; correspond to
the displacements of both O atoms in the unit cell
i=(iy,i,) in a harmonic lattice with spring constant k.
In the following, all energies are measured in units of ¢
and we introduce a dimensionless electron-phonon cou-
pling constant A=a?/16k, as in Ref. 5. Treating the
Hubbard interaction in the Hartree-Fock approximation,
one gets in the limit A < 1 from a continuous version of (1)
a stable CDW state for U < U, =8A.>!* The QMC simu-
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lations show a departure from the simple mean-field re-
sults at larger U and finite doping.!°

To handle the cases of weak, intermediate, and strong
electron-electron as well as electron-phonon coupling on
the same footing, we use in our nonperturbative treat-
ment the SB method in the version of Kotliar and Ruck-
enstein.!* Their auxiliary boson approach allows a
unique treatment of para- (PM), ferro- (FM), ferri- (FIM),
and antiferromagnetic (AFM) long-range order, spiral
magnetic states,’”” and metal-insulator transitions. The
SB technique leads to a quantitative agreement with
QMC calculations over a wide range of interactions and
doping.!® The theory is readily generalized to a spin rota-
tion invariant form!” and to the incorporation of
electron-phonon coupling.'®

In analogy to Ref. 14 we enlarge the physical Hilbert
space of fermion states at each s1te, mtroducmg four aux-
iliary boson operators, where e (e;), p,a (Pio) d (d;)
creates (destroys an empty, a smgle occupied (spm o),

Szfoﬂd‘rz [ei*afei+di‘ard[+2 [pi‘;aniU‘i‘Ci‘;(aT—“)cia

+7~§'1) lei*ei+di‘di+ zpi*npia'*l l'*' 2 7‘512;)(

+Udr*d, +

5o
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and a double occupied state at site i. The unphysical
states in the extended Fock space are eliminated by im-
posing a set of local constraints,

ele; +pr‘1),»T +p.\pi1 +dd,=1 (completeness)
and
ptapto-’_de _clUCIU

(fermion occupancy of a given spin) .

Then the grand-canonical partition function can be ex-
pressed by a multiple path integral over fermion (an-
ticommuting) and boson (commuting) fields as

where the time-dependent Lagrange multipliers A'! ,Am are introduced to enforce the constraints. The projectors

=(1—dd;—p/spis )‘1/2(ei*pio +pt,d)(1—

Z=[Dle*,elD[p%.p,1D[d*,d]D[c},c,]
XD[g)D[A'VID[AZ)]e S )
with the action
CloCio —PioPio—d"d;)
ag;8;; )cja] . (3)
Up1—0)71/2

ensure the correct saddle-point behavior of (2) in the limit of the vanishing Coulomb interaction.'

Due to the bipartite structure of the square lattice, let us separate the crystal into two sublattices indicated by
n= A,B. The free Fermi-surface nesting vector (m,7), the AFM order vector (m, ), and the possibility of a frozen-in
(breathing) phonon mode with the same wave vector related to a CDW-Peierls instability suggest the appearance of
such symmetry broken ground states at least at half filling. Evaluating the partition function (2), one perform the
Gaussian integral over the Grassmann fields.!® At the two sublattice mean-field level, the boson fields are considered as
static and uniform on each sublattice 7. This approximation reduces the bosonic functional integral to the evaluation
of the integrand at the saddle point. At the same time, the constraints can be satisfied on each sublattice only on aver-
age. The grand-canonical potential per site then follows as

]‘=%2l et 3 AR, AR A U A 16
n

- Y C)
I+e Pone THTs )}, @)

where the renormalized single-particle energies (v==1) notation ag; =§,A, where §,=+1 (—1) if site i belongs
0 @) 2 1/2 to the A4, (B) sublattice, introducing the gap parameter’
Aio—Ap s A. Note that the elastic energy can now be expressed as a
2 ) quadratic form in the Holstein coordinate.
Requiring the thermodynamic potential to be station-

Ekva=v _A +E?k|zAa|2lzBo|2

are obtained by the Fourier transformatlon of the kinetic
part. Here B=1/kpT, A¥=(A2)+1%))/2, and the k
summation is restricted to the magnetlc Brillouin zone of
the square lattice. Further, we have used the convenient

ary with respect to variations of the mean-field parame-
(1) 3(2)

ters e,, d,,,p,w, }‘n ,.)»,7(,, and A, one has to solve a set of

15 coupled self-consistency equations to get the saddle-

point values of the bosonic fields. In particular, the ex-
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tremal equation of the static displacement (or gap param-
eter) A are obtained as

(2) (2)

1 1 )\'AU_A'BU
A=8\A— —A 6
s N k%onkva €rvo [ 2 ©

with
1
Myyo = . o)
kvo eB(Ekva_'u'_'-}“UZ))_‘_l

Let us emphasize that A is (via €,,,,) contained implicitly
in all other optimization equations. We determine the
saddle-point fields numerically at T'=0, using the 2D
tight-binding density of states. At given electron (hole)
density n (8), the chemical potential u is fixed by the re-
quirement

1
=1-86=— , 8
h N k%a Nyvo (8)

where the sublattice particle numbers are given by
n,=n+§&,A/8\. By employing the formalism so far, we
searched in the numerical work for PM, AFM, FM, and
FIM solutions with and without A. The physically
relevant saddle point is determined to give the lowest free
energy per site

f=f+un. 9)

However, our procedure allows the investigation of meta-
stable solutions corresponding to local minima in the 15-
dimensional variational space of the free energy.

III. NUMERICAL RESULTS AND DISCUSSION

A. The §=0 case

Starting at half-filling (5 =0), the static lattice displace-
ment A and the free energy of various phases are plotted
in Fig. 1 as a function of U at different A. Obviously, the
solution with finite A leads to the lowest free energy
below a critical ratio U/A; i.e. including a local
electron-phonon interaction, the AFM saddle point!4~16
is unstable against a PM ‘““dimerized” state. In agreement
with exact diagonalization results'? for finite 2D lattices
with a Su-Schrieffer-Heeger coupling,”® the gap parame-
ter A is a monotonous decreasing function of the
Coulomb interaction. The abrupt breakdown of A at U,
indicates a first-order phase transition, where at small A
the critical value U, agrees well with the Hartree-Fock
value U,. If the electron-phonon coupling strength is
raised, U, deviates from U, (U, < U,; cf. the QMC re-
sults of Ref. 10), and one observes a metastable “dimer-
ized” solution at U > U,. The portions of empty, single,
and double occupied sites are shown for the A sublattice
in Fig. 2. In the AFM phase, the staggered magnetiza-
tion follows from m,=p2; —p2,. Here we are able to
test our numerical procedure at U =4 by reproducing the
sublattice magnetization results of Frésard, Dzierzawa,
and Wolfle.”’ In the “dimerized” state the site energies
of the A (B) lattice are lowered (raised), which leads to
an increase (decrease) of double occupied sites, i.e., a
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FIG. 1. Static lattice displacement A (upper half) and free en-
ergy per site f (lower half) as a function of the Coulomb repul-
sion U for the half-filled band case (§=0). The results are given
at various electron-phonon coupling strengths A=0.625 (full
line), A=0.45 (chain dashed line), and A=0.25 (dashed line).
The free energies are compared with systems without electron-
phonon coupling, namely the PM state (dotted) and the AFM
state (chain dotted). The dotted region in A vs U corresponds to
a metastable solution of the saddle-point equations.
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FIG. 2. Probability (occupation number) in the ‘“dimerized”
state for an empty (0), a double occupied (M), and a single occu-
pied site with spin projection up (Q) or down (A), on the A sub-
lattice at half filling for A=0.625. The corresponding probabili-
ties e} (dotted curve), d% (full curve), p%; (dashed curve), and
P4y (chain dashed curve) are shown for the “undimerized”
AFM phase where ¢4 =d? at §=0.
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Peierls CDW. Increasing U, the energy cost at double
occupied sites starts to dominate the energy gain on the
A lattice through ‘““dimerization” until the AFM is estab-
lished at U, restoring the symmetry n , =ng.

The variation of A with A at fixed U =4 shown in Fig.
3 again illustrates the first-order transition behavior. The
region below A, where we found metastable “dimerized”
solutions, increases with U. In the case of vanishing
electron-electron interaction one has an instability to a
lattice-distorted state even at infinitesimal A. Obviously
A(A) tends to the asymptote A=8A in the opposite limit
of very large electron-phonon coupling, where all elec-
trons rest on the same sublattice.

In order to discuss the mobility of the charge carriers
we have calculated in Fig. 4 the effective hopping matrix
element

< 2 Citfcja >
teg= . ) (10)

< 2 citrcja >
ij

This quantity was investigated by Lilly, Muramatsu, and
Hanke'® within SB mean-field theory for the pure Hub-
bard model, to demonstrate the interpolating character of
this theory over a wide range of interaction strength as
well as the excellent quantitative agreement with QMC
results. Due to the large number of double occupied sites
on the A sublattice, the effective hopping amplitude is re-
duced in the “dimerized” state compared to the AFM
phase. When the Coulomb interaction becomes stronger
the mobility increases (cf. Fig. 2) up to the transition
point to the AFM phase, which is indicated by the
change of slope. In the AFM state one obtains the well-
known reduction of the effective bandwidth for large U.

U=0,A=0

B. The 60 case

Upon doping, the situation is much more elaborate.
Searching for saddle-point solutions one has to consider

other broken-symmetry states like incommensurate
8.0 .
+
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FIG. 3. Lattice displacement A vs electron-phonon coupling
strength A at 8=0 for U =0 (full line) and U =4 (A). The jump
in A at a critical A (dotted line) indicates a first-order phase
transition. The dashed line A=8A gives the asymptotic behav-
ior at A>> U, 1.
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FIG. 4. The effective hopping amplitude .5 vs Coulomb in-
teraction at half filling. Solid line, “dimerized” phase; dashed
line, AFM phase; dotted lines, both solutions in their instability
region.

CDW, spiral magnetic order, or inhomogeneous phase-
separated states besides the simple (7,7) modes. In fact it
was demonstrated by Frésard, Dzierzawa, and Wolfle, !’
and more recently by Arrigoni and Strinati?! that spiral
magnetic states lower the AFM free energy at finite dop-
ing 6. However the free energy of these much more com-
plicated twisted spin structures exhibits at least qualita-
tively the same instability against phase separation as the
two sublattice AFM solutions. To keep the problem
tractable in view of the additional electron-phonon cou-
pling, we restrict ourselves further to the (m,7)-breathing
mode (but allow the possibility of phase separation). The
standard way to work out the ground-state phase dia-
gram in this restricted sense consists of two steps.?! 2
First, one has to check the relative stability of several
homogeneous phases by computing their free energy.
Second, we turn to the question of whether the phases
identified by us are thermodynamically unstable against
phase mixing.

Along this line, we first discuss in Figs. 5 and 6 the
general qualitative features of homogeneous solutions for
lattice displacement and free energy vs U away from half
filling at A=0.625. In the small 6 limit (Fig. 5), one ob-
serves the monotonous decrease of A as function of U and
a metastable “dimerized” solution just above U,. A and
U. are reduced compared to the undoped case. The ener-
gy gain relative to the homogeneous AFM and PM solu-
tions and even to spiral magnetic state (here we are able
to compare with the free energy given at U =4 in Ref. 15)
can be seen in both figures. The interesting point is that
now the solution with static lattice displacement exhibits
ferrimagnetic long-range order in a large region. This be-
comes evident looking at the mean occupation numbers
on both sublattices. When the Coulomb interaction is
raised above U=0.02 for &=0.05, the relation
m 4 >>|mpg| 20 holds until the transition to the ‘“undi-
merized” solution takes place. This tendency is contin-
ued at still larger doping 8=0.15. The ‘“‘dimerized” solu-
tion has the lowest free energy below a critical U,; how-
ever, no free-energy crossover point exists as in the cases
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FIG. 5. The U dependence of the static lattice displacement
A and the free energy f is given away from half filling (dashed
curve) at §=0.05 for A=0.625. The free energy of the “dimer-
ized” state is compared with the AFM state (chain dotted line)
and the PM state (dotted line) enforced at the same hole concen-
tration. O indicates the free energy of the spiral structure with
wave vector Q =(m—8Q, ) given in Ref. 15.
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FIG. 6. Static displacement A and free energy f of the
ground state at doping level §=0.15 for A=0.625. Depending
on U, the state with finite A exhibits paramagnetic (full line) or
ferrimagnetic (dashed line) order. The free energies of the
AFM, PM, and spiral states (A =0) are given as in Fig. 4.
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of small A at §=0. The occupation numbers again show
two transition points. The first takes place at U=0.2,
where the spin structure changes from PM to FIM. The
second transition is observed at larger U from the
“dimerized” FIM to a solution with zero gap parameter
A. This transition is of first order. Of course, the exact
location of the phase boundary between ‘““dimerized” and
“undimerized” phases depends on the variety of states we
take into account in minimizing the ground-state energy
of the electronic part of the Peierls-Hubbard model.

Doping holes leaves e2 nearly unchanged, whereas the
number of double occupied states on the A lattice is re-
duced, so we have d? <e} in contrast to §=0 where
d% =e} (see Fig. 7). In consequence, both m , and my
(Img| <m ,) grow smoothly up from zero as the model is
doped away from half-filling. In the low doping regime
the resulting magnetization becomes proportional to 8.
The tendency toward FIM is related to the competition
of antiferromagnetic exchange interaction (at large U),
the CDW instability due to the local Holstein coupling,
and the kinetic energy of the holes (electrons), which
favor a FM background. At half-filling, depending on
the ratio U /A, the CDW or AFM state is lowest in ener-
gy. Upon doping, the tendencies mentioned above may
be at least partially satisfied by magnetic structures
representing a compromise,'® such as the FIM with finite
“dimerization.”

To analyze the phase diagram in more detail, and ad-
dress the question of phase mixing, one has to investigate
the dependency of the free energy on the electron or hole
density. We show in Fig. 8 the free energies obtained
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FIG. 7. The occupation numbers e% (O), d% (M), p%; (O,
Py (D), e} (0), d} (@), p3t (+),and p3, (X) as a function

of doping § at U=4 and A=0.625.
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-2.5 T T

FIG. 8. Free energy as a function of hole concentration 8 in a
state with (without) static lattice displacement A for U=1
marked by dashed (chain dotted) curve, and U=4 given by a
full (chain dashed) curve, where A=0.625. The dotted lines
denote the two-phase region; O denote the free energy for the
homogeneous spiral state quoted from Ref. 15.

from ‘“‘dimerized,” spiral, AFM, and PM solutions, for
A=0.625 and U=1,4 as functions of hole density §. On
general stability arguments the free energy of a homo-
geneous system should be a convex function of the densi-
ty; otherwise a phase-separated state can be obtained by a
Maxwell construction. The existence of a phase-
separated state at low hole concentrations was suggested
by Visscher?* for the Hubbard model and recently by
Emery, Kivelson, and Lin?® for the related z-J model;’
however, until now this point has been rather controver-
sial.?%?” Mean-field SB approaches to the ¢-J and Hub-
bard model yield concave curvature of the free energy in
certain parameter regions'>?%?° [cf. the chain dashed
curve (circles) for the AFM (spiral'®) solution at U=4 in
Fig. 8]. The boundary of thermodynamic instability is
related to the divergence of the isothermal compressibili-
ty, i.e., the derivate du /0n goes to zero. Including the lo-
cal electron-phonon coupling, the results reported in Fig.
8 show that our uniform ‘“dimerized” saddle-point solu-
tion becomes energetically unstable below a critical hole
concentration 8,. Assuming that in this region the sys-
tem would separate into a hole-rich phase and a phase
without holes, the free energy of such a two-phase system
can be obtained from
6 i
f,,(8)=f(0)+8————f( C)s 7o (11)
c

Here f(8.) denotes the free energy per site in the hole-
rich phase with hole concentration §,. The critical con-
centration 8, is determined from the minimum of the
function e(8)=[f(8)—f(0)]/6. That is equivalent to
performing a Maxwell construction for the anomalous in-
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FIG. 9. The phase diagram of thé5 Peierls-Hubbard model is
calculated in the 8-U plane at A=0.625, where (a) only particu-
lar homogeneous states (see text) are taken into account, and (b)
phase separation is allowed. The solid line separates “‘dimer-
ized” from “undimerized” states; dashed lines denote the boun-
daries between phases with different magnetic order. In Fig.
8(b), the chain dotted line gives the boundary between homo-
geneous ‘“‘dimerized” phases with FIM (I) or PM (II) order and
the phase-separated regime. The two-phase region is built up by
the phases at §=0 and the states on the right boundary of the
respective region; i.e., at A=0, AFM-PM, and at A0, AFM-
FIM (I11), PM-FIM (1V), and PM-PM (V, VI).
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crease of the chemical potential u with doping.?""?%3 The
validity of Eq. (11) is restricted to the region 6 <5,. Let
us emphasize that the hole concentration of the hole-rich
phase is fixed at §, in the phase-separated regime. Re-
ducing 8, the portion of the hole-rich phase becomes
smaller. The occupation numbers and A for the phase
without holes are shown in Figs. 1 and 2.

Finally, the ground-state phase diagram of the Peierls-
Hubbard model calculated within our SB scheme is
presented in Fig. 9 in the 8§-U plane at A=0.625. If we
admit only homogeneous phases, we get the domains of
stability shown in the upper part [Fig. 9(a)]. The solution
with finite “dimerization” gives the lowest free energy in
a considerable parameter region of U and §. Increasing
the Coulomb interaction, this solution becomes magneti-
cally ordered (FIM) until it breaks down above U_(5).
The transition between the two ‘‘dimerized” states is of
first order, where we were unable to resolve the jump in A
at lower U values (U <0.1). If the magnetic order
changes on the boundary, we found that the transition
between “dimerized” and ‘“‘undimerized” solutions is also
of first order, otherwise we observe a second-order transi-
tion. The inclusion of spiral magnetic phases has only lit-
tle influence on the extension of the ‘“dimerized” region
(cf. Fig. 8). When we allow the possibility of heterogene-
ous mixing of phases we get the much more complex
phase diagram shown in Fig. 9(b). At n=1 (§=0) one
has a stable paramagnetic “dimerized” state up to
U.=4.95 [cf. Sec. III A and Fig. 9(a)], where the AFM
becomes the ground state. Away from half-filling we can
distinguish at a first glance four domains: phase-
separated regions with (III to VI) and without (AFM-
PM) ‘“‘dimerization,” homogeneous states with finite A,
(LII), and the pure paramagnetic phase (PM). The two-
phase domains are built up by the states at half-filling and
the respective phase on the right phase boundary of each
region. One can easy check that no mixing of 8 <0 and
8> 0 phases is possible.?""?>30 Let us first emphasize that
for the case A=0 the doped AFM is never stable, and the
AFM-PM phase-separated state does extend beyond the
AFM/PM boundary of Fig. 9(a). This is in accordance
with previous findings for the ground-state phase dia-
gram of the infinite dimensional Hubbard model.?? The
phase-separated domain with A0 is divided again in
four regions, where with increasing U the magnetic order
of the two coexisting phases changes from PM-PM
(VLV), PM-FIM (IV), to AFM-FIM (III). The gap pa-
rameter is finite (but different) for both phases in the re-
gimes IV and V, whereas it vanishes for one constituent
in regions III (AFM at §=0) and VI (PM at 6=5,_). Itis
remarkable that we get stable homogeneous phases with
finite A in the domains I and II. Especially, we found
magnetic order (FIM) in a parameter regime (I) where in
the phase diagram of the pure Hubbard model*>* no
magnetic solutions exists. That means upon doping, the
local electron-phonon coupling A can induce (or stablize)
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a magnetic ordered state. Further investigations*® show
that a variation of A shifts only the boundary between the
domains with and without “dimerization” [solid curve in
Fig. 9(b)], but leaves the qualitative features of the phase
diagram unchanged. Even the inclusion of spiral spin
states'>2! should not alter the main predictions of Fig. 9.
Of course, at this stage of theory we cannot rule out that
other phases such as incommensurate CDW accom-
panied by more exotic spin structures, e.g., magnetic tex-
tures,’! may vyield still lower free energy at a low doping
level. However, an adequate treatment of such states
leads to tremendous complications in the numerical eval-
uation of the resulting free-energy functional. Work
along this line is in progress.

IV. CONCLUSION

Let us summarize the main results of this paper, ob-
tained from an extended SB mean-field approach to the
2D Peierls-Hubbard model. In the half-filled-band case,
the local electron-phonon coupling gives rise to a stable
paramagnetic start with a frozen-in on-site lattice dis-
placement. The interplay between electron-phonon and
Coulomb correlations leads to a decrease of the gap pa-
rameter with increasing Hubbard interaction U. At a
critical U,, a first-order transition to an “undimerized”
AFM state takes place, where the electronic correlations
reduce U, below the Hartree-Fock value U,,.

Away from half-filling, one finds ‘“‘dimerized” states
with PM and FIM order to be lowest in energy; i.e., by
increasing the hole concentration the Holstein coupling
can stablize magnetic solutions. In the low-doping re-
gime the observed concave curvature of the free energy
indicates the possibility of a phase-separated state, where
below a critical hole density a separation into ‘“‘dimer-
ized” phases with and without holes takes place. The
free energy of such a two-phase system was obtained by a
Maxwell construction. The existence of phase separation
was also suggested in a wide U parameter regime of the
pure Hubbard model’*?* (i.e., without electron-phonon
coupling). However, in actual physical systems the long-
range part of the Coulomb interaction, not accounted for
in the simple Hubbard model, will try to suppress
different carrier densities on a macroscopic scale.???’
The question of whether or not phase separation is stable
against variations of the Peierls-Hubbard model, for in-
stance against the incorporation of interatomic Coulomb
interaction, is planned to be worked out in a subsequent
paper.*°
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